首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Information on carbon stock and flux resulting from land-use changes in subtropical, semi-arid ecosystems are important to understand global carbon flux, yet little data is available. In the Tamaulipan thornscrub forests of northeastern Mexico, biomass components of standing vegetation were estimated from 56 quadrats (200 m2 each). Regional land-use changes and present forest cover, as well as estimates of soil organic carbon from chronosequences, were used to predict carbon stocks and fluxes in this ecosystem.  相似文献   

2.
The Normalized Area Over reflectance Curve (NAOC) is proposed as a new index for remote sensing estimation of the leaf chlorophyll content of heterogeneous areas with different crops, different canopies and different types of bare soil. This index is based on the calculation of the area over the reflectance curve obtained by high spectral resolution reflectance measurements, determined, from the integral of the red–near-infrared interval, divided by the maximum reflectance in that spectral region. For this, use has been made of the experimental data of the SPARC campaigns, where in situ measurements were made of leaf chlorophyll content, LAI and fCOVER of 9 different crops – thus, yielding 300 different values with broad variability of these biophysical parameters. In addition, Proba/CHRIS hyperspectral images were obtained simultaneously to the ground measurements. By comparing the spectra of each pixel with its experimental leaf chlorophyll value, the NAOC was proven to exhibit a linear correlation to chlorophyll content. Calculating the correlation between these variables in the 600–800 nm interval, the best correlation was obtained by computing the integral of the spectral reflectance curve between 643 and 795 nm, which practically covers the spectral range of maximum chlorophyll absorption (at around 670 nm) and maximum leaf reflectance in the infrared (750–800 nm). Based on a Proba/CHRIS image, a chlorophyll map was generated using NAOC and compared with the land-use (crops classification) map. The method yielded a leaf chlorophyll content map of the study area, comprising a large heterogeneous zone. An analysis was made to determine whether the method also serves to estimate the total chlorophyll content of a canopy, multiplying the leaf chlorophyll content by the LAI. To validate the method, use was made of the data from another campaign ((SEN2FLEX), in which measurements were made of different biophysical parameters of 7 crops, and hyperspectral images were obtained with the CASI imaging radiometer from an aircraft. Applying the method to a CASI image, a map of leaf chlorophyll content was obtained, which on, establishing comparisons with the experimental data allowed us to estimate chlorophyll with a root mean square error of 4.2 μg/cm2, similar or smaller than other methods but with the improvement of applicability to a large set of different crop types.  相似文献   

3.
The Moderate Resolution Imaging Spectrometer (MODIS) Normalized Difference Vegetation Index (NDVI) 16-day composite data product (MOD12Q) was used to develop annual cropland and crop-specific map products (corn, soybeans, and wheat) for the Laurentian Great Lakes Basin (GLB). The crop area distributions and changes in crop rotations were characterized by comparing annual crop map products for 2005, 2006, and 2007. The total acreages for corn and soybeans were relatively balanced for calendar years 2005 (31,462 km2 and 31,283 km2, respectively) and 2006 (30,766 km2 and 30,972 km2, respectively). Conversely, corn acreage increased approximately 21% from 2006 to 2007, while soybean and wheat acreage decreased approximately 9% and 21%, respectively. Two-year crop rotational change analyses were conducted for the 2005–2006 and 2006–2007 time periods. The large increase in corn acreages for 2007 introduced crop rotation changes across the GLB. Compared to 2005–2006, crop rotation patterns for 2006–2007 resulted in increased corn–corn, soybean–corn, and wheat–corn rotations. The increased corn acreages could have potential negative impacts on nutrient loadings, pesticide exposures, and sediment-mediated habitat degradation. Increased in US corn acreages in 2007 were related to new biofuel mandates, while Canadian increases were attributed to higher world-wide corn prices. Additional study is needed to determine the potential impacts of increases in corn-based ethanol agricultural production on watershed ecosystems and receiving waters.  相似文献   

4.
基于Costanza等所提出的生态系统服务功能价值核算理论及方法体系和丰顺县现状土地利用数据,对丰顺县的生态服务功能总价值、价值强度、区位指数等进行测算分析.结果表明:(1)全县生态系统服务功能总价值为46.57亿元,在生态系统服务价值的构成中,林地和水域的贡献率最大;(2)全县平均生态系统服务功能价值强度为1.72万...  相似文献   

5.
Estimating forest structural attributes using multispectral remote sensing is challenging because of the saturation of multispectral indices at high canopy cover. The objective of this study was to assess the utility of hyperspectral data in estimating and mapping forest structural parameters including mean diameter-at-breast height (DBH), mean tree height and tree density of a closed canopy beech forest (Fagus sylvatica L.). Airborne HyMap images and data on forest structural attributes were collected from the Majella National Park, Italy in July 2004. The predictive performances of vegetation indices (VI) derived from all possible two-band combinations (VI(i,j) = (Ri − Rj)/(Ri + Rj), where Ri and Rj = reflectance in any two bands) were evaluated using calibration (n = 33) and test (n = 20) data sets. The potential of partial least squares (PLS) regression, a multivariate technique involving several bands was also assessed. New VIs based on the contrast between reflectance in the red-edge shoulder (756–820 nm) and the water absorption feature centred at 1200 nm (1172–1320 nm) were found to show higher correlations with the forest structural parameters than standard VIs derived from NIR and visible reflectance (i.e. the normalised difference vegetation index, NDVI). PLS regression showed a slight improvement in estimating the beech forest structural attributes (prediction errors of 27.6%, 32.6% and 46.4% for mean DBH, height and tree density, respectively) compared to VIs using linear regression models (prediction errors of 27.8%, 35.8% and 48.3% for mean DBH, height and tree density, respectively). Mean DBH was the best predicted variable among the stand parameters (calibration R2 = 0.62 for an exponential model fit and standard error of prediction = 5.12 cm, i.e. 25% of the mean). The predicted map of mean DBH revealed high heterogeneity in the beech forest structure in the study area. The spatial variability of mean DBH occurs at less than 450 m. The DBH map could be useful to forest management in many ways, e.g. thinning of coppice to promote diameter growth, to assess the effects of management on forest structure or to detect changes in the forest structure caused by anthropogenic and natural factors.  相似文献   

6.
This study presents an approach for chlorophyll content determination of small shallow water bodies (kettle holes) from hyperspectral airborne ROSIS and HyMap data (acquired on 15 May and 29 July 2008 respectively). Investigated field and airborne spectra for almost all kettle holes do not correspond to each other due to differences in ground sampling distance. Field spectra were collected from the height of 30–35 cm (i.e. area of 0.01–0.015 m2). Airborne pixels of ROSIS and HyMap imageries cover an area of 4 m2 and 16 m2 respectively and their spectra are highly influenced by algae or bottom properties of the kettle holes. Analysis of airborne spectra revealed that chlorophyll absorption near 677 nm is the same for both datasets. In order to enhance absorption properties, both airborne hyperspectral datasets were normalized by the continuum removal approach. Linear regression algorithms for ROSIS and HyMap datasets were derived using normalized average chlorophyll absorption spectra for each kettle hole. Overall accuracy of biomass mapping for ROSIS data was 71%, and for HyMap 64%. Biomass mapping results showed that, depending on the type of kettle hole, algae distribution, the ‘packaging effect’ and bottom reflection lead to miscalculations of the chlorophyll content using hyperspectral airborne data.  相似文献   

7.
Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) has been used for the blending of Landsat and MODIS data. Specifically, the 30 m Landsat-7 ETM+ (Enhanced Thematic Mapper plus) surface reflectance was predicted for a period of 10 years (2000–2009) as the product of observed ETM+ and MODIS surface reflectance (MOD09A1) on the predicted and observed ETM+ dates. A pixel based analysis for six observed ETM+ dates covering winter and summer crops showed that the prediction method was more accurate for NIR band (mean r2 = 0.71, p ≤ 0.01) compared to green band (mean r2 = 0.53; p ≤ 0.01). A recently proposed chlorophyll index (CI), which involves NIR and green spectral bands, was used to retrieve gross primary productivity (GPP) as the product of CI and photosynthetic active radiation (PAR). The regression analysis of GPP derived from closet observed and synthetic ETM+ showed a good agreement (r2 = 0.85, p ≤ 0.01 and r2 = 0.86, p ≤ 0.01) for wheat and sugarcane crops, respectively. The difference between the GPP derived from synthetic and observed ETM+ (prediction residual) was compared with the difference in GPP values from observed ETM+ on the two dates (temporal residual). The prediction residuals (mean value of 1.97 g C/m2 in 8 days) was found to be significantly lower than the temporal residuals (mean value of 4.46 g C/m2 in 8 days) that correspondence to 12% and 27%, respectively, of GPP values (mean value of 16.53 g C/m2 in 8 days) from observed ETM+ data, implying that the prediction method was better than temporal pixel substitution. Investigating the trend in synthetic ETM+ GPP values over a growing season revealed that phenological patterns were well captured for wheat and sugarcane crops. A direct comparison between the GPP values derived from MODIS and synthetic ETM+ data showed a good consistency of the temporal dynamics but a systematic error that can be read as bias (MODIS GPP over estimation). Further, the regression analysis between observed evapotranspiration and synthetic ETM+ GPP showed good agreement (r2 = 0.66, p ≤ 0.01).  相似文献   

8.
Background

Unlike in the developed countries, Ethiopia does not have carbon inventories and databank to monitor and enhance carbon sequestration potential of different forests. Only small efforts have been made so far to assess the biomass and soil carbon sequestration at micro-level. This study was carried out to obtain sufficient information about the carbon stock potential of Gerba-Dima forest in south-western Ethiopia. A total of 90 sample plots were laid by employing stratified random sampling. Nested plots were used to collect data of the four carbon pools. For trees with a diameter range of 5 cm < diameter < 20 cm, the carbon stock was assessed from a plot size of 49 m2 (7 m * 7 m). For trees with a diameter range of 20 cm < diameter < 50 cm, the carbon stock was assessed from a plot size of 625 m2 (25 m * 25 m). For trees > 50 cm diameter, an additional larger sample of 35 * 35 m2 was used. Litter, herb and soil data were collected from 1 m2 subplot established at the center of each nested plot. To compute the above ground biomass carbon stock of trees and shrubs with DBH > 5 cm, their DBH and height were measured. The biomass carbon assessment of woody species having DBH < 5 cm, litter and herb were conducted by measuring their fresh weight in the field and dry weight in the laboratory.

Results

The mean total carbon stock density of Gerba-Dima forest was found to be 508.9 tons carbon ha−1, out of which 243.8, 45.97, 0.03 and 219.1 tons carbon ha−1 were stored in the above ground biomass, below ground biomass, litter biomass and soil organic carbon, respectively.

Conclusions

The existence of high carbon stock in the study forest shows the potential of the area for climate change mitigation. Thus, all stakeholders at the local and national level should work together to implement effective conservation measures and get benefit from the biocarbon fund.

  相似文献   

9.
Gross primary production (GPP) is a parameter of significant importance for carbon cycle and climate change research. Remote sensing combined with other climate and meteorological data offers a convenient tool for large scale GPP estimation. This paper presents a study of GPP estimation using three methods with in situ measurements of canopy reflectance, LAI, and the photosynthetically active radiation (PAR). First, because LAI is considered as an indicator of the factor of absorbed PAR (fAPAR), it provides reasonable estimates of GPP for all types of wheat with coefficient of determination R2 of 0.7353. The second method uses four kinds of vegetation indices (VIs) to estimate GPP because these indices are suggested to be reliable candidates in the estimation of light use efficiency (LUE). Good determination coefficients were acquired in estimating GPP with R2 ranging from the lowest of 0.7604 for NDVI to the highest of 0.8505 for EVI. A new method was proposed for the estimation of GPP following the Monteith logic, which considering GPP as a product of VI × VI × PAR. Results indicated that this method can provide the best estimates of GPP as determination coefficient R2 increased largely compared to the other two methods. EVI × EVI × PAR was demonstrated to be the most suitable for the estimation of GPP with the highest R2 of 0.9207, which was about 10% larger as compared to GPP estimated from the single EVI. These results will be helpful for the development of new models of GPP estimation with all remote sensing inputs.  相似文献   

10.
A tree survey and an analysis of high resolution satellite data were performed to characterise the woody vegetation within a 10 × 10 km2 area around a site located close to the town of Dahra in the semi-arid northern part of Senegal. The surveyed parameters were tree species, height, tree crown radius, and diameter at breast height (DBH), for which allometric models were determined. An object-based classification method was used to determine tree crown cover (TCC) from Quickbird data. The average TCC from the tree survey and the respective TCC from remote sensing were both about 3.0%. For areas beyond the surveyed areas TCC varied between 3.0% and 4.5%. Furthermore, an empirical correction factor for tree clumping was obtained, which considerably improved the estimated number of trees and the estimated average tree crown area and radius. An allometric model linking TCC to tree stem crosssectional area (CSA) was developed, which allows to estimate tree biomass from remote sensing. The allometric models for the three main tree species found performed well and had r2-values of about 0.7–0.8.  相似文献   

11.
This paper investigates statistical relationships between land use/land cover (LULC), Landsat-7 ETM+ imagery and landscape mosaic structure in southern Cameroon where the conversion of tropical rain forest to shifting cultivation leads to dynamic processes, acting on the spatial aggregation of various LULC types. A Global Positioning System (GPS) was used in the field to identify a total of 171 shifting cultivation patches representing eight LULC types in two sub-areas. Because of the lack of a cloud-free image for the date of field sampling, the ETM+ imagery was acquired 2 months after field survey, during which it was assumed that no significant changes in LULC occurred (all dry season). Per pixel correlations were developed between spectral reflectance data, vegetation indices and LULC. As an exploratory study, several statistical methods (analysis of variance, means separations (Tukey HSD), principal component analysis (PCA), geo-statistical analysis, image classification and landscape metrics) were applied on point data and sensor images for evaluating the spatial variability within the landscape. Most variables explained 30–72% of LULC variation in the whole dataset. Those variables with high information content of LULC (infrared bands 4, 5, 7 and derived indices and PC1) also showed long ranges (6 km) spatial dependence as compared to those varying only within 1 km range. The results of these statistical analyses suggested the need to group some LULC types and the application of the Maximum Likelihood Classifier (MLC) for supervised classification provided a LULC map with the highest accuracy (81%) after consolidation of perennial LULC types, such as bush fallow, forest fallow and cocoa plantations. Landscape metrics computed from this map showed a high level of patch diversity and connectivity within the landscape and provided input data that can further be used to simulate predictive maps as substitute to cloud-covered sensor imageries. Landsat-7 ETM+ imagery proved to be useful in discriminating (with about 80% accuracy) the most dynamic LULC types such cropped plots and young fallow patches (shifting every season) and the extension front of the agricultural landscape.  相似文献   

12.
This study is aimed at demonstrating the feasibility of the large scale LAI inversion algorithms using red and near infrared reflectance obtained from high resolution satellite imagery. Radiances in digital counts were obtained in 10 m resolution acquired on cloud free day of August 23, 2007, by the SPOT 5 high resolution geometric (HRG) instrument on mostly temperate hardwood forest located in the Great Lakes – St. Lawrence forest in Southern Quebec. Normalized difference vegetation index (NDVI), scaled difference vegetation index (SDVI) and modified soil-adjusted vegetation index (MSAVI) were applied to calculate gap fractions. LAI was inverted from the gap fraction using the common Beer–Lambert's law of light extinction under forest canopy. The robustness of the algorithm was evaluated using the ground-based LAI measurements and by applying the methods for the independently simulated reflectance data using PROSPECT + SAIL coupled radiative transfer models. Furthermore, the high resolution LAI was compared with MODIS LAI product. The effects of atmospheric corrections and scales were investigated for all of the LAI retrieval methods. NDVI was found to be not suitable index for large scale LAI inversion due to the sensitivity to scale and atmospheric effects. SDVI was virtually scale and atmospheric correction invariant. MSAVI was also scale invariant. Considering all sensitivity analysis, MSAVI performed best followed by SDVI for robust LAI inversion from high resolution imagery.  相似文献   

13.
The focus of soil erosion research in the Alps has been in two categories: (i) on-site measurements, which are rather small scale point measurements on selected plots often constrained to irrigation experiments or (ii) off-site quantification of sediment delivery at the outlet of the catchment. Results of both categories pointed towards the importance of an intact vegetation cover to prevent soil loss. With the recent availability of high-resolution satellites such as IKONOS and QuickBird options for detecting and monitoring vegetation parameters in heterogeneous terrain have increased. The aim of this study is to evaluate the usefulness of QuickBird derived vegetation parameters in soil erosion models for alpine sites by comparison to Cesium-137 (Cs-137) derived soil erosion estimates. The study site (67 km2) is located in the Central Swiss Alps (Urseren Valley) and is characterised by scarce forest cover and strong anthropogenic influences due to grassland farming for centuries. A fractional vegetation cover (FVC) map for grassland and detailed land-cover maps are available from linear spectral unmixing and supervised classification of QuickBird imagery. The maps were introduced to the Pan-European Soil Erosion Risk Assessment (PESERA) model as well as to the Universal Soil Loss Equation (USLE). Regarding the latter model, the FVC was indirectly incorporated by adapting the C factor. Both models show an increase in absolute soil erosion values when FVC is considered. In contrast to USLE and the Cs-137 soil erosion rates, PESERA estimates are low. For the USLE model also the spatial patterns improved and showed “hotspots” of high erosion of up to 16 t ha−1 a−1. In conclusion field measurements of Cs-137 confirmed the improvement of soil erosion estimates using the satellite-derived vegetation data.  相似文献   

14.
Locally computed statistics of image texture and a case-based reasoning (CBR) system were evaluated for mapping of forest attributes. Cluster analysis was preferred to regression models, as a pre-selection method of features. The best stand-based accuracy using satellite sensor images was 74.64 m−3 ha−1 (36%) RMSE for stand volume, 1.98 m−3 ha−1 a−1 (49%) for annual increase in stand volume, where κ = 0.23 for stand growth classes and κ = 0.41 for dominant tree species in stands. The top pixel-based accuracy using orthophotos was 76.54 m−3 ha−1 (41%) RMSE for stand volume, 1.87 m−3 ha−1 a−1 (44%) for annual increase in stand volume, where κ = 0.24 for stand growth classes and κ = 0.38 for dominant tree species in stands. Mean saturation in 30 m radius was the most useful feature when orthophotos were used, and standard deviation of Landsat ETM 6.2 values in 80 m radius was the best when satellite sensor images were used. The most valuable feature components (radii, channels and local statistics) for orthophotos were: 30 m kernel radius, lightness and the mean of pixel values; for satellite sensor images: 80 m kernel radius, near-infrared channel (ETM 4) and the mean of pixel values. Locally computed statistics.  相似文献   

15.
The overarching goal of this study was to produce a global map of rainfed cropland areas (GMRCA) and calculate country-by-country rainfed area statistics using remote sensing data. A suite of spatial datasets, methods and protocols for mapping GMRCA were described. These consist of: (a) data fusion and composition of multi-resolution time-series mega-file data-cube (MFDC), (b) image segmentation based on precipitation, temperature, and elevation zones, (c) spectral correlation similarity (SCS), (d) protocols for class identification and labeling through uses of SCS R2-values, bi-spectral plots, space-time spiral curves (ST-SCs), rich source of field-plot data, and zoom-in-views of Google Earth (GE), and (e) techniques for resolving mixed classes by decision tree algorithms, and spatial modeling. The outcome was a 9-class GMRCA from which country-by-country rainfed area statistics were computed for the end of the last millennium. The global rainfed cropland area estimate from the GMRCA 9-class map was 1.13 billion hectares (Bha). The total global cropland areas (rainfed plus irrigated) was 1.53 Bha which was close to national statistics compiled by FAOSTAT (1.51 Bha). The accuracies and errors of GMRCA were assessed using field-plot and Google Earth data points. The accuracy varied between 92 and 98% with kappa value of about 0.76, errors of omission of 2–8%, and the errors of commission of 19–36%.  相似文献   

16.
This study describes the retrieval of state variables (LAI, canopy chlorophyll, water and dry matter contents) for summer barley from airborne HyMap data by means of a canopy reflectance model (PROSPECT + SAIL). Three different inversion techniques were applied to explore the impact of the employed method on estimation accuracies: numerical optimization (downhill simplex method), a look-up table (LUT) and an artificial neural network (ANN) approach. By numerical optimization (Num Opt), reliable estimates were obtained for LAI and canopy chlorophyll contents (LAI × Cab) with r2 of 0.85 and 0.94 and RDP values of 1.81 and 2.65, respectively. Accuracies dropped for canopy water (LAI × Cw) and dry matter contents (LAI × Cm). Nevertheless, the range of leaf water contents (Cw) was very narrow in the studied plant material. Prediction accuracies generally decreased in the order Num Opt > LUT > ANN. This decrease in accuracy mainly resulted from an increase in offset in the obtained values, as the retrievals from the different approaches were highly correlated. The same decreasing order in accuracy was found for the difference between the measured spectra and those reconstructed from the retrieved variable values. The parallel application of the different inversion techniques to one collective data set was helpful to identify modelling uncertainties, as shortcomings of the retrieval algorithms themselves could be separated from uncertainties in model structure and parameterisation schemes.  相似文献   

17.
18.
Soil erosion rates in alpine regions are related to high spatial variability complicating assessment of risk and damages. A crucial parameter triggering soil erosion that can be derived from satellite imagery is fractional vegetation cover (FVC). The objective of this study is to assess the applicability of normalized differenced vegetation index (NDVI), linear spectral unmixing (LSU) and mixture tuned matched filtering (MTMF) in estimating abundance of vegetation cover in alpine terrain. To account for the small scale heterogeneity of the alpine landscape we used high resolved multispectral QuickBird imagery (pixel resolution = 2.4 m) of a site in the Urseren Valley, Central Swiss Alps (67 km2). A supervised land-cover classification was applied (total accuracy 93.3%) prior to the analysis in order to stratify the image. The regression between ground truth FVC assessment and NDVI as well as MTMF-derived vegetation abundance was significant (r2 = 0.64, r2 = 0.71, respectively). Best results were achieved for LSU (r2 = 0.85). For both spectral unmixing approaches failed to estimate bare soil abundance (r2 = 0.39 for LSU, r2 = 0.28 for MTMF) due to the high spectral variability of bare soil at the study site and the low spectral resolution of the QuickBird imagery. The LSU-derived FVC map successfully identified erosion features (e.g. landslides) and areas prone to soil erosion. FVC represents an important but often neglected parameter for soil erosion risk assessment in alpine grasslands.  相似文献   

19.
Hyperspectral sensing can provide an effective means for fast and non-destructive estimation of leaf nitrogen (N) status in crop plants. The objectives of this study were to design a new method to extract hyperspectral spectrum information, to explore sensitive spectral bands, suitable bandwidth and best vegetation indices based on precise analysis of ground-based hyperspectral information, and to develop regression models for estimating leaf N accumulation per unit soil area (LNA, g N m−2) in winter wheat (Triticum aestivum L.). Three field experiments were conducted with different N rates and cultivar types in three consecutive growing seasons, and time-course measurements were taken on canopy hyperspectral reflectance and LNA under the various treatments. Then, normalized difference spectral indices (NDSI) and ratio spectral indices (RSI) based on the original spectrum and the first derivative spectrum were constructed within the range of 350–2500 nm, and their relationships with LNA were quantified. The results showed that both LNA and canopy hyperspectral reflectance in wheat changed with varied N rates, with consistent patterns across different cultivars and seasons. The sensitive spectral bands for LNA existed mainly within visible and near infrared regions. The best spectral indices for estimating LNA in wheat were found to be NDSI (R860, R720), RSI (R990, R720), NDSI (FD736, FD526) and RSI (FD725, FD516), and the regression models based on the above four spectral indices were formulated as Y = 26.34x1.887, Y = 5.095x − 6.040, Y = 0.609 e3.008x and Y = 0.388x1.260, respectively, with R2 greater than 0.81. Furthermore, expanding the bandwidth of NDSI (R860, R720) and RSI (R990, R720) from 1 nm to 100 nm at 1 nm interval produced the LNA monitoring models with similar performance within about 33 nm and 23 nm bandwidth, respectively, over which the statistical parameters of the models became less stable. From testing of the derived equations, the model for LNA estimation on NDSI (R860, R720), RSI (R990, R720), NDSI (FD736, FD526) and RSI (FD725, FD516) gave R2 over 0.79 with more satisfactory performance than previously reported models and physical models in wheat. It can be concluded that the present hyperspectral parameters of NDSI (R860, R720), RSI (R990, R720), NDSI (FD736, FD526) and RSI (FD725, FD516) can be reliably used for estimating LNA in winter wheat.  相似文献   

20.
Estimation of forest structural parameters by field-based data collection methods is both expensive and time consuming. Satellite remote sensing is a low-cost alternative in modeling and mapping structural parameters in large forest areas. The current study investigates the potential of using WordView-2 multispectral satellite imagery for predicting forest structural parameters in a dryland plantation forest in Israel. The relationships between image texture features and the several structural parameters such as Number of Trees (NT), Basal Area (BA), Stem Volume (SV), Clark-Evans Index (CEI), Diameter Differentiation Index (DDI), Contagion Index (CI), Gini Coefficient (GC), and Standard Deviation of Diameters at Breast Heights (SDDBH) were examined using correlation analyses. These variables were obtained from 30 m × 30 m square-shaped plots. The Standard Deviation of Gray Levels (SDGL) as a first order texture feature and the second order texture variables based on Gray Level Co-occurrence Matrix (GLCM) were calculated for the pixels that corresponds to field plots. The results of the correlation analysis indicate that the forest structural parameters are significantly correlated with the image texture features. The highest correlation coefficients were calculated for the relationships between the SDDBH and the contrast of red band (r = 0.75, p < 0.01), the BA and the entropy of blue band (r = 0.73, p < 0.01), and the GC and the contrast of blue band (r = 0.71, p < 0.01). Each forest structural parameter was modeled as a function of texture measures derived from the satellite image using stepwise multi linear regression analyses. The determination coefficient (R2) and root mean square error (RMSE) values of the best fitting models, respectively, are 0.38 and 109.56 ha−1 for the NT; 0.54 and 1.79 m2 ha−1 for the BA; 0.42 and 27.18 m3 ha−1 for the SV; 0.23 and 0.16 for the CEI; 0.32 and 0.05 for the DDI; 0.25 and 0.06 for the CI; 0.50 and 0.05 for the GC; and 0.67 and 0.70 for the SDDBH. The leave-one-out cross-validation technique was applied for validation of the best-fitted models (R2 > 0.50). In conclusion, cross-validated statistics confirmed that the structural parameters including the BA, SDDBH, and GC can be predicted and mapped with a reasonable accuracy using the texture features extracted from the spectral bands of WorldView-2 image.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号