首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The gold-copper deposit at Waschgang (Southern Goldberg mountains, Upper Carinthia) belongs to a type of stratiform, dominantly pyritic deposit, which is hosted by greenschists (Alpine Kieslager;Friedrich, 1936). The ores occur as impregnations (ore type 1) and as massive ores (ore type 2) in prasinitic rocks of the Obere Schieferhülle of the Penninic unit. A N–S trending fault zone cuts the ore deposit to the W (Lettenkluft); the position of the displaced part is unknown.The mineralogical composition of type 1 ores is rather monotonous. Pyrite is the most important ore, minor components are chalcopyrite, bornite, sphalerite and magnetite. No visible native gold has been observed in this type of ore. Type 2 ores are dominated by chalcopyrite and are characterized by large amounts of visible native gold. The majority of these ores occur in the vicinity of the Lettenkluft.Type 2 ores carry a great variety of cogenetic mineral inclusions, of which several have been studied with the electron microprobe and investigated by X-ray methods. These include: tetradymite, Bi2Te1.81Se0.13S; hessite, Ag2Te; matildite, AgBiS2; gladite, Cu1.09Pb1.14Bi5.28S9; krupkaite, CuPbBiS6; pekoite, Cu1.09Pb0.97Bi12.56S18; (?) benjaminite, (Ag2.72Cu0.42)3.14 (Bi6.88Pb0.12)7(S11.08Se0.92)12; pavonite, (Ag0.74Cu0.45)1.19(Bi2.86Pb0.27)3.13 (S4.96Se0.04)5; (?) cupropavonite, (Cu0.73Ag0.4)1.13(Bi2.59Pb0.83)3.42S5; and siegenite, (Ni1.07Co1.76Cu0.19)3.02S4. Other components have been determined by qualitative and quantitative microscopy and include: bornite, idaite, mawsonite, sphalerite, millerite, magnetite, hematite, ilmenite, rutile and a variety of silicates.While the layered ore impregnations (type 1 ores) can be considered as being syngenetic with the associated volcanics of Jurassic age, a syn- to postkinematic (Alpidic) crystallization can be postulated for the type 2 ores. These ores are considered as remobilized and reconcentrated parts of the type 1 ores formed in tectonic stress zones. The crystallization of chalcopyrite and included ore minerals occurred during the cooling history of Alpidic metamorphism, for which in this region a maximum temperature of 500°C and pressures between 4–6 kb have been deduced from the mineral assemblage of the surrounding prasinites, consisting of albite with rims of oligoclase, epidote, chlorite, sphene and amphibole (Höck, 1980). Based onSpringer's limit of 300°C as approximately representing the maximum temperature at which natural members of the bismuthinite-aikinite mineral series have been formed, krupkaite and gladite with the intergrown pavonite type phases might have been deposited directly from solutions at or below 300°C. Unmixing of pekoite from gladite probably occurred at or below the same temperature.
Zur Erzmineralogie der Gold-Kupfer-Lagerstätte Waschgang, Oberkärnten, Österreich
Zusammenfassung Die Gold-Kupfer-Lagerstätte Waschgang (südliche Goldberggruppe, Oberkärnten) ist dem Typus der stratiformen Kiesvererzungen in Grüngesteinen (Alpine Kieslager;Friedrich, 1936) zuzurechnen. Die Erzmineralisationen treten als stoffkonkordante Imprägnationen (Vererzungstypus 1) und als Derberze (Vererzungstypus 2) in Prasiniten der Oberen Schieferhülle des Penninikums auf. Das Erzlager wird im W an einer N–S streichenden Störung abgeschnitten; die Position des verworfenen W-Flügels ist nicht bekannt.Die Imprägnationserze sind in ihrer mineralogischen Zusammensetzung monoton; Pyrit als Haupterz überwiegt bei weitem die sporadischen Begleiter Kupferkies, Bornit, Sphalerit und Magnetit. Dieser Typus führt kein Freigold.Die von Kupferkies dominierten und an Freigold reichen Derberze treten vor allem im Bereich der Lettenkluft auf. Sie sind durch eine Vielfalt zum Teil komplex zusammengesetzter Einschlußminerale gekennzeichnet, von denen einige mittels Mikrosonde und röntgenographischer Methoden untersucht wurden: Tetradymit, Bi2Te1,81Se0,13S; Hessit, Ag2Te; Matildit, AgBiS2; Gladit, Cu1,09Pb1,14Bi5,28S9; Krupkait, CuPbBiS6; Pekoit, Cu1,09Pb0,97Bi12,56S18; (?) Benjaminit (Ag2,72Cu0,42)3,14(Bi6,88Pb0,12)7(S11,08Se0,92)12; Pavonit, (Ag0,74Cu0,45)1,19(Bi2,86Pb0,27)3,13 (S4,96Se0,04)5; (?) Cupropavonit, (Cu0,73Ag0,4)1,13(Bi2,59Pb0,83)3,42S5; Siegenit, (Ni1,07Co1,76 Cu0,19)3,02S4. Andere Mineralphasen wurden mittels qualitativer und quantitativer Mikroskopie bestimmt: Bornit, Idait, Mawsonit, Sphalerit, Millerit, Magnetit, Hämatit, Ilmenit, Rutil und Silikate.Während die stoffkonkordaten Imprägnationserze syngenetisch mit den assoziierten jurassischen Vulkaniten anzusehen sind, wird für die Derberze eine syn- bis postkinematische Kristallisation angenommen. Sie sind als remobilisierte und rekonzentrierte Teile der Imprägnationserze in tektonisch besonders beanspruchten Lagerstättenteilen anzusehen. Die Kristallisation des Kupferkieses und seiner Einschlußminerale erfolgte während der Abkühlungsphase der alpidischen Metamorphose, für die im betrachteten Gebiet eine Maximaltemperatur von ca. 500°C und Drucke zwischen 4–6 kb aufgrund der Petrologie der erzführenden Prasinite angenommen werden können. Die dafür maßgebende Paragenese besteht aus Albit mit Oligoklasrändern, Epidot, Chlorit, Sphen und Amphibol (Höck, 1980). Zieht man die vonSpringer (1971) ermittelte Stabilitätsgrenze von ±300°C für natürliche Mischkristalle der Bismuthinit-Aikinit-Reihe in Betracht, können für Krupkait und Gladit und den damit verwachsenen Pavonit-Phasen Bildungstemperaturen um oder unterhalb 300°C angenommen werden. Die Kristallisation dieser Minerale dürfte dabei direkt aus Lösungen erfolgt sein. Die als Entmischungsstrukturen interpretierten Gladit-Pekoit-Verwachsungen legen den Schluß einer primären Bildung beider Minerale als feste Lösung nahe, deren Zerfall vermutlich unterhalb von 300°C erfolgte.


With 13 Figures

Herrn em. Univ.-Prof. Dr.-Ing. O. M. Friedrich zum 80. Geburtstag in Dankbarkeit gewidmet

This investigation forms part 2 of a major study on Genetic Types of Gold Deposits of the Alps.  相似文献   

2.
The Beiya deposit, located in the Sanjiang Tethyan tectonic domain (SW China), is the third largest Au deposit in China (323 t Au @ 2.47 g/t). As a porphyry-skarn deposit, Beiya is related to Cenozoic (Himalayan) alkaline porphyries. Abundant Bi-minerals have been recognized from both the porphyry- and skarn- ores, comprising bismuthinite, Bi–Cu sulfosalts (emplectite, wittichenite), Bi–Pb sulfosalts (galenobismutite, cosalite), Bi–Ag sulfosalt (matildite), Bi–Cu–Pb sulfosalts (bismuthinite derivatives), Bi–Pb–Ag sulfosalts (lillianite homologs, galena-matildite series), and Bi chalcogenides (tsumoite, the unnamed Bi2Te, the unnamed Ag4Bi3Te3, tetradymite, and the unnamed (Bi, Pb)3(Te, S)4). Native bismuth and maldonite are also found in the skarn ores. The arsenopyrite geothermometer reveals that the porphyry Au mineralization took place at temperatures in the range of 350–450 °C and at log fS2 in the range of − 8.0 to − 5.5, respectively. In contrast, the Beiya Bi-mineral assemblages indicate that the skarn ore-forming fluids had minimum temperatures of 230–175 °C (prevailing temperatures exceeding 271 °C) and fluctuating fS2fTe2 conditions. We also model a prolonged skarn Au mineralization history at Beiya, including at least two episodes of Bi melts scavenging Au. We thus suggest that this process was among the most effective Au-enrichment mechanisms at Beiya.  相似文献   

3.
The phase diagrams of the systems Cu2S-PbS-Bi2S3 and Ag2S-PbS-Bi2S3 have been investigated in the present study. The paper is concerned with the complete solid solution between bismuthtite and aikinite above 300°C in the system Cu2S-PbS-Bi2S3. The synthetic phases CuBi3S5 and Cu3Bi5S9 have their solid solution ranges in the ternary system with 9 and 26 mole% PbS at maximum, respectively. A complete solid solution between PbS and AgBiS2 divides the phase diagram of the system Ag2S-PbS-Bi2S3 into two parts: Bi-rich and Ag-rich. All sulfosalt minerals and solid solutions, including pavonite ss, lillianite ss, heyovskyite and benjaminite are on the Bi-rich side. And divarant relations were found between pavonite ss -lillianite ss, benjaminite and bismuthtite as well as between lillianite ss -bismuthtite and galenobismutite. Synthetic experiments using LiCl-KCl flux technique show that when a minor amount of copper (less lwt.%) is added in, many of Ag-and Pb-bismuth sulfosalt minerals, for example, vikingite (Ag5Pb8Bi13S30), are synthesized successively, particularly at 400°C. So is heyrovskyite, which has a solid solution range with 3.7 mole% Cu2S at maximum in the system Cu2S-PbS-Bi2S3.  相似文献   

4.
Summary Pb–Bi–(Cu)-sulfosalts occur as minor minerals widely distributed in rocks of the Penninic unit (gneisses, schists, metavolcanics, etc.), Oberpinzgau, Salzburg. The sulfosalts have been investigated by ore microscopy, X-ray diffraction and electron microprobe analysis. The phases identified are: heyrovskyite, cosalite (Moaralm, Sedl, and Wiesbachrinne in the Habach Valley), lillianite (Moaralm, Sedl; Modereck near the Fuscher Valley), galenobismutite (Bärenbad in the Hollersbach Valley) and Bi-bearing galena. Heyrovskyite (Moaralm) has a composition close to Pb6Bi2S9, with Ag contents between 0.2 (Sedl) and 0.6 (Moaralm) wt.%. Lillianite has the composition Pb2.86–2.91 Bi2.08–2.17Ag0.04–0.08 S6, and cosalite, Pb1.81–2.04 Bi1.92–2.02 Ag0.02–0.06 Cu0.11–0.18S5. The average chemical composition of galenobismutite is Pb1.25Bi1.6Sb0.1Cu0.1Ag0.02Fe0.1S4. Needle-like inclusions of a joseite-type mineral, joseite-A (Bi,Pb)4.01 Te0.9S2.08, and irregular to needle-like grains of native bismuth usually occur along the elongation direction of the lath-like galenobismutite crystals.The occurrences can be divided into two types: 1) stratiform Pb–Bi sulfosalts which occur only in the quartzite intercalations of the Paleozoic Habach unit (Frasl, 1958), and 2) alpidic vein type Pb–Bi sulfosalts which occur in quartz veins intersecting gneisses and are considered to be the remobilization products of the first type. Temperature of formation for heyrovskyite in this region is estimated at between 400±25°C and 500°C. Most probably, the assemblage heyrovskyite-lillianite-galena (Moaralm) was formed at or below 473°C.
Pb–Bi–(Cu)-Sulfosalze in paläozoischen Gesteinen des Oberpinzgau, Salzburg, Österreich
Zusammenfassung Pb–Bi-Sulfosalze verschiedener Vorkommen des Oberpinzgau, Salzburg, wurden mittels Erzmikroskopie, röntgenographischer Methoden und Mikrosonde untersucht. Folgende Phasen wurden identifiziert: Heyrovskyit, Cosalit (Moaralm, Sedl und Wiesbachrinne; alle Habachtal), Lillianit (Moaralm, Sedl; Modereck nahe des Fuschertales), Galenobismutit (Bärenbad, Hollersbachtal) und Bi-hältiger Bleiglanz. Heyrovskyit (Moaralm) ist nahezu Pb6Bi2S9, mit Ag-Gehalten zwischen 0,2 (Sedl) und 0.6 (Moaralm) Gew.%, Lillianit Pb2,86–2,91Bi2,08–2,17Ag0,04–0,08S6, und Cosalit Pb1,81–2,04Bi1,92–2,02Ag0,02–0,06 Cu0,11–0,18S5. Galenobismutit ist Pb1,25Bi1,6Sb0,1Cu0,1Ag0,02Fe0,1S4. Nadelige Einschlüsse von Joseit-A, (Bi, Pb)4,01Te0,9S2,08, und unregelmäßige bis nadelige Körner von ged. Wismut treten entlang der Längsrichtung der Galenobismutit-Kristalle auf. Die Mineralisationen sind an stratiforme, sulfidreiche Quarzlagen (Typus 1, z. B. Bärenbad) oder an diskordante Quarzgänge (Typus 2; alle anderen Vorkommen) gebunden. Typus 1 tritt innerhalb der altpaläzozischen Habachserie (Frasl, 1958), Typus 2 in Randbereichen dieser zu den Gneismassen der Habachzunge (z. T. auch in letzteren) auf. Die dem Typus 2 zugerechneten Vererzungen werden als Remobilisationsprodukte der altpaläozoischen Mineralisationen (Typus 1) angesehen.Die Bildungstemperatur des Heyrovskyit dürfte im betrachteten Bereich zwischen 400±25°C und 500°C gelegen haben; eine Bildungstemperatur von 473°C oder wening darunter wird für die Assoziation Heyrovskyit-Lillianit-Bleiglanz in Anlehnung an experimentelle Untersuchungen vonSalanci undMoh (1969) angenommen.


With 4 Figures

This investigation forms part of a wider study Genetic types of gold deposits in the Alps.  相似文献   

5.
Phase relations and mineral assemblages in the Ag-Bi-Pb-S system   总被引:1,自引:0,他引:1  
Phase relations within the Ag-Bi-S, Bi-Pb-S, and Ag-Pb-S systems have been determined in evacuated silica tube experiments. Integration of experimental data from these systems has permitted examination and extrapolation of phase relations within the Ag-Bi-Pb-S quaternary system. — In the Ag-Bi-S system liquid immiscibility fields exist in the metal-rich portion above 597±3°C and in the sulfur-rich portion above 563±3°C. Ternary phases present correspond to matildite (AgBiS2) and pavonite (AgBi3S5). Throughout the temperature range 802±2°C to 343±2°C the assemblage argentite (Ag2S) + bismuth-rich liquid is stable; below 343°C this assemblage is replaced by the assemblage silver + matildite. — Five ternary phases are stable on the PbS-Bi2S3 join above 400°C — phase II (18 mol-% Bi2S3), phase III (27 mol-% Bi2S3), cosalite (33.3 mol-% Bi2S3), phase IV (51 mol-% Bi2S3), and phase V (65 mol-% Bi2S3). Phase IV corresponds to the mineral galenobismutite and is stable below 750±3°C. Phases II, III, and V do not occur as minerals, but typical lamellar and myrmekitic textures commonly observed among the Pb-Bi sulfosalts and galena evidence their previous existence in ores. Phase II and III are stable from 829±6°C and 816±6°C, respectively, to below 200°C; Phase V, stable only between 730±5°C and 680±5°C in the pure Bi-Pb-S system is stabilized to 625±5°C by the presence of 2% Ag2S. Experiments conducted with natural cosalites suggest that this phase is stable only below 425±25°C in the presence of vapor. — In the Ag-Pb-S system the silver-galena assemblage is stable below 784±2°C, whereas the argentite + galena mineral pair is stable below 605±5°C. — Solid solution between matildite and galena is complete above 215±15°C; below this temperature characteristic Widmanstätten structure-like textures are formed through exsolution. Schematic phase relations within the quaternary system are presented at 1050°C, at 400°C, and at low temperature.
Zusammenfassung Die Phasenbeziehungen in den Systemen Ag-Bi-S, Bi-Pb-S und Ag-Pb-S wurden durch Versuche in evakuierten Quarzglasröhrchen bestimmt. Die Auswertung aller experimentellen Daten gestattete eine Extrapolation der Phasenbeziehungen im quaternären System Ag-Bi-Pb-S. — Im System Ag-Bi-S besteht ein Zwei-Schemlzenfeld im metallreichen Teil über 597±3°C und im schwefelreichen Teil über 563±3°C. Die ternären Phasen entsprechen den Mineralien Schapbachit (AgBiS2) und Pavonit (AgBi3S5). Zwischen 802±2°C und 343±2°C ist die Paragenese Silberglanz (Ag2S) + Bi-reiche Schmelze stabil; unterhalb 343°C wird sie jedoch ersetzt durch die Paragenese Silber + Schapbachit. — Fünf ternäre Phasen sind stabil im Schnitt PbS-Bi2S3 oberhalb von 400°C: Phase II (18 Mol-% Bi2S3), Phase III (27 Mol-% Bi2S3), Cosalite (33.3 Mol-% Bi2S3), Phase IV (51 Mol-% Bi2S3) und Phase V (65 Mol-% Bi2S3). Phase IV entspricht dem Mineral Galenobismutit und ist stabil unterhalb 750±3°C. Die Phasen II, III und V kommen zwar nicht in der Natur vor, jedoch weisen typische myrmekitische und lamellare Gefüge, die man häufig in Pb-Bi-Sulfosalzen und deren Verwachsungen mit Bleiglanz beobachtet, auf die ehemalige Existenz solcher Phasen in diesen Erzen hin. Die Phasen II und III sind stabil von 829±6°C bzw. 816±6°C bis unter 200°C. Die Phase V, die im reinen System Bi-Pb-S zwischen 730±5°C und 680±5°C auftritt, wird in Gegenwart von 2% Ag2S stabilisiert bis herab zu 625±5°C. Versuche mit natürlichen Cosaliten lassen darauf schließen, daß diese Phase nur unterhalb 425±25°C in Gegenwart einer Gasphase stabil ist. — Im System Ag-Pb-S ist die Paragenese Silber-Bleiglanz unterhalb von 784±2°C stabil, die Paragenese Silberglanz-Bleiglanz dagegen unterhalb 605±5°C. — Die Mischkristallreihe von Schapbachit und Bleiglanz ist vollständig oberhalb 215±15°C; unterhalb dieser Temperatur entstehen charakteristische Entmischungsgefüge ähnlich den Widmannstättenschen Figuren. Für das quaternäre System werden schematische Phasenbeziehungen für 1050°C, 400°C und eine noch tiefere Temperatur gegeben.
  相似文献   

6.
Electron microprobe analysis of Pb-Cu(Fe)-Sb-Bi sulfosalts from Bazoges and Les Chalanches (France), and Pedra Luz (Portugal), give new data about (Bi, Sb) solid-solution and incorporation of the minor elements Cu, Fe or Ag in jaskolskiite, and in izoklakeite-giessenite and kobellite-tintinaite series. Jaskolskiite from Pedra Luz has high Sb contents (from 17.9 to 20.7 wt.%), leading to the extended general formula: Cu x Pb2+x (Sb1–y Bi y )2–x S5, with 0.10 x 0.22 and 0.19 y 0.41. Fe-free, Bi-rich izoklakeite from Bazoges has high Ag contents (up to 2.2 wt. %), leading to the simplified formula Cu2Pb22Ag2(Bi, Sb)22S57; in Les Chalanches it contains less Ag content (1.2 wt.%), but has an excess of Cu that gives the formula: Cu2.00 (Cu0.49Ag1.18)=1.67Pb22.70(Bi12.63Sb8.99)=21.62S57.27.In tintinaite from Pedra Luz, the variation of the Fe/Cu ratio can be explained by the substitution: Cu + (Bi, Sb) Fe + Pb; Fe-free kobellite from Les Chalanches has a Cu-excess, corresponding to the formula Cu2.81Ag0.54Pb9.88(Bi10.37Sb5.21)=15.38S35.09. Eclarite from the type locality, structurally related to kobellite, shows a Cu excess too. In natural samples of the kobellite homologous series, Fe is positively correlated with Pb, and its contents never exceed that of Cu. Ag substitutes for Pb, together with (Bi, Sb). Taking into account the possibility of Cu excess, but excluding formal Cu2+ and Fe3+, general formulae can be written:  相似文献   

7.
A new argyrodite occurrence has been discovered in the Ro?ia Montan? ore deposit located in the South Apuseni Mountains, Romania. Argyrodite is associated with common base metal sulfides and sulfosalts (galena, sphalerite, chalcopyrite, tetrahedrite ± alabandite, pyrite, and marcasite), tellurides (hessite, altaite, sylvanite) and rare electrum grains in the Ag-rich Cârnicel vein hosted by an extracraterial phreatomagmatic breccia within the Cârnic massif. SEM and EPMA analyses revealed that this argyrodite is Te-rich and a mean Ag8.04Ge0.9Te2.07S3.77 formula was calculated. This phase could be the germaniferous equivalent of the previously-described Te-rich canfieldite. To cite this article: L. Bailly et al., C. R. Geoscience 337 (2005).  相似文献   

8.
Summary New compositional and optical data are reported for antimonian and antimonianbismuthian varieties of hemusite from epithermal Au-Ag-Cu deposits in Japan. The empirical formula for the antimonian variety, from the Iriki mine is: (Cu5.83Fe0.14Ag0.01)5.98Mo1.03(Sn0.54Sb0.41Te0.03Bi0.02)1.00(S7.85Se0.15)8.00, and that of the Sb-Bi variety from the Kawazu mine is: (Cu5.84Fe0.14Ag0.01)5.99Mo1.03(Sn0.82Sb0.11Bi0.l0Te0.04)1.07(S7.80Se0.12)7.92. The theoretical formula of hemusite is Cu+ 4Cu2+ 2MO4+Sn4+S8, whilst the most probable formula of the Iriki hemusite is Cu+ 4.5CU2+ 1.5Mo4+Sn4+ 0.5Sb5+ 0.5S8, with Sb5+ substituting for Sn4+ and forming (SbS4)3– tetrahedra as might be expected, given that the metal to sulphur ratio is 1, and given the sphalerite-like structure of the mineral. However Bi3+ cannot be so accommodated, resulting in a deficiency in (S + Se) for Kawazu hemusite. Reflectance spectra for both are compared with those of the tungsten analogue (compositional) of hemusite, kiddcreekite. The relationship between hemusitesensu stricto and these newly reported varieties is discussed in terms of simple and coupled chemical substitutions, and inferences are drawn on the valency of Sb, Bi, Mo and Cu in the hemusite structure.
Neue chemische und optische Daten für antimon- und bismuthführende Varietäten von Hemusit aus Japan
Zusammenfassung Neue chemische und optische Daten für antimon- und bismuthführende Hemusite auf epithermalen Au-Ag-Cu Lagerstätten in Japan werden vorgelegt. Die empirische Formel für die antimon-führende Varietät aus der Iriki-Mine ist: (Cu5.83Fe0.14Ag0.01)5.98Mo1.03(Sn0.54Sb0.41Te0.03Bi0.02)1.00 (S7.85Se0.15)8.00, und die der Sb-Bi Varietät aus der Kawazu Mine ist: (Cu5.84Fe0.14Ag0.01)5.99M01.03(Sn0.82Sb0.11Bi0.l0Te0.04)1.07 (S7.80Se0.12)7.92. Die theoretische Formel von Hemusit ist Cu+ 4Cu2+ 2Mo4+Sn4+S8, während die wahrscheinlichere Formel für den Hemusit von Iriki Cu+ 4Cu2+ 1.5Mo4+Sn4+ 0.5Sb5+ 0.5S8, mit Sb5+ an der Stelle von Sn4+, das(SbS4)3– Tetraeder bildet, wie zu erwarten ist, unter der Voraussetzung, da das Metall zu Schwefelverhältnis 1 und die Struktur sphaleritähnlich ist. Bi3+ kann jedoch nicht in dieser Weise untergebracht werden, und das führt zu einem Mangel an (S + Se) für den Hemusit von Kawazu. Die Reflektions-Spektren beider Minerale werden mit denen des Wolfram-Equivalents von Hemusit (Kiddcreekit) verglichen. Die Beziehung zwischen Hemusitsensu stricto und diesen jetzt beschriebenen Varietäten wird auf der Basis einfacher und gekoppelter chemischer Substitution diskutiert. Auf dieser Basis werden Schlüsse auf die Valenz von Sb, Bi Mo und Cu in der Hemusit-Struktur gezogen.
  相似文献   

9.
Silver occurs in South China wolframited-quartz veins in three forms:(1)as micro inclusions of Ag2S and AgBiS2,(2) as argentite and matildite as a result of exsolution and(3)as Ag-bearing sulfosalts and independent silver minerals.According to mineral assemblaged the Ag-bearing tungsten deposits are classified as two types:(1)Ag-bearing W-Bi deposits in eastern Nanling,where gustavite has been found and(2)Ag-bearing W-Sn(Sb)deposits which are mainly distributed in western Nanling.The authors consider that the enrichment of silver and sulfosalt minerals in the lower parts of pneumato-hypothermal tungsten deposits is the result of reversed vertical zoning caused by high concentrations of F and S in the ore-forming fluids.  相似文献   

10.
The Hiendelaencina mining district (Guadalajara, Spain), includes the ore deposits of the Hiendelaencina, La Bodera and Congostrina areas. In this paper a general overview of this district is given, with special emphasis on the parageneses, mineralizing stages and chemical characteristics of the sulphides and sulphosalts. These deposits contain silver in Sb-rich sulphosalts such as freibergite, pyrargyrite, polybasite, stephanite, freieslebenite and the Bi-rich sulphosalt, aramayoite. Three mineralizing stages have been detected in Hiendelaencina and Congostrina: (1) As-Fe; (2) Cu-Zn-Fe-Sb-Ag; and (3) Pb-Sb-Ag (±Bi) but only two in La Bodera (stages 2 and 3). The average sulphosalt formulas are: freibergite (Cu0.5 Ag5.9) (Fe1.42 Zn0.66) (Sb4.49 As0.02) S13; pyrargyrite Ag3.38 Sb1.0 S3; polybasite (Ag16.3Cu0.15) (Sb2.8 As0.15) S11; stephanite Ag6.7 Sb1.38 S4; freieslebenite Ag1.1 Sb0.83 Pb1.05 S3 and aramayoite Ag1.06 Bi0. 35 Sb0.7 Pb0.03 S2. The compositional patterns of these sulphosalts (mainly based on the Sb/(Sb + Ag), Ag/ (Ag + Cu), Sb(Ag + As) and Ag/(Ag + Cu) ratios) are outlined, pointing broadly to similar tendencies in their chemistry and genetic conditions.  相似文献   

11.
The relationships and chemical compositions of silver sulfoselenides in the ores of the Rogovik gold-silver deposit (northeastern Russia) were studied to refine the low-temperature region of the Ag2S-Ag2Se phase diagram and identify contradictions between natural and experimental data. Two types of relationships between the phases of the system Ag2S-Ag2Se have been recognized using optical and scanning electron microscopy: (1) Se-acanthite and S-naumannite occur as monomineral microinclusions or fill cracks in the grains or the interstices of other minerals, and acanthite (free of impurities) forms rims on Fe-sphalerite; (2) Se-acanthite forms rims on S-naumannite. Electron probe microanalysis of silver sulfoselenides from the Rogovik ores revealed 0–7.9 wt.% Se in acanthite and 0–3.2 wt.% S in naumannite, which corresponds to the acanthite series Ag2S-Ag2S0.74Se0.26 and naumannite series Ag2S0.28Se0.72-Ag2Se. The composition ranges of the studied acanthite and naumannite series are wider than those of natural silver sulfoselenides from the Guanajuato (Mexico), Silver City (USA), Salida (Indonesia), and other deposits (Ag2S-Ag2S0.85Se0.15 and Ag2S0.12Se0.88-Ag2Se, respectively) but are significantly narrower than the composition ranges of synthetic samples: Ag2S-Ag2S0.4Se0.6 and Ag2S0.3Se0.7-Ag2Se. The presence of intergrowths of two phases of the Ag2S-Ag2Se series in the form of Se-acanthite rims on S-naumannite in the Rogovik ores and the absence of three-phase intergrowths of silver sulfoselenides Ag2S1 -xSex from this and other deposits do not confirm the assumption on the existence of the third solid solution. The results of earlier studies of natural Ag2(S,Se) solid solutions show the existence of two solid solutions (of the acanthite and naumannite series) in the Ag2S-Ag2Se system and confirm the experimental data. It is necessary to carry out a detailed examination of natural silver sulfoselenides falling in the interval from Ag2S0.4Se0.6 to Ag2S0.3Se0.7 in order to identify the limits of two-phase immiscibility.  相似文献   

12.
Modes of occurrence of Au‐ and Ag‐bearing phases and their relation with associated hypogene ore minerals were examined with the objective to elucidate Au‐Ag distribution at the Esperanza porphyry deposit in the Eocene Centinela copper belt, using ore‐microscope modal analysis, semi‐quantitative analyses by automated mineralogy, electron probe microanalysis, and secondary ion mass spectrometer. The Esperanza hypogene mineralization is characterized by early‐stage chalcopyrite‐rich veinlets in the potassic alteration zone and later polymetallic stage with tennantite and galena in the chlorite‐sericitic alteration zone. Only the early‐stage chalcopyrite contains fine‐grained electrum (Au68Ag32 ‐ Au81Ag19) and hessite (Ag2Te), and thus yields positive correlations in Cu vs. Au and Cu vs. Ag grades that are clearly recognized in the hypogene sulfide zone. The early‐stage chalcopyrite grains frequently exhibit polysynthetic twinning suggestive of inversion from intermediate solid solution. These features suggest that the fine‐grained electrum and hessite are products exsolved in the cooling process with the intermediate solid solution to chalcopyrite inversion. In contrast, tennantite and galena of the later‐stage mineralization contain no detectable Ag, and it is thus proposed that the early‐stage inverted chalcopyrite is the principal storage of economically important precious metals.  相似文献   

13.
Abstract: The Bulawan deposit is located in the porphyry copper belt of southwest Negros island, Philippines. Propylitic, K–feldspar, sericitic, and carbonate alteration types can be distinguished in the deposit. Propylite alteration occurs mainly in Cretaceous-Eocene andesitic lavas and agglomerates while K–feldspar, sericite and carbonate alteration types occur mostly in the Middle Miocene dacite porphyry breccia pipes and stocks which were intruded into the andesites. K-feldspar zones occur in the inner parts of the sericitized zone. Sericite alteration overprinted the propylitized and K-feldspar alteration zones, at lower temperature than epidote and chlorite in the propylitized zone. Carbonate alteration is associated with the mineralization in the center of the breccia pipes and along faults. Mineralization consists of gold-silver telluride ores that are hosted by the carbonate– and sericite-altered dacite porphyry breccia pipes. The Bulawan ores occur mainly as disseminations, but unlike many epithermal gold deposits, lack classical epithermal colloform and crustiform quartz veins. The ore minerals are sphalerite, galena, chalcopyrite, pyrite and tetrahedite-tennantite with minor amounts of electrum, calaverite, petzite, sylvanite, hessite, tellurobismuthite, coloradoite, altaite, and rucklidgeite. Electrum and telluride minerals are associated mostly with calcite and dolomite-ankerite minerals. Fluid inclusions in quartz and calcite in clasts of propylitized andesite in the breccia pipes homogenize from about 300° to 400°C while fluid inclusions in quartz, calcite and sphalerite within the dacite porphyry breccia pipes homogenize between 300° to 310°C. The ores were formed around 300°C from hydrothermal solutions with salinity of about 6. 6 wt % NaCl equivalent. The presence of sylvanite and calaverite as intergrowths with each other, and the Ag content of calaverite are consistent with the above temperature estimate. Based on paragenesis, the Bulawan deposit formed in a pyrite-stable environment, with pH between 3. 4 and 5. 5, fO2 between 10-32 to 10-30 atm, fS2 between 10-9.8 to 10-7.8 atm, fTe2 between 10-8.9 to 10-6.5 atm, and total sulfur content about 10-2.8 molal. The dominant reduced sulfur species in the ore solutions may have been H2S(aq), and the likely aqueous tellurium species were H2Te(aq) and H2TeO3(aq). The ore minerals in the Bulawan deposit were probably formed by mixing of slightly saline and low salinity fluids.  相似文献   

14.
Phase relations in the ternary systems Ag2S-Cu2S-PbS and Ag2S-Cu2S-Bi2S3 were studied using the silica vacuum technique. In the system Ag2S-Cu2S-Bi2S3 the phase relations are dominated by join-lines from galena to f.c.c. (Agx Cu2−xS) and b.c.c. (Cux Ag2−xS) at 500°C. With decreasing temperature, galena can coexist with all the phases on the Ag2S-Cu2S join. There are six solid solutions, and one new phase, i.e., “C” whose composition is Ag1.1 Cu4.8Bi5.8S12 in the system Ag2S-Cu2S-Bi2S3 at 500°C. The pavonite (AgBi3S5) contains 14 mole% Cu2S in solid solution, but only 3.0 mole% Ag2S in CuBi3S5 solid solution. The Cu3Bi5S9 ss and wittichenite (Cu3BiS3) ss can form join-lines with pavonite as and have the maximum contents of 9.0 and 18 mole% Ag2S. The most striking feature is the presence of bejaminite as a stable phase with a chemical formula of Ag2Bi4S7 on the Ag2S-Bi2S3 join. AgBiS2 of the PbS type occupies a fairly large field with a maximum of 23 mole% Cu2S.  相似文献   

15.
Summary Polymetallic ore deposits of low temperature origin often contain thallium as a minor element. By means of modern analytical methods numerous new T1 minerals are described, but their coexistence and equilibria are not investigated yet.The equilibria at 200°C of the quasi-quaternary system Ag2S-Tl2S-Sb2-Sb2S3-Bi2S3 and the corresponding subsystems were studied. The system Ag2S-Tl2S-Sb2S3-Bi2S3 contains only one quasiquaternary phase, AgTlSbBiS4, which is connected by tie-lines with all quasiternary phases in the system (Ag4Sb3BiS8 and Ag3Tl3Sb2S6) and with most quasibinary phases: SbBiS3, weissbergite (TlSbS2), (TlBiS2, pyrargyrite (Ag3SbS3), miargyrite (AgSbS2) and matildite (AgBiS2). This phase diagram makes it possible to investigate all important naturally occurring parageneses of Ag and Tl sulphosalts containing Sb and Bi.
Die experimentelle Untersuchung des Ag-TI-Sb-Bi-S Systems
Zusammenfassung In polymetallischen Sulfiderzen niedriger Bildungstemperaturen sind Spuren von Thallium fast immer nachweisbar. In jüngster Zeit wurde mittels moderner Analysentechniken eine Reihe neuer Thalliumminerale entdeckt, charakteristische Paragenesen sind bisher und Phasengleichgewichte jedoch unerforscht.In einer experimentellen Studie wurde das quasi-quaternäre System Argentit (Ag2S)-Carlinit (Tl2S)-Antimonglanz (Sb2S3)-Wismutglanz (Bi2S3) bei 200 °C untersucht. Es enthält nur eine quasi-quaternäre Phase AgTlSbBiS4, welche durch Konoden mit den quasi-ternären Phasen Ag4Sb3BiS8 und Ag3Tl3Sb2S6, sowie mit den quasi-binären Phasen Pyrargyrit (Ag3SbS3), Miargyrit (AgSbS2), Schapbachit (Matildit, AgBiS2), Weissbergit (TlSbS2), TlBiS2 und SbBiS3 verknüpft ist. Das vorliegende Phasendiagramm ermöglichtes die Phasenbeziehungen natürlich vorkommender Ag- und Tl-Sulfosalze, die Sb und Bi enthallen, darzustellen.


With 5 Figures

Deceased  相似文献   

16.
The copper deposit La Leona consists of ore veins in a granite batholite which intruded into Permian sediments. In these veins the following minerals are observed: pyrite, sphalerite, chalcopyrite, galena, betekhtinite, two Bisulfosalts, electrum, bornite, chalcocite, enargite, tennantite, Zn-Fahlerz, cuprite, delafossite, molybdenite, hematite and iron hydroxides, and copper carbonates with quartz and iron carbonates as gangue. The betekhtinite, (CuFe)10Pb S6, found for the first time in Argentina, the Zn-Fahlerz and the sulfosalts (Cu3.2Bi1.2Pb1.2S8.5) and (Cu9.3Bi1.1S6.8) were studied in detail under the microscope, by X-rays and by microprobe. Specifically, the paragenesis of these three minerals with galena, chalcocite and bornite is discussed.
Résumé Le gisement de cuivre de la mine «La Leona» est formé de filons de minerais recoupant un batholite granitique qui a fait intrusion dans des sédiments permiens. Les minéraus suivants ont été observés: pyrite, blende, chalcopyrite, galène, bétekhtinite, deux sulfosels de Bi, électrum, bornite, chalcosine, énargite, tennantite, «Zn-Fahlerz», cuprite, delafossite, molybdénite, hématite et hydroxydes de fer, des carbonates de cuivre, dans une gangue de quartz et de carbonates de fer. La bétekhtinite (Cu Fe)10Pb S6, trouvée pour la première fois en Argentine, le «Zn-Fahlerz» et les sulfosels (Cu3.2Bi1.2Pb1.2S8.5) et (Cu9.3Bi1.1S6.8) ont été spécialement étudiés à l'aide de la microscopie, de la diffraction des rayons-X et de la microsonde. La paragénèse formée par ces trois mineraux associés à la galène, la chalcosine et la bornite est discutée.
  相似文献   

17.
鸡笼山矽卡岩型金铜矿床是长江中下游成矿带典型的矽卡岩矿床,矿体主要赋存于下三叠统大冶组碳酸盐岩与花岗闪长斑岩接触带内。根据野外观察和镜下鉴定,将成矿过程划分为进矽卡岩阶段、退化蚀变阶段、石英-硫化物阶段和碳酸盐阶段,其中石英-硫化物阶段为金和铜的主要成矿阶段。鸡笼山金铜矿床中不同类型矿石的矿相学观察和电子探针微区成分分析(EPMA)表明,金、银主要以自然金、银金矿、碲银矿、硫银铋矿等形式产出,主要载金矿物为黄铜矿和黄铁矿;同时发现鸡笼山金铜矿床中发育大量碲-铋矿物(如辉碲铋矿、针硫铋铅矿等)。成矿流体物理化学性质研究表明,鸡笼山金铜矿床中金银元素在高温热液中主要以氯络合物的形式运移,随着温度降低和流体进一步的演化,金银元素转变为以硫络合物、碲铋化物熔体等形式运移。在石英-硫化物阶段,由于硫化作用与流体的沸腾作用,流体中硫逸度降低,碲逸度升高;当流体处于黄铁矿-磁黄铁矿氧逸度范围、酸碱性呈中性-弱碱性、碲逸度(logf_(Te2))为-10.7~-8.4、硫逸度(logf_(S_2))为-11.4~-10.6时,金、银、铜元素近于同时沉淀,碲、铋和砷元素对金和银元素运移和富集起到了重要作用,最终形成了鸡笼山矽卡岩型金铜矿床。  相似文献   

18.
The Fe-rich Li-bearing magnesionigerite-6N6S occurs in the Xianghualing tin-polymetallic ore field, Linwu County, Hunan Province, Peoples Republic of China. It was found near the outer contact zone of the Laizhiling granite body and in the Middle-Upper Devonian carbonate rocks of Qiziqiao Formation. The mineral formed during the skarn stage. Its empirical formula is Sn1.81Li0.67(Fe1.43Zn1.19 Mn0.41)Σ3.03(Al14.89Mg1.46 Ti0.11Si0.01)Σ16.47O30(OH)2. The structure for magnesionigerite-6N6S was solved and refined in space group R-3?m, with a?=?5.7144(8), c?=?55.446(11) Å, V?=?1568.0(4) Å3, to R1?=?0.0528. Based on the structural refinement of single crystal diffraction data the formula of magnesionigerite-6N6S is Sn1.80Li0.97(Fe1.89Zn0.91) Σ2.80 (Al14.60Mg1.63 Ti0.20)Σ16.43O30(OH)2 with Z?=?3. Fe-rich Li-bearing magnesionigerite-6N6S contains 0.74 wt.% Li2O. The idealized charge-balanced composition of magnesionigerite-6N6S may be expressed by bivalent and trivalent cations: (Mg2+)4(Al3+)18O30(OH)2. The simplified general formula for the 6N6S polysomes in the nigerite and högbomite groups can be given as A x B18-x O30(OH)2, x?=?~4, where A?=?Mg2+, Fe2+, Zn2+; B?=?Al3+, Sn4+, Ti4+, Li+, □.  相似文献   

19.
The standard thermodynamic properties (Δf G°, S°, Δf H°) of the following synthetic minerals and compounds in the Ag-Au-Se and Ag-Au-Te systems were determined by the EMF method: β-Ag2Se (low-temperature naumannite), α-Ag2Se (high-temperature naumannite), Ag3AuSe2 (fischesserite), AuSe, Ag5Te3 (stützite), Ag2 Te (hessite), and Ag3AuTe2 (petzite). All minerals and compounds were produced by solid-phase synthesis from elements or electrum of the given composition in evacuated ampoules made of quartz glass. The phases were verified by X-ray diffraction analysis, microscopically in reflected light, and with an electron microprobe. The absence of the ternary compound AgAuSe in the Ag-Au-Se system was confirmed by solid-phase annealing. On the basis of experimental data on the electromotive force E versus temperature, the equations E(T) were calculated, from which the temperature-dependent relationships of the Gibbs energy in the relevant reactions and the standard thermodynamic functions of compounds within the range 300–502 K were obtained.  相似文献   

20.
Jinshanjiangite (acicular crystals up to 2 mm in length) and bafertisite (lamellar crystals up to 3 × 4 mm in size) have been found in alkali granite pegmatite of the Gremyakha-Vyrmes Complex, Kola Peninsula. Albite, microcline, quartz, arfvedsonite, zircon, and apatite are associated minerals. The dimensions of a monoclinic unit cell of jinshanjiangite and bafertisite are: a = 10.72(2), b=13.80(2), c = 20.94(6) Å, β = 97.0(5)° and a = 10.654(6), b = 13.724(6), c = 10.863(8) Å, β = 94.47(8)°, respectively. The typical compositions (electron microprobe data) of jinshanjiangite and bafertisite are: (Na0.57Ca0.44)Σ1.01(Ba0.57K0.44)Σ1.01 (Fe3.53Mn0.30Mg0.04Zn0.01)Σ3.88(Ti1.97Nb0.06Zr0.01)Σ2.04(Si3.97Al0.03O14)O2.00(OH2.25F0.73O0.02)Σ3.00 and (Ba1.98Na0.04K0.03)Σ2.05(Fe3.43Mn0.37Mg0.03)Σ3.83(Ti2.02Nb0.03)Σ2.05 (Si3.92Al0.08O14)(O1.84OH0.16)Σ2.00(OH2.39F1.61)Σ3.00, respectively. The minerals studied are the Fe-richest members of the bafertisite structural family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号