首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The long-term average annual soil loss (A) and sediment yield (SY) in a tropical monsoon-dominated river basin in the southern Western Ghats, India (Muthirapuzha River Basin, MRB; area: 271.75 km2), were predicted by coupling the Revised Universal Soil Loss Equation (RUSLE) and sediment delivery ratio (SDR) models. Moreover, the study also delineated soil erosion risk zones based on the soil erosion potential index (SEPI) using the analytic hierarchy process (AHP) technique. Mean A of the basin is 14.36 t ha?1 year?1, while mean SY is only 3.65 t ha?1 year?1. Although the land use/land cover types with human interference show relatively lower A compared to natural vegetation, their higher SDR values reflect the significance of anthropogenic activities in accelerated soil erosion. The soil erosion risk in the MRB is strongly controlled by slope, land use/land cover and relative relief, compared to geomorphology, drainage density, stream frequency and lineament frequency.  相似文献   

2.
Four techniques for soil erosion assessment were compared over two consecutive seasons for bare-fallow plots and a maize-cowpea sequence in 1985 at IITA, Ibadan, Nigeria. The techniques used were: tracer (aluminium paint), nails (16 and 25), the rill method, and the Universal Soil Loss Equation (USLE). Soil loss estimated by these techniques was compared with that determined using the runoff plot technique. There was significantly more soil loss (P < 0·01) in bare-fallow than in plots under maize (Zea mays) or cowpea (Vigna unguiculata). In the first season, soil loss from plots sown to maize was 40·2 Mg ha?1 compared with 153·3 Mg ha?1 from bare-fallow plots. In the second season, bare-fallow plots lost 87·5 Mg ha?1 against 39·4 Mg ha?1 lost from plots growing cowpea. The techniques used for assessing erosion had no influence on the magnitude of soil erosion and did not interfere with the processes of erosion. There was no significant difference (P < 0·05) between soil erosion determined by the nails and the runoff plot technique. Soil loss determined on six plots (three under maize, three bare-fallow) by the rill technique, at the end of the season, was significantly lower (P < 0·05) than that determined by the runoff plot technique. The soil loss estimated by the rill method was 143·2, 108·8 and 121·9 Mg ha?1 for 11, 11, and 8 per cent slopes respectively, in comparison with 201·5, 162·0, and 166·4 Mg ha?1 measured by the runoff plot method. Soil loss measured on three bare-fallow plots on 10 different dates by the rill technique was also significantly lower (P < 0·01) than that measured by the runoff plot. In the first season the USLE significantly underestimated soil loss. On 11, 11, and 8 per cent slopes, respectively, soil loss determined by the USLE was 77, 92, and 63 per cent of that measured by the runoff plot. However, in the second season there was no significant difference between soil loss determined by the USLE and that determined by the conventional runoff plot technique.  相似文献   

3.
Soil is an essential resource for human livelihoods. Soil erosion is now a global environmental crisis that threatens the natural environment and agriculture. This study aimed to assess the annual rate of soil erosion using distributed information for topography, land use and soil, with a remote sensing (RS) and geographical information system (GIS) approach and comparison of simulated with observed sediment loss. The Shakkar River basin, situated in the Narsinghpur and Chhindwara districts of Madhya Pradesh, India, was selected for this study. The universal soil loss equation (USLE) with RS and GIS was used to predict the spatial distribution of soil erosion occurring in the study area on a grid-cell basis. Thematic maps of rainfall erosivity factor (R), soil erodibility factor (K), topographic factor (LS), crop/cover management factor (C), and conservation/support practice factor (P) were prepared using annual rainfall data, soil map, digital elevation model (DEM) and an executable C++ program, and a satellite image of the study area in the GIS environment. The annual rate of soil erosion was estimated for a 15-year period (1992–2006) and was found to vary between 6.45 and 13.74 t ha?1 year?1, with an average annual rate of 9.84 t ha?1 year?1. The percentage deviation between simulated and observed values varies between 2.68% and 18.73%, with a coefficient of determination (R2) of 0.874.  相似文献   

4.
ABSTRACT

This study examined the effects of herbaceous plant roots on interrill erosion using two herbaceous species: clover (Trifolium repens) and oats (Avena sativa). We developed a simple rainfall simulator with relatively high normalized kinetic energy (KE; 23.2 J m?2 mm?1). Under simulated rainfall, we measured eroded soil for 42 boxes with various amounts of aboveground and belowground biomass. Aboveground vegetation had a significant effect on the soil erosion rate (SER). We found a clear negative relationship between the percent vegetation cover (c) and the SER. In contrast, plant roots showed no effects on the SER. The SER was not significantly different between the boxes with and without plant roots under similar c conditions. Thus, plant roots could have less of an effect on the SER under higher KE conditions.
Editor M.C. Acreman Associate editor N. Verhoest  相似文献   

5.
Abstract

Gully erosion is considered to be one of the most important soil erosion processes in Mediterranean marly environments, but its actual contribution to total soil loss is still under discussion. The objectives of this paper are: (a) to acquire the distributed value of erosion rate in a permanent gully developed on a marly substratum in a Mediterranean environment; and (b) to quantify the key factors responsible for the spatial and temporal differences in erosion rates observed within the gully. A permanent gully located in Cap Bon (northeastern Tunisia) has been intensively and regularly monitored over a 7-year period with electronic survey equipment (total station) to give five field topographic surveys, as well as hydrological measurements at the gully outlet. The net soil loss for the 7-year period comprised a denudation of 51 m3 of sediment on the gully bank slopes, which corresponds to a mean soil loss of 61 m3 ha?1 year?1 or 6.1 mm year?1. Denudation was observed on bed units with a slope gradient greater than 20%, while the remainder showed deposition. By confirming the factors involved in gully evolution, and by refining the statistical link between factors and erosion rates within the gully, the results provide important information to predict gully erosion rates in Mediterranean marly environments.

Editor Z.W. Kundzewicz; Associate editor G. Mahé

Citation El Khalili, A., Raclot, D., Habaieb, H., and Lamachère, J.M., 2013. Factors and processes of permanent gully evolution in a Mediterranean marly environment (Cape Bon, Tunisia). Hydrological Sciences Journal, 58 (7), 1519–1531.  相似文献   

6.
Black marls form very extensive outcrops in the Alps and constitute some of the most eroded terrains, thus causing major problems of sedimentation in artificial storage systems (e.g. reservoirs) and river systems. In the experimental catchments near Draix (France), soil erosion rates have been measured in the past at the plot scale through a detailed monitoring of surface elevation changes and at the catchment scale through continuous monitoring of sediment yield in traps at basin outlets. More recently, erosion rates have been determined by means of dendrogeomorphic techniques in three monitored catchments of the Draix basin. A total of 48 exposed roots of Scots pine have been sampled and anatomical variations in annual growth rings resulting from denudation analysed. At the plot scale, average medium‐term soil erosion rates derived from exposed roots vary between 1·8 and 13·8 mm yr?1 (average: 5·9 mm yr?1) and values are significantly correlated with slope angle. The dendrogeomorphic record of point‐scale soil erosion rates matches very well with soil erosion rates measured in the Draix basins. Based on the point‐scale measurements and dendrogeomorphic results obtained at the point scale, a linear regression model involving slope angle was derived and coupled to high‐resolution slope maps obtained from a LiDAR‐generated digital elevation model so as to generate high‐resolution soil erosion maps. The resulting regression model is statistically significant and average soil erosion rates obtained from the areal erosion map (5·8, 5·2 and 6·2 mm yr?1 for the Roubine, Moulin and Laval catchments, respectively) prove to be well in concert with average annual erosion rates measured in traps at the outlet of these catchments since 1985 (6·3, 4·1 and 6·4 mm yr?1). This contribution demonstrates that dendrogeomorphic analyses of roots clearly have significant potential and that they are a powerful tool for the quantification and mapping of soil erosion rates in areas where measurements of past erosion is lacking. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
To date, most studies of the effectiveness of geotextiles on soil erosion rates and processes have been conducted in laboratory experiments for less than 1 h. Hence, at Hilton (52°33′ N, 2°19′ W), UK, the effectiveness of employing palm‐mat geotextiles for soil erosion control under field conditions on arable loamy sands was investigated. Geotextile‐mats constructed from Borassus aethiopum (Borassus palm of West Africa) and Mauritia flexuosa (Buriti palm of South America) leaves are termed Borassus mats and Buriti mats, respectively. Duplicate runoff plots (10 m × 1 m on a 15° slope) had five treatments (bare, permanent grass, Borassus total plot cover, Borassus buffer strip and Buriti buffer strip). Borassus covered plots had about 72% ground cover and to differentiate between this treatment and Borassus buffer strips, the former treatment is termed Borassus completely‐covered. Runoff and eroded soil were collected from each bounded plot in a concrete gutter, leading to a receptacle. Results from 08/01/2007–23/01/2009 (total precipitation = 1776·5 mm; n = 53 time intervals) show that using Borassus buffer strips (area coverage ~10%) on bare soil decreased runoff volume by about 71% (P > 0·05) and soil erosion by 92% (P < 0·001). Bare plots had nearly 29·1 L m?2 runoff and 2·36 kg m?2 soil erosion during that period. Borassus buffer strip, Buriti buffer strip and Borassus completely‐covered plots had similar effects in decreasing runoff volume and soil erosion. Runoff volumes largely explain the variability in soil erosion rates. Although buffer strips of Borassus mats were as effective as whole plot cover of the same mats, the longevity of Borassus mats was nearly twice that of Buriti mats. Thus, use of Borassus mats as buffer strips on bare plots is highly effective for soil erosion control. The mechanisms explaining the effectiveness of buffer strips require further studies under varied pedo‐climatic conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
This paper describes the design, operation and performance of a field‐portable ‘drip‐type’ simulator and erosion measurement system. The system was constructed specifically for soil erosion research in the humid tropics and has been used extensively in Malaysian Borneo. The simulator is capable of producing replicable storms of up to 200 mm h?1 intensity and 20–30 minutes duration with a drop‐size distribution close to that of natural storms of such intensity (D50 of simulated rainfall is 4·15 mm at 200 mm h?1 and 3·65 mm at 160 mm h?1, D50 measured during natural rainfall = 3·25 mm). The simulator is portable and simply constructed and operates without a motor or electronics, thus making it particularly useful in remote, mountainous areas. The erosion measurement system allows assessment of: (1) rainsplash detachment and net downslope transport from the erosion plot; (2) slopewash (erosion transported by overland flow); and (3) infiltration capacity and overland flow. The performance of the simulator–erosion system compared with previous systems is assessed with reference to experiments carried out in primary and regenerating tropical rainforest at Danum Valley (Malaysian Borneo). The system was found to compare favourably with previous field simulators, producing a total storm kinetic energy of 727 J m?2 (over a 20‐minute storm event) and a kinetic energy rate of 0·61 J m?2 s?1, approximately half that experienced on the ground during a natural rainfall event of similar intensity, despite the shorter distance to the ground. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Obtaining good quality soil loss data from plots requires knowledge of the factors that affect natural and measurement data variability and of the erosion processes that occur on plots of different sizes. Data variability was investigated in southern Italy by collecting runoff and soil loss from four universal soil‐loss equation (USLE) plots of 176 m2, 20 ‘large’ microplots (0·16 m2) and 40 ‘small’ microplots (0·04 m2). For the four most erosive events (event erosivity index, Re ≥ 139 MJ mm ha?1 h?1), mean soil loss from the USLE plots was significantly correlated with Re. Variability of soil loss measurements from microplots was five to ten times greater than that of runoff measurements. Doubling the linear size of the microplots reduced mean runoff and soil loss measurements by a factor of 2·6–2·8 and increased data variability. Using sieved soil instead of natural soil increased runoff and soil loss by a factor of 1·3–1·5. Interrill erosion was a minor part (0·1–7·1%) of rill plus interrill erosion. The developed analysis showed that the USLE scheme was usable to predict mean soil loss at plot scale in Mediterranean areas. A microplot of 0·04 m2 could be used in practice to obtain field measurements of interrill soil erodibility in areas having steep slopes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
ABSTRACT

Soil erosion is a serious ecological problem in Mediterranean areas. The IntErO model based on the erosion potential method (EPM) and the modified universal soil loss equation (MUSLE) have been used to assess soil erosion in several basins. This study aimed to assess and evaluate the effectiveness of these methods for evaluating sediment production and deposition rates in the Arbaa Ayacha basin, Morocco, in order to estimate sediment fluxes on a catchment scale. Our findings suggest that the basin is strongly exposed to erosion owing to geological formations, slope and land use, with average losses of about 28.4 t ha?1 year?1. Erosion processes were evaluated at the erosion production (Eocene marly formations) and sedimentation zones (Quaternary terraces). The results of these models may be useful to address soil and water management in this region and to assess the impact of a river dam that will be built in the basin.  相似文献   

11.
An understanding of the sources of variation in the use of erosion plots and of their feasibility to meet the objectives of each specific research project is key to improving future field designs, selecting data for modelling purposes and furthering knowledge of soil erosion processes. Our own field experiences from ongoing research on soil erosion processes since 1989, have allowed us to detect several methodological problems that cause measurement variability. Here several examples are presented concerning: (i) differences in long‐term soil erosion data between open and closed plots; (ii) differences in soil loss derived from replica soil erosion plots; and (iii) differences in soil loss data derived from plots at a range of spatial scales. Closed plots are not the most suitable method for long‐term monitoring of soil erosion rates due to the risk of exhaustion of available material within the plot. The difference in time after which exhaustion occurs depends on the surface soil characteristics, the climatological conditions and the size of the plots. We detected four and seven years as ‘time to exhaustion’. Different results are frequently obtained between pairs of replica plots. Differences up to a factor of nine have been detected in total soil loss between replica plots due to different spatial patterns of surface components. Different constraints appear depending on the spatial scale of measurement of soil loss. We obtained lower runoff percentages at coarser scales; however, larger sediment concentrations are observed at coarser scales (1·32 g l?1, catchment; 0·30 g l?1, 30 m2; 0·17 g l?1, 1 m2 scales). The smaller the plot, the larger the hydrological disconnection within the system, the lower the energy flows due to short distances and the quicker the response to runoff due to an artificial decrease of concentration times for continuous flow. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
On the basis of detailed rill surveys carried out on bare plots of different lengths at slopes of 12 per cent, basic rill parameters were derived. Rill width and maximum depth increased with plot length, whereas rill amount and cross‐sectional area, expressed per unit length, remained similar. On smaller plots, all rills were connected in a continuous transport system reaching the plot outlet, whilst on larger plots (10 and 20 m long) part of the rills ended with a deposition areas inside the plots. Amounts of erosion, calculated from rill volume and soil bulk density, were compared with soil loss measured at the plot outlets. On plots 10 and 20 m long, erosion estimated from volume of all rills was larger than measured soil loss. The latter was larger than erosion estimated from volume of contributing rills. To identify contributing soil loss area on these plots, two methods were applied: (i) ratio of total soil loss to maximum soil loss per unit area, and (ii) partition of plot area according to the ratio of contributing to total rill volume. Both methods resulted in similar areas of 21·8–23·5 m2 for the plot 10 m long and 31·2 m2 for the plot 20 m long. Identification of contributing areas enabled rill (5·9 kg m?2) and interrill (2·6 kg m?2) erosion rate to be calculated, the latter being very close to the value predicted from the Universal Soil Loss Equation. Although rill and interrill rates seemed to be similar on all plots, their ratio increased slightly with plot length. Application of this ratio to compute slope length factor of the Revised Universal Soil Loss Equation resulted in similar values to those predicted with the model. The achieved balance of soil loss suggested that all the sediment measured at the plot outlet originated from contributing rills and associated contributing rill areas. The results confirmed the utility of different plot lengths as a research tool for analysing the dynamic response of soil to rainfall–runoff. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

Knowledge of rainfall characteristics is important for estimating soil erosion in arid areas. We determined basic rainfall characteristics (raindrop size distribution, intensity and kinetic energy), evaluated the erosivity of rainfall events, and established a relationship between rainfall intensity I and volume-specific kinetic energy KEvol for the Central Rift Valley area of the Ethiopian highlands. We collected raindrops on dyed filter paper and calculated KEvol and erosivity values for each rainfall event. For most rainfall intensities the median volume drop diameter (D50) was higher than expected, or reported in most studies. Rainfall intensity in the region was not high, with 8% of rain events exceeding 30 mm h-1. We calculated soil erosion from storm energy and maximum 30-min intensity for soils of different erodibility under conditions of fallow (unprotected soil), steep slope (about 9%) and no cover and management practice on the surface, and determined that 3 MJ mm ha-1 h-1 is the threshold erosivity, while erosivity of >7 MJ mm ha-1 h-1 could cause substantial erosion in all soil types in the area.
Editor Z.W. Kundzewicz; Associate Editor Q. Zhang  相似文献   

14.
A database composed of 673 natural rainfall events with sediment concentration measurements at the field or plot scale was analysed. Measurements were conducted on similar soil type (loess soils prone to sealing phenomenon) to apprehend the variability and complexity involved in interrill erosion processes attributable to soil surface conditions. The effects of the dominant controlling factors are not described by means of equations; rather, we established a classification of potential sediment concentration domain according to combination of the dominant parameters. Thereby, significant differences and evolution trends of mean sediment concentration between the different parameter categories are identified. Further, when parameter influences interact, it allows us to discern the relative effects of factors according to their respective degree of expression. It was shown that crop cover had a major influence on mean sediment concentration, particularly when soil surface roughness is low and when maximum 6‐min intensity of rainfall events exceeds 10 mm h?1: mean sediment concentration decreases from 8·93 g l?1 for 0–20 per cent of coverage to 0·97 g l?1 for 21–60 per cent of coverage. The established classification also indicates that the increase of the maximum 6‐min intensity of the rainfall factor leads to a linear increase of mean sediment concentration for crop cover over 21 per cent (e.g. from 2·96 g l?1 to 14·44 g l?1 for the 1–5 cm roughness class) and to an exponential increase for low crop cover (e.g. from 3·92 g l?1 to 58·76 g l?1 for the 1–5 cm roughness class). The implication of this work may bring perspective for erosion prediction modelling and give references for the development of interrill erosion equation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
ABSTRACT

To assess seasonal patterns of suspended sediment load and its erosion–transport interactions, 17 years of river monitoring data from the Isser River Basin (northwest Algeria) were studied, considering continuous and event-scale approaches. The results show significant differences in sediment yield and transport processes between dry and wet periods. A rate of 8 t ha?1 year?1 was estimated from continuous analysis, with values of 4.3 and 13 t ha?1 year?1 for wet and dry periods, respectively. Estimates of soil delivery ratio pointed to higher values during dry periods and the dominance of hillslope erosion processes. At the event scale, the hysteresis loops confirmed these seasonal patterns in transport dynamics. The calibration of the MUSLE model highlighted the severity of rainfall during the dry period. These results emphasize the importance of seasonality in erosion and transport processes with special relevance in terms of climate change predictions.  相似文献   

16.
The study aims to investigate the effect of soil properties delineation on erosion modelling. To that end, the soil attributes of the Venetikos River catchment, northwestern Greece, are described using two pedological datasets, i.e. field samples and classification maps. The goal is to select the most appropriate for the accurate estimation of erosion. The Revised Morgan-Morgan-Finney (RMMF) model is developed per base map (annual or multi-annual), keeping all other parameters unchanged. Modelled sediment yield (SY) values are validated against “observed” ones, calculated utilizing the sediment rating curve methodology. Overall, the classification maps approach (164.35 t km-2 year?1) performed better than the soil samples one (82.97 t km-2 year?1), displaying higher convergence to the synthetic SY (548.9 t km-2 year?1). The discrepancy among approaches is attributed to the different computation methodologies (thus pedological background) used. Both approximations successfully identified the high-risk erosion areas. The same conclusions arose from the multi-annual application of the model.  相似文献   

17.
18.
The drastic growth of population in highly industrialized urban areas, as well as fossil fuel use, is increasing levels of airborne pollutants and enhancing acid rain. In rapidly developing countries such as Iran, the occurrence of acid rain has also increased. Acid rain is a driving factor of erosion due to the destructive effects on biota and aggregate stability; however, little is known about its impact on specific rates of erosion at the pedon scale. Thus, the present study aimed to investigate the effect of acid rain at pH levels of 5.25, 4.25, and 3.75 for rainfall intensities of 40, 60, and 80 mm h?1 on initial soil erosion processes under dry and saturated soil conditions using rainfall simulations. The results were compared using a two‐way ANOVA and Duncan tests and showed that initial soil erosion rates with acidic rain and non‐acidic rain under dry soil conditions were significantly different. The highest levels of soil particle loss due to splash effects in all rainfall intensities were observed with the most acidic rain (pH = 3.75), reaching maximum values of 16 g m?2 min?1. The lowest levels of particle losses were observed in the control plot where non‐acidic rain was used, with values ranging from 3.8 to 8.1 g m?2 min?1. Similarly, under saturated soil conditions, the lowest level of soil particle loss was observed in the control plot, and the highest peaks of soil loss were observed for the most acidic rains (pH = 3.75 and pH = 4.25), reaching maximum average values of 40 g m?2 min?1. However, for saturated soils with acidic water but with non‐acidic rain, the highest soil particle loss was observed for the control plot for all the rainfall intensities. In conclusion, acidic rain has a negative impact on soils, which can be more intense with a concomitant increase in rainfall intensity. Rapid solutions, therefore, need to be found to reduce the emission of pollutants into the air, otherwise, rainfall erosivity may drastically increase.  相似文献   

19.
The point measurement of soil properties allows to explain and simulate plot scale hydrological processes. An intensive sampling was carried out at the surface of an unsaturated clay soil to measure, on two adjacent plots of 4 × 11 m2 and two different dates (May 2007 and February–March 2008), dry soil bulk density, ρb, and antecedent soil water content, θi, at 88 points. Field‐saturated soil hydraulic conductivity, Kfs, was also measured at 176 points by the transient Simplified Falling Head technique to determine the soil water permeability characteristics at the beginning of a possible rainfall event yielding measurable runoff. The ρb values did not differ significantly between the two dates, but wetter soil conditions (by 31%) and lower conductivities (1.95 times) were detected on the second date as compared with the first one. Significantly higher (by a factor of 1.8) Kfs values were obtained with the 0.30‐m‐diameter ring compared with the 0.15‐m‐diameter ring. A high Kfs (> 100 mm h?1) was generally obtained for low θi values (< 0.3 m3m?3), whereas a high θi yielded an increased percentage of low Kfs data (1–100 mm h?1). The median of Kfs for each plot/sampling date combination was not lower than 600 mm h?1, and rainfall intensities rarely exceeded 100 mm h?1 at the site. The occurrence of runoff at the base of the plot needs a substantial reduction of the surface soil permeability characteristics during the event, probably promoted by a higher water content than the one of this investigation (saturation degree = 0.44–0.62) and some soil compaction due to rainfall impact. An intensive soil sampling reduces the risk of an erroneous interpretation of hydrological processes. In an unstable clay soil, changes in Kfs during the event seem to have a noticeable effect on runoff generation, and they should be considered for modeling hydrological processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
This paper analyses the factors that control rates and extent of soil erosion processes in the 199 ha May Zegzeg catchment near Hagere Selam in the Tigray Highlands (Northern Ethiopia). This catchment, characterized by high elevations (2100–2650 m a.s.l.) and a subhorizontal structural relief, is typical for the Northern Ethiopian Highlands. Soil loss rates due to various erosion processes, as well as sediment yield rates and rates of sediment deposition within the catchment (essentially induced by recent soil conservation activities), were measured using a range of geomorphological methods. The area‐weighted average rate of soil erosion by water in the catchment, measured over four years (1998–2001), is 14·8 t ha?1 y?1, which accounts for 98% of the change in potential energy of the landscape. Considering these soil loss rates by water, 28% is due to gully erosion. Other geomorphic processes, such as tillage erosion and rock fragment displacement by gravity and livestock trampling, are also important, either within certain land units, or for their impact on agricultural productivity. Estimated mean sediment deposition rate within the catchment equals 9·2 t ha?1 y?1. Calculated sediment yield (5·6 t ha?1 y?1) is similar to sediment yield measured in nearby catchments. Seventy‐four percent of total soil loss by sheet and rill erosion is trapped in exclosures and behind stone bunds. The anthropogenic factor is dominant in controlling present‐day erosion processes in the Northern Ethiopian Highlands. Human activities have led to an overall increase in erosion process intensities, but, through targeted interventions, rural society is now well on the way to control and reverse the degradation processes, as can be demonstrated through the sediment budget. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号