首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
太浦河是太湖流域重要跨省界河流,沿岸区域污染源众多,下游分布重要水源地,存在突发水污染潜在风险,迫切需要开展区域污染源潜在风险评估,为突发水污染事件的风险防控提供科学依据.本研究通过太浦河周边区域的污染源调研,明确污染源的空间分布与污染源强,确定评估区域的主要污染物(化学需氧量、氨氮、锑、重金属铬、油品、危险化学品),综合考虑污染源、河流水文、沿岸社会经济等因素,筛选突发水污染潜在风险评估指标,构建评估指标体系,评估突发水污染事件的综合风险,识别太浦河周边区域的主要突发水污染潜在风险源.研究结果表明:太浦河周边区域的高突发水污染风险区呈现片状或斑块状分布,主要包括大型污水处理厂区域、大型工业企业区域、加油站和危险化学品仓库集中分布区、太浦河沿岸工业企业区域、水源地周边工业企业区域,总面积为22 km2,占太浦河污染源风险评估范围总面积的1.4%,是突发水污染事件防控的重点区域.  相似文献   

2.
定量解析污染源对水质影响的贡献是水环境精细化管理的重要基础。目前多通过水质和土地利用类型的关系以解析水体污染源的研究,忽略了空间尺度的差异性,引发景观配置不合理的后果。为此,本研究依据考虑空间尺度效应的污染源解析方法,基于异龙湖流域3条主要入湖河流的入湖口监测断面对雨季和旱季的水质数据进行研究。同时利用绝对主成分—多元线性回归模型(APCS-MLR)和bioenv分析揭示河道不同尺度缓冲区的土地利用变化对水质的影响并解析河流主要污染源。研究结果表明:(1)异龙湖主要入湖河流水质表现出季节性差异,旱季期间3条主要入湖河流的浊度、化学需氧量(CODCr)、氨氮(NH3-N)、总磷(TP)和总氮(TN)浓度平均值相比于雨季减幅分别为39.53%、39.93%、94.48%、38.29%和1.72%。其中,入湖河流水体中的TN在旱季和雨季的超标率分别为58%和74%,成为首要污染物;(2)在旱季,20 m缓冲区尺度内河流水质受耕地和裸地占比影响较大,随着空间尺度的扩大,至50~300 m缓冲区尺度时建设用地、林地及水体占比对水质的影响增加;在雨季,C...  相似文献   

3.
Located at southern coast of China, the Pearl River Delta (PRD) is facing serious water problems in both quantity and quality after its rapid urbanization in the last decade. Most remarkably, the local groundwater, that was used to be the source of drinking water before the urbanization was polluted due to poor management of the septic tanks. In order to study the effects of suburban development on local groundwater flow and water quality in the PRD region, Fengcun of Guangzhou has been chosen as the study area. In Fengcun, drinking water was groundwater before the 1990s, but now piped reservoir water is used by each family because the groundwater has been polluted. This study clarifies the source and process of the groundwater pollution from septic tanks using isotopic and geochemical characteristics, especially nitrate (NO3?) concentrations. Water samples were collected from the wells and ponds in Fengcun in March and July 2005 and in July 2006. Based on the pe–pH diagram, NO3? and ammonium of groundwater are from the effect of human activities, rather than from nitrification and ammonification of N2. NO3? pollution of groundwater is from point sources, and NO3? concentrations decrease from northeast to southwest. Groundwater is polluted rapidly by the leakage of septic tanks. NO3? concentrations of pollution sources were lower than 20 mg l?1 in March 2005, but had increased to about 120 mg l?1 in July 2006. This implies that groundwater protection should be strengthened in rural areas of the PRD. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Managing water resources, in terms of both quality and quantity, in transboundary rivers is a difficult and challenging task that requires efficient cross-border cooperation and transparency. Groundwater pollution risk assessment and mapping techniques over the full catchment area are important tools that could be used as part of these water resource management efforts, to estimate pollution pressures and optimize land planning processes. The Evros river catchment is the second largest river in Eastern Europe and sustains a population of 3.6 million people in three different countries (Bulgaria, Turkey and Greece). This study provides detailed information on the main pollution sources and pressures in the Evros catchment and, for the first time, applies, assesses and evaluates a groundwater pollution risk mapping technique using satellite observations (Landsat NDVI) and an extensive dataset of field measurements covering different seasons and multiple years. We found that approximately 40 % of the Greek part of the Evros catchment is characterized as of high and very high pollution risk, while 14 % of the study area is classified as of moderate risk. Both the modeled and measured water quality status of the river showed large spatiotemporal variations consistent with the strong anthropogenic pressures in this system, especially on the northern and central segments of the catchment. The pollutants identified illustrate inputs of agrochemicals and urban wastes in the river. High correlation coefficients (R between 0.79 and 0.85) were found between estimated pollution risks and measured concentrations of those chemical parameters that are mainly attributed to anthropogenic activities rather than in situ biogeochemical processes. The pollution risk method described here could be used elsewhere as a decision support tool for mitigating the impact of hazardous human activities and improving management of groundwater resources.  相似文献   

5.
水资源恶化、水体富营养化严重威胁生态环境健康,农业活动所产生的氮是造成水污染的主要原因之一.本研究以句容水库农业流域为研究对象,基于实地监测数据验证了SWAT模型模拟当地氮污染的适用性,并分析了氮素负荷的时空分布特征及其关键源.结果 表明:硝态氮(NO3-N)和总氮(TN)的年均入库量分别为9.98和27.22 t.时...  相似文献   

6.
为进一步揭示阳澄湖入湖河道的污染物来源,提出相应的治理对策,以2017—2021年阳澄湖入湖河道水质监测数据为基础进行分析讨论。依据入湖水量选取10条主要入湖河道进行分析,其中位于阳澄湖东岸的白曲港在七浦塘拓浚工程建成之前主导流向为出湖,工程建成后,通过Pearson相关分析证实了其流向与七浦塘引水时的水力关系,因此白曲港被选为主要入湖河道。采用距平系数法、系统聚类法和物元分析法将阳澄湖主要入湖河道分为3个类别:第1类别包括白荡、蠡塘河、北河泾、永昌泾4条河道,第2类别包括渭泾塘、界泾和施家斗港3条河道,第3类别包括南消泾、七浦塘和白曲港3条河道。使用因子分析法进行因子分析,第1类别河道的因子为高锰酸盐指数(CODMn)、氨氮(NH3-N)、溶解氧(DO)和总磷(TP),第2类别河道的污染因子为NH3-N、总氮(TN)、pH、TP和DO,第3类别河道的污染因子为pH、TP、TN和DO。通过对上游河道水质情况分析、文件研究以及实地调查等方式得出第1类别河道区域的污染源主要为工业污染源和生活污染源,第2类别河道区域污染源主要为工业污染源与种植业污染源,第3类别河道污染源主要为陆地水产养殖污...  相似文献   

7.
Abstract

The changes in groundwater quality that result from man's activities are reviewed. This paper considers the various geochemical reactions, the biochemical processes and the physical processes that take place as well as the sources of pollution. Suggestions are made for future research and practical guidance given for avoidance of pollution of groundwater or minimizing its effects.  相似文献   

8.
Abstract

Multidisciplinary models are useful for integrating different disciplines when addressing water planning and management problems. We combine water resources management, water quality and habitat analysis tools that were developed with the decision support system AQUATOOL at the basin scale. The water management model solves the allocation problem through network flow optimization and considers the environmental flows in some river stretches. Once volumes and flows are estimated, the water quality model is applied. Furthermore, the flows are evaluated from an ecological perspective using time series of aquatic species habitat indicators. This approach was applied in the Tormes River Water System, where agricultural demands jeopardize the environmental needs of the river ecosystem. Additionally, water quality problems in the lower part of the river result from wastewater loading and agricultural pollution. Our methodological framework can be used to define water management rules that maintain water supply, aquatic ecosystem and legal standards of water quality. The integration of ecological and water management criteria in a software platform with objective criteria and heuristic optimization procedures allows realistic assessment and application of environmental flows to be made. Here, we improve the general methodological framework by assessing the hydrological alteration of selected environmental flow regime scenarios.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Paredes-Arquiola, J., Solera, A., Martinez-Capel, F., Momblanch, A., and Andreu, J., 2014. Integrating water management, habitat modelling and water quality at the basin scale and environmental flow assessment: case study of the Tormes River, Spain. Hydrological Sciences Journal, 59 (3–4), 878–889.  相似文献   

9.
Abstract

Water supply to the world’s megacities is a problem of quantity and quality that will be a priority in the coming decades. Heavy pumping of groundwater beneath these urban centres, particularly in regions with low natural topographic gradients, such as deltas and floodplains, can fundamentally alter the hydrological system. These changes affect recharge area locations, which may shift closer to the city centre than before development, thereby increasing the potential for contamination. Hydrogeological simulation analysis allows evaluation of the impact on past, present and future pumping for the region of Kolkata, India, on recharge area locations in an aquifer that supplies water to over 13 million people. Relocated recharge areas are compared with known surface contamination sources, with a focus on sustainable management of this urban groundwater resource. The study highlights the impacts of pumping on water sources for long-term development of stressed city aquifers and for future water supply in deltaic and floodplain regions of the world.

Editor D. Koutsoyiannis

Citation Sahu, P., Michael, H.A., Voss, C.I., and Sikdar, P.K., 2013. Impacts on groundwater recharge areas of megacity pumping: analysis of potential contamination of Kolkata, India, water supply. Hydrological Sciences Journal, 58 (6), 1340–1360.  相似文献   

10.
Abstract

The paper analyses the legal and regulatory instruments for water quality management that have been set in place in Singapore for control of water pollution, and their evolution since the time of independence in 1965. The role of institutions in the strict implementation of the laws and regulations is also discussed, with special emphasis on the efficient inter-institutional coordination machinery that has made it possible. The analyses show that overall long-term planning and policy-making and a strong political will have been instrumental to give all aspects of water management high priority in the national agenda, thus directly supporting urban, industrial and commercial growth.

Editor Z.W. Kundzewicz  相似文献   

11.
Abstract

Human activities have created high nutrient surpluses in agricultural lands due to the increasing rate of chemical fertilizer application and the increase in livestock production. To analyse the nutrient characteristics and estimate the nutrient load in streams, we conducted extensive field survey and water quality experiments from 2007 to 2008 in Koise River, a major river of the Lake Kasumigaura watershed, Japan. Water quality indicators of total nitrogen (TN), total phosphorus (TP) and total organic carbon (TOC) were investigated. The nutrient loads of TN, TP and TOC, as well as dissolved total nitrogen, dissolved inorganic nitrogen, dissolved organic nitrogen, particle organic nitrogen, dissolved total phosphorus, dissolved organic carbon and particle organic carbon were also estimated for the Koise River. Seasonal variation of the nutrient concentration from 2007 to 2008 was analysed considering the river discharge variation and agricultural activities. The results showed that the irrigation water from Lake Kasumigaura has the potential ability to decrease the TN concentration and increase the TOC concentration in the Koise River. Significant correlation coefficients between nutrient load and river discharge were found. The monthly pollution loads from different sources were then evaluated based on land cover classification generated from high-resolution Quick Bird remote sensing imagery. This study presents a useful interpretation of water quality data sets with a view to obtaining better information about water quality for more effective management of water resources in river basins.

Editor Z.W. Kundzewicz

Citation He, B., Oki, K., Wang, Y., Oki, T., Yamashiki, Y., Takara, K., Miura, S., Imai, A., Komatsu, K. and Kawasaki, N., 2012. Analysis of stream water quality and estimation of nutrient load with the aid of Quick Bird remote sensing imagery. Hydrological Sciences Journal, 57 (5), 850–860.  相似文献   

12.
Abstract

The River Kali in western Uttar Pradesh, India is a typical water course for untreated municipal and industrial effluents. The river receives considerable amounts of waste every day from the industries and municipal area of Muzaffarnagar town. Agricultural runoff is the other major factor in pollution of the river water. The mass balance calculations conducted on the river reach indicate that nitrate and phosphate from the non-point sources constitute 32.4 and 11.2% of the total load, respectively. The resulting differential loading, if adjusted for uncharacterized non-point contribution to the load, may represent the total point sources load to the river minus any losses due to volatilization, settling, and/or degradation. Indirect monitoring using upstream/downstream sampling locations provides a viable alternative to conventional methods for measuring the changes in the concentration and/or load to the river.  相似文献   

13.
Groundwater is an important source of freshwater for domestic, agricultural and industrial uses in Iran. Groundwater quality assessment and environmental evaluation are considered as critical issues in recent years. Intensive human activities have resulted in significant changes in environment leading to serious groundwater contamination. This research proposes a two-part systematic approach to tackle heavy metals contamination problem in Rayen Basin (southeast Iran). The first part consists of determining geochemical characteristics and evaluating groundwater quality through application of water quality index and heavy metal pollution indices (i.e. HPI and MI). The second part includes ranking sampling stations based on heavy metals concentration in groundwater using linear assignment method. Six types of water could be identified according to the dominant cations and anions in samples: Ca–HCO3, Ca–SO4, Na–Cl, Na–HCO3, Na–SO4 and mixed water type. Calculation of indices revealed that natural and anthropogenic activities are playing a vital role in degrading groundwater quality in the study area. The proposed methodology can help in groundwater resource management and preventative activities by identifying risk factors and recognizing their pollution level. The results of this research provide useful and effective information for water pollution control and management and can be used in environmental studies in order to protect groundwater resources in the future.  相似文献   

14.
Abstract

The catchment-scale groundwater vulnerability assessment that delineates zones representing different levels of groundwater susceptibility to contaminants from diffuse agricultural sources has become an important element in groundwater pollution prevention for the implementation of the EU Water Framework Directive (WFD). This paper evaluates the DRASTIC method using an ArcGIS platform for assessing groundwater vulnerability in the Upper Bann catchment, Northern Ireland. Groundwater vulnerability maps of both general pollutants and pesticides in the study area were generated by using data on the factors depth to water, net recharge, aquifer media, soil media, topography, impact of vadose zone, and hydraulic conductivity, as defined in DRASTIC. The mountain areas in the study area have “high” (in 4.5% of the study area) or “moderate” (in 25.5%) vulnerability for general pollutants due to high rainfall, net recharge and soil permeability. However, by considering the diffuse agricultural sources, the mountain areas are actually at low groundwater pollution risk. The results of overlaying the maps of land use and the groundwater vulnerability are closer to the reality. This study shows that the DRASTIC method is helpful for guiding the prevention practices of groundwater pollution at the catchment scale in the UK.

Citation Yang, Y. S. & Wang, L. (2010 Yang, Y. S. and Wang, L. 2010. A review of modelling tools for implementation of the EU Water Framework Directive in handling diffuse water pollution. Water Resour. Manage., 24: 18191843.  [Google Scholar]) Catchment scale vulnerability assessment of groundwater pollution from diffuse sources using the DRASTIC method: a case study. Hydrol. Sci. J. 55(7), 1206–1216.  相似文献   

15.
Sudden water pollution accidents in surface waters occur with increasing frequency. These accidents significantly threaten people’s health and lives. To prevent the diffusion of pollutants, identifying these pollution sources is necessary. The identification problem of pollution source, especially for multi-point source, is one of the difficulties in the inverse problem area. This study examines this issue. A new method is designed by combining differential evolution algorithm (DEA) and Metropolis–Hastings–Markov Chain Monte Carlo (MH–MCMC) based on Bayesian inference to identify multi-point sudden water pollution sources. The effectiveness and accuracy of this proposed method is verified through outdoor experiments and comparison between DEA and MH–MCMC. The average absolute error of the sources’ position and intensity, the relative error and the average standard deviations obtained using the proposed method are less than those of DEA and MH–MCMC. Moreover, the relative error and the sampling relative error under four different standard deviations of measurement error (σ = 0.01, 0.05, 0.1, 0.15) are less than 2 and 0.11 %, respectively. The proposed method (i.e., DEMH–MCMC) is effective even when the standard deviation of the measurement error increases to 0.15. Therefore, the proposed method can identify sources of multi-point sudden water pollution accidents efficiently and accurately.  相似文献   

16.
Abstract

This investigation presents a new approach to estimate the costs resulting from the introduction of environmental flows in the arid Huasco River basin, located in the Atacama Region of Chile, one of the most sophisticated private water markets worldwide. The aim is to provide information to the water users, who hold the right to decide on water use, and thereby support the inclusion of environmental flows into decision-making. Costs are estimated by calculating the loss of agricultural productivity resulting from a trade-off between users and environmental flow requirements in times of water scarcity. Based on environmental flow requirements calculated by International Union for Conservation of Nature (IUCN), and hydrological supply-and-demand modelling using the Water Evaluation and Planning (WEAP) model, economic parameters of water productivity are calculated for the main economic sectors and then included in hydrological analysis. The study presents concrete costs that might be imposed on the water users during times of water scarcity, and confirms that there are significant variations in water productivity between different sectors.
Editor Z.W. Kundzewicz; Guest editor M. Acreman

Citation Wagnitz, P., Núñez, J., and Ribbe, L., 2014. Cost of environmental flow during water scarcity in the arid Huasco River basin, northern Chile. Hydrological Sciences Journal, 59 (3–4), 700–712.  相似文献   

17.
Abstract

Quantitative assessment of the effects of climate change and human activities on runoff is very important for regional sustainable water resources adaptive management. In this study, the non-parametric Mann-Kendall test is used to identify the trends in and change points of the annual runoff with the aim of analysing the changing characteristics of the hydrological cycle. The study presents the analytical derivation of a method which combines six Budyko hypothesis-based water–energy balance equations with the Penman-Monteith equation to separate the effects of climate change and human activities. The method takes several climate variables into consideration. Results based on data from the Yongding River basin, China, show that climate change is estimated to account for 10.5–12.6% of the reduction in annual runoff and human activities contribute to 87.4–89.5% of the runoff decline. The results indicate that human activities are the main driving factors for the reduction in runoff.
Editor Z.W. Kundzewicz; Associate editor C.Y. Xu  相似文献   

18.
ABSTRACT

Many oases are experiencing severe groundwater depletion due to increased population, expanding agriculture and economic development. For sustainable development, quantifying groundwater recharge resources are fundamentally important. In this study, stable isotope techniques were employed to identify recharge sources of groundwater and quantitatively evaluate their contribution ratios in the Dunhuang Oasis, northwest China. Our findings indicate that heavy isotopes in shallow groundwater are more negative than those in deep groundwater, which is attributed to shallow groundwater that was modern and deep groundwater that was old. Irrigated return water and lateral groundwater flow from the Qilian Mountains are considered as the two main sources of shallow groundwater, accounting for 35% and 65% of the total recharge, respectively. Thus, as the main groundwater source of the Dunhuang Oasis, the Qilian Mountain Front should be protected against over-exploitation. Our results provide not only fundamental knowledge for groundwater management of aquifers of the Oasis, but also valuable water management information for other similar arid oases worldwide.  相似文献   

19.
20.
Abstract

Abstract Current research suggests that strategies to control sediment and phosphorus loss from non-point sources should focus on different runoff components and their spatial and temporal variations within the river basin. This is a prerequisite for determining effective management measures for reducing diffuse source pollution. Therefore, non-point source models, especially in humid climatic regions, should consider variable hydrologically active source areas. These models should be able to consider runoff generation by saturated overland flow, as well as Hortonian overland flow. A combination of the hydrological model WaSiM-ETH and the erosion and P-transport model AGNPS was chosen for this study. The models were run in the WaSiM runoff generation mode (Green & Ampt/TOPMODEL or Richards equation approach) and the SCS curve number mode to assess the effect of these different runoff calculation procedures on the dissolved phosphorus yield. A small and a medium-sized river basin, of the area of 1.44 and 128.9 km2, respectively, in central Germany were selected for the investigation. The results show that the WaSiM–AGNPS coupling produces more accurate results than the SCS curve number method. For the spatial distribution, the more physically-based model approach computed a much more realistic distribution of water and phosphorus yield-producing areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号