首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
ABSTRACT

Dissolved nutrient uptake and metabolism by periphyton in a central North Island gravel-bed river were investigated using recirculating in-situ chambers. Dissolved inorganic nitrogen (DIN) uptake was correlated with photosynthesis and chlorophyll but N uptake and carbon fixation were partly de-coupled indicating storage. Dissolved reactive phosphorus (DRP) uptake was only weakly correlated with photosynthesis. Diatoms and green algae relied on DRP in the water, but Cyanobacteria met part of their P needs from storage. Dissolved organic nutrients were excreted in both light and dark incubations, with approximately 50% of DIN uptake during photosynthesis excreted as DON. To simulate diurnal variations in nutrients, oxygen and pH existing computer models need to de-couple photosynthesis from nutrient uptake, allow for variable stoichiometry and better quantify recycling of organic nutrients.  相似文献   

2.
基于2009年6–9月,2014年5月,2014年7–8月在乳山湾外邻近海域的综合调查资料,分析了该开放海域水体与沉积物中氮、磷营养盐的组成和分布,并在潮汐潮流数值模式计算水通量的基础上分析了近岸开放区域无机氮(DIN)和无机磷(DIP)的循环与收支的主要过程,量化了潮汐潮流、初级生产的消耗与转化、底界面过程与内部循环等过程对氮和磷营养盐循环与收支的影响。结果表明,夏季乳山湾外邻近海域水体DIN和DIP的浓度与分布受陆源输入和潮汐潮流的共同影响,高值均出现在湾口区域;沉积物-水界面存在DIN和DIP从沉积物向上覆水释放的现象,使得底层水体的氮、磷营养盐浓度高于表层水体。氮的收支表明,研究海域水体内部循环过程是初级生产所需DIN的主要来源,占初级生产总消耗量的86%,其次是水交换作用(11%),底界面扩散对初级生产的贡献相对较小(3%);水体DIN的移出主要是通过埋藏、向外海的输送和水体反硝化作用,其比例分别为80%、16%和4%。磷的收支显示,研究海域水体内部循环过程贡献了初级生产所需DIP的91%,其次是水交换作用(9%),底界面扩散对初级生产的贡献小于1%;水体DIP支出主要是通过沉积埋藏和向外海的输送,其比例分别为67%和33%。研究结果表明内部循环过程是近海水体氮和磷获得补充的主要途径,不过外部来源的氮、磷营养盐结构与系统内部具有显著的差异,且系统内磷的埋藏效率要高于氮,其必将对乳山湾外邻近海域营养盐结构和初级生产产生长远的影响。  相似文献   

3.
Heterotrophic mineralization of dissolved organic nitrogen (DON) can be a major source of N for primary producers. During the summer growing season in mesooligotrophic Castle Lake, dissolved inorganic nitrogen (DIN) is often below detection (<0.1 μg-atom N l−1) whereas DON can vary between 7 and 17 μg-atom N. The heterotrophic metabolism of glutamate resulted in the recycling of both carbon and nitrogen, but not at the same rate. The uptake of 15N- and 14C-labeled glutamate showed that C was preferentially assimilated relative to N resulting in an N-mineralization rate of 2.5–3.0 ng-atom N l−1 h−1. This suggests that heterotrophs in Castle Lake are not N-deficient, and metabolism of organic compounds results in the release of DIN which is available for primary production.  相似文献   

4.
杨建斌  姚鹏  张晓华 《海洋学报》2020,42(10):132-143
生源要素是海洋初级生产的基础,其在海洋环境中的循环受到多种物理、化学和生物过程的影响,对其浓度分布、结构特点及影响因素的认识是理解海洋生态系统动力学的基础。于2019年2月在南海北部神狐海域进行了现场考察和海水样品采集,对海水中的溶解态无机营养盐浓度进行了分析,并结合温度、盐度、叶绿素a(Chl a)、pH和溶解氧(DO)等水文环境参数,研究了神狐海域海水中营养盐浓度与结构的分布特征及影响因素等。在0~30 m的海水中各营养盐浓度均很低,随着深度的增加,营养盐浓度逐渐增大。在水深3 000 m左右处,无机氮、磷酸盐和硅酸盐浓度分别达到了38.02 μmol/L、2.71 μmol/L和149.07 μmol/L。温度、pH和DO与各营养盐浓度均具有显著的相关性,表明环境因素影响着营养盐的生物地球化学过程。此外,在75 m深度,研究区域东北方向的站位营养盐浓度相对较低,并呈现向西南方向逐渐增大的变化趋势,可能与高温、高盐和低营养盐的黑潮水入侵有关。根据端元混合模型计算所得保守混合浓度与实测值的差值显示,在75 m深度硅酸盐和磷酸盐以生物消耗为主,而硝酸盐存在添加。随磷酸盐浓度增加,各站位无机氮浓度呈线性升高,但硅酸盐浓度则以幂函数式升高,表明不同营养盐之间再生速率和再利用效率有所不同。神狐海域的N/P比与Si/N比和Si/P比呈现出截然相反的变化趋势。在0~30 m,N/P比较小而Si/N比和Si/P比较大;在75 m,受不同生物作用影响,N/P比变大,Si/N比和Si/P比变小;在75 m以下N/P比逐渐降低至14.44,而Si/N比和Si/P比则逐渐升高;在1 000 m以下,各营养盐比例均保持稳定。氮异常指数的计算结果显示,神狐海域300 m以上的海水中固氮作用强于反硝化作用,而300 m以下反硝化作用增强。神狐海域营养盐浓度与结构的分布特征表明黑潮入侵和生物活动显著影响了此区域营养盐的生物地球化学过程。  相似文献   

5.
根据2012年3、5、8和12月4个航次长江口及邻近海域的调查数据,研究了氮、磷、硅营养盐及总氮(TN)、总磷(TP)的浓度特点,及其与盐度的相关性和叶绿素a的变化特征。结果表明,总溶解无机氮(DIN)、硅酸盐(Si O3)和TN的浓度分布均表现出自长江口至外海迅速降低的特征,且与盐度呈现显著负相关性。磷酸盐(PO4)的浓度降低程度随远离河口而减弱,且与盐度的相关性相对较弱,可能存在外海水补充;而TP则在长江口浑浊带海域呈现出较高浓度,且与盐度的相关性不明显,可能是受浑浊带泥沙吸附所致。在调查海区内,DIN与TN的平均值在夏季较低,结合叶绿素a数据分析,认为浮游植物吸收作用降低了DIN和TN的浓度。通过分析各营养盐之间的比值特征,进一步考察了营养盐来源及其对浮游植物生长的可能限制情况,其中N/P比值的变化同样揭示了N主要来自于长江水而P有部分来自于外海水的特征。该比值呈现远离河口而降低的特征,且在浑浊带无明显季节变化。春季和夏季有超过90%的调查站位显示潜在P限制,且均位于外海区。与历史资料对比发现,春季和夏季潜在P限制站位的比例明显升高,而潜在Si限制站位比例在春季和夏季降低。本文研究认为,营养盐含量及组成结构反映了该海域浮游植物群落组成和优势种的演替。  相似文献   

6.
2010-2011年胶州湾叶绿素a与环境因子的时空变化特征   总被引:2,自引:1,他引:1  
王玉珏  刘哲  张永  汪岷  刘东艳 《海洋学报》2015,37(4):103-116
2010年4、6、8、10月和2011年1、3月在胶州湾开展了6个航次的综合调查,研究了表层海水温度、盐度、营养盐和叶绿素a浓度的时空变化特征。调查期间,总无机氮(DIN)、磷酸盐(PO4)和硅酸盐(SiO3)多呈现东北部湾边缘高,而湾内和湾口低的空间分布特征。季节变化表明,DIN和PO4主要受养殖排放、河流径流输入和浮游植物生长消耗的影响,呈现初夏和秋季高,夏末和冬季低的特点;而SiO3主要受河流径流输入和浮游植物消耗的影响,呈现夏、秋高,而冬、春低的特点。营养盐浓度和结构分析表明,胶州湾存在PO4和SiO3的绝对和相对限制;SiO3限制尤其严重,是控制胶州湾浮游植物生长的主要环境因子。SiO3和PO4的限制主要表现在冬季,几乎遍布整个海湾;夏季降水可有效缓解海域的SiO3限制。叶绿素a浓度呈现春、夏季高,秋、冬季低的季节分布,温度、营养盐浓度与结构和季节性贝类养殖活动是控制胶州湾叶绿素a浓度时空分布的关键因素。  相似文献   

7.
Tropical estuaries are under increasing pressure worldwide from human impacts, but are poorly studied compared with temperate systems. This study examined a tropical macrotidal estuary, Darwin Harbour, in northern Australia, using a combination of direct measurements and literature values to determine the main sources of primary production and the sources of nutrients supporting growth. The main source of primary production was calculated to be the extensive area of fringing mangroves and resulted in a net autotrophic system (PG:R = 2.1). Much of the carbon in the mangrove forests appears to be retained within the forests or respired, as the water column was also net autotrophic despite the carbon inputs. Phytoplankton were the second largest primary producer on a whole-of-harbour basis, with low biomass constrained by light and nutrient availability. The phytoplankton were likely to be nitrogen (N) limited, based on low N:phosphorus (P) ratios, low dissolved bioavailable N concentrations (ammonium (NH4+), nitrate (NO3), urea), and evidence that phytoplankton growth in bioassays was stimulated by NH4+ addition. The largest new source of N to the system was from the ocean due to higher N concentrations in the incoming tides than the outgoing tides. Atmospheric inputs via N fixation on the intertidal mudflats and subtidal sediments were substantially lower. The rivers feeding into the harbour and sewage were minor N inputs. Nitrogen demand by primary producers was high relative to available N inputs, suggesting that N recycling within the water column and mangrove forests must be important processes. Darwin Harbour is adjacent to the rapidly growing urban area of Darwin city, but overall there is no evidence of anthropogenic nutrient inputs having substantial effects on primary production in Darwin Harbour.  相似文献   

8.
We have studied nitrogen and phosphorus distributions across the thermohaline front in Kii Channel in winter by using engine-cooling sea water of a ferry boat. On Dec. 1986 and Jan. 1987, differences of PO4–P and DIN across the front are recognized. Especially in the latter case, differences of nutrients concentrations across the front are very obvious. But differences of nutrients across the front on Feb. 1986, Feb. and Mar. 1987 are not obvious. Inspite of winter,Akashiwo had happened in Osaka Bay, nutrients mostly have already been utilized by phytoplankton in inner part of Osaka Bay. Consequently, differences of nutrients concentrations across the front are nearly zero.  相似文献   

9.
通过对目前生态动力学模型的总结和综合,以生态系统中氮、磷营养盐循环为主线,建立了适用于海洋围隔浮游生态系统的多变量的营养盐迁移-转化动力学模型.该模型包括浮游植物、浮游动物、溶解无机态营养盐、溶解有机态营养盐和生物碎屑5个模块,涉及溶解无机氮、磷酸盐、溶解有机氮、溶解有机磷、浮游植物、浮游动物和生物碎屑7个状态变量.分别利用1999年秋季和2000年夏季胶州湾围隔生态实验数据进行了模型和验证工作,成功地模拟了富加营养盐条件下围隔浮游生态系统中氮、磷营养盐生物化学迁移-转化过程,并确定了20余个参数的量值.  相似文献   

10.
长江口及邻近海区营养盐结构与限制   总被引:5,自引:0,他引:5  
通过研究长江口及邻近海域溶解无机氮(DIN=NO3-+NO2-+NH4+)、磷酸盐(PO43-)、硅酸盐(SiO32-)所表征的营养盐区域结构特征及影响因素,在分析营养盐绝对限制情况的基础上,划分了潜在相对营养限制区域。结果表明,123°E以西近岸表层区域DIN/P比值全年均高于16,而Si/DIN除秋季外基本小于1,显示出长江冲淡水影响下"过量氮"的特征。春夏季河口锋面区(31°~32.5°N,122.5°~124°E)硅藻的大量生长可使DIN/P异常升高和Si/DIN异常降低。秋季研究区域北部DIN/P西低东高且Si/DIN西高东低是由于在高DIN、低PO43-的长江冲淡水影响下,近岸受相对低DIN、高SiO32-的苏北沿岸流南下入侵影响而被分割而成。冬季长江口门东北部存在的高DIN/P和低Si/DIN区则主要由于寡营养盐的黑潮水深入陆架,向东北输送的部分长江冲淡水和增强的苏北沿岸流共同作用造成DIN升高所致。利用Redfield比值进行了不同站位表层潜在相对营养限制情况的区分。近岸123°E以西受高DIN、SiO32-长江冲淡水影响,四季多呈现PO43-潜在相对限制,而在春夏季由于浮游植物的大量吸收PO43-,造成局部PO43-绝对限制及潜在相对限制。春夏季氮限(DIN潜在相对限制)一般发生在外海部分站位,但较为零散。秋季除了东南外海大部分站位外,受苏北沿岸流影响在长江口北部近岸也存在氮限。随着低DIN/P的黑潮表层水(KSW)的入侵加强,冬季外海氮限站位增多。硅限(SiO32-潜在相对限制)在夏季发生在赤潮高发区,而冬季南部存在较多硅限站位表明KSW中SiO32-相对较为缺乏。  相似文献   

11.
《Journal of Sea Research》2003,49(3):157-170
The distribution of nutrients and carbon in the different pools present in the three functional layers (the upper, biogenic layer, the thermocline layer, and the deeper, biolythic layer) of the stratified NW Mediterranean Sea was examined. The stoichiometry between dissolved inorganic nutrients, which had low concentrations in the surface waters, indicated a deficiency in nitrogen, relative to phosphorus, and an excess nitrogen relative to phosphorus within the thermocline, as well as a general silicate deficiency relative to both N and P, even extending to the biolythic layer. The dissolved organic matter was highly depleted in N and, particularly, in P relative to C, with average DOC/DON ratios >60 and DOC/DOP ratios >1500 in all three layers. The particulate pool was also depleted in N and P relative to C, particularly in the biolythic layer. The concentration of biogenic silica was low relative to C, N and P, indicating that diatoms were unlikely to contribute a significant fraction of the seston biomass. Most (>80%) of the organic carbon was present as dissolved organic carbon. Total organic N and P comprised 50–80% of the N and P pool in the biogenic layer, and decreased with depth to represent 10–25% of these nutrient pools in the biolythic layer. The high total N:P ratios in all three depth layers (N/P ratio >20) indicated an overall phosphorus deficiency in the system. The high P depletion of the dissolved organic matter must derive from a very rapid recycling of the P-rich molecules within DOM, and the increasing C/N ratio of DOM with depth indicates that N is also recycled faster than C in the DOM. Because of the uniform depth distribution of the total dissolved nitrogen concentration, the increase in the percent inorganic N and the decline in the percent dissolved organic N with depth indicates that there must be biological transformations between these pools, with a dominance of DON production in surface waters and remineralisation in the underlying layers, from which dissolved inorganic nitrogen is supplied back to the biogenic layer. Downward fluxes of DON and DOC were estimated at 200–250 μmol N m−2 d−1 and 1.4–2.1 mmol C m−2 d−1, respectively, while there should be little or no export of P as dissolved organic matter. The downward DON flux exceeded the diffusive DIN supply of about 145 μmol N m−2 d−1 to the biogenic layer, suggesting that allochthonous N inputs must be important in the region.  相似文献   

12.
Phytoplankton primary production and its regulation by light and nutrient availability were investigated in the shallow, tropical coastal waters of Bandon Bay, Southern Thailand. The bay was meso‐eutrophicated and highly turbid, receiving river water discharge. Water column stratification was consistently weak during both rainy and dry seasons. Dissolved inorganic nitrogen (DIN) was higher off the river mouth than in the other regions, suggesting that river water discharge was a main source of DIN. By contrast, dissolved inorganic phosphorus (DIP) showed a significant negative correlation with total water depth, implying that regeneration around the sea floor was an important source of DIP. Surface DIN and DIP showed positive correlations with surface primary production (PP) and water column primary productivity (ΣPP*), respectively. The combined correlation and model analyses indicate that total water depth had an ambivalent influence on water column primary production (ΣPP); shallower water depth induced more active regeneration of nutrients, but it also caused higher turbidity and lower light availability as a result of enhanced resuspension of sediments. Furthermore, there was a vertical constraint for phytoplankton during the rainy season: total water depth tended to be shallower than euphotic zone depth. In conclusion, light limitation and vertical constraint owing to shallow water depth appear to be more important than nutrient limitation for water column primary production in Bandon Bay.  相似文献   

13.
于2009年至2011年在黄河下游采集溶解及颗粒态营养盐样品,分析了黄河下游各形态营养盐的浓度变化及营养盐入海通量,结果表明各形态氮的浓度多呈丰水期低、枯水期高,溶解无机氮是溶解态氮的主要存在形式;受黄河高悬浮颗粒物含量的影响,磷以颗粒态占绝对优势,而溶解态磷以溶解无机磷为主要存在形态;生物硅的含量平均约占硅酸盐与生物硅之和的20%,硅的浓度丰水期高于枯水期.颗粒态磷与生物硅的含量与悬浮颗粒物含量呈正相关.营养盐的组成具有高氮磷比、高硅磷比、低硅氮比的特点.近年来黄河下游溶解无机氮浓度显著升高而溶解无机磷变化不大,硅酸盐的浓度有所下降.黄河下游水沙通量、营养盐入海通量有明显的季节变化,丰水期占全年总入海通量的42%~84%.调水调沙期间,各营养盐的浓度和组成均有明显变化,氮的浓度、DIN/PO4-P下降,磷与硅的浓度、SiO3-Si/DIN、SiO3-Si/PO4-P升高,颗粒态营养盐的比例明显增加.短期内大量水沙及营养盐入海通量对黄河口及渤海生态系统产生重要影响.  相似文献   

14.
本研究利用三维物理-生物耦合模型模拟了大气氮沉降对南黄海主要初级生产过程的影响,并通过数值实验区分了不同季节大气氮沉降的贡献。模拟结果显示,大气氮沉降明显增大了南黄海表层溶解无机氮的浓度,近岸海域增加量较大,可以达到3.0 mmol/m^3,且由近岸海域到黄海中部海域有明显的递减趋势,这主要是由于近岸海域无机氮来源众多,导致浓度较高,大气沉降的氮不会被浮游植物生长吸收,出现氮累积。大气氮沉降明显促进了黄海中部春季表层水华和夏季次表层叶绿素最大值两个重要初级生产过程,春季表层叶绿素增加量最大,可达0.20 mg/m^3,夏季次表层叶绿素浓度增加最显著,可达0.10 mg/m^3,分别约为峰值浓度的10%和6%。不同季节大气氮沉降对初级生产过程的贡献不同,冬季氮沉降可以存留下来影响春季水华过程,但作用小于春季氮沉降;夏季,由于水体层化较强,本季的氮沉降对次表层叶绿素最大值的促进作用并不明显,反而冬季氮沉降的影响大于春季和夏季的氮沉降。同时,大气氮沉降也促进了氮循环的各个过程,包括浮游植物生长吸收、呼吸释放和矿化过程。  相似文献   

15.
There is a conceptual basis, and some empirical evidence, that increasing nutrient loads to coastal waterbodies will initially increase ecosystem productivity up to a threshold, beyond which secondary productivity and fishery yields will decline. Here we have compiled data from the Egyptian and international literature for fish landings and inorganic nutrient (nitrogen and phosphorus) data from four large coastal lagoons (63–500 km2) on Egypt's Nile Delta to provide evidence for the initially positive, but then negative, response of fishery yields to increased nutrient supply across a very wide range of enrichment (up to 1 mM dissolved organic nitrogen, DIN). Taking the data from the four lagoons as an aggregate, fish landings increase with increased nutrients up to a peak in landings at approximately 100 μM DIN, beyond which there was an exponential decline in landings. It appears that pesticide and heavy metal contamination and overfishing played only minor roles in the lowered fishery yield at highest DIN concentrations. We do not have sufficient evidence about the specific mechanisms that led to the decline of the fishery, but suspect that some feature of eutrophication—low oxygen, for example, may have been involved.  相似文献   

16.
《Oceanologica Acta》1998,21(2):271-278
Nutrient fluxes to the Bay of Biscay from the Cantabrian basin have been quantified for the first time. Data between 1981 and 1995 of the main 16 Cantabrian rivers from the COCA monitoring programme have been used. Values of water flow and dissolved inorganic nitrogen (DIN), phosphate and silicate concentrations have been taken. Equations are proposed to quantify the fluvial nutrient contributions to the Cantabrian Sea. The annual average of continental outputs to the Bay of Biscay from the Cantabrian basin is 16.1 × 109 m3 of freshwater, 1.0 × 109 mol of N in DIN, 0.062 × 109 mol of phosphate and 1.2 × 109 mol of silicate. In comparison with the French rivers, those of the Cantabrian have small fluxes and their outflow is very disperse, not forming large coastal plumes. From April to September, when the primary production is relatively important, the DIN contribution to the Cantabrian coastal reservoir is 10%. Coastal fertilisation due to continental waters could be considered as negligible and only influences areas very close to river mouths, except for the Nalón River. Its flux represents 33 % of nitrate, 39 % of phosphate and 15 % of silicate of the total continental inputs of nutrients to the Cantabrian Sea.  相似文献   

17.
To examine the influence of river discharge on plankton metabolic balance in a monsoon driven tropical estuary, daily variations in physico-chemical and nutrients characteristics were studied over a period of 15 months (September 2007 to November 2008) at a fixed location (Yanam) in the Godavari estuary, India. River discharge was at its peak during July to September with a sharp decrease in the middle of December and complete cessation thereafter. Significant amount of dissolved inorganic nitrogen (DIN, of 22–26 μmol l−1) and dissolved inorganic phosphate (DIP, of 3–4 μmol l−1) along with suspended materials (0.2–0.5 g l−1) were found at the study region during the peak discharge period. A net heterotrophy with low gross primary production (GPP) occurred during the peak discharge period. The Chlorophyll a (Chl a) varied between 4 and 18 mg m−3 that reached maximum levels when river discharge and suspended loads decreased by >75% compared to that during peak period. High productivity was sustained for about one and half months during October to November when net community production (NCP) turned from net heterotrophy to autotrophy in the photic zone. Rapid decrease in nutrients (DIN and DIP by ∼15 and 1.4 μmol l−1, respectively) was observed during the peak Chl a period of two weeks. Chl a in the post monsoon (October–November) was negatively related to river discharge. Another peak in Chl a in January to February was associated with higher nutrient concentrations and high DIN:DIP ratios suggest possible external supply of nitrogen into the system. The mean photic zone productivity to respiration ratio (P:R) was 2.38 ± 0.24 for the entire study period (September 2007–November 2008). Nevertheless, the ratio of GPP to the entire water column respiration was only 0.14 ± 0.02 revealing that primary production was not enough to support water column heterotrophic activity. The excess carbon demand by the heterotrophs could be met from the allochthonous inputs of mainly terrestrial origin. Assuming that the entire phytoplankton produced organic material was utilized, the additional terrestrial organic carbon supported the total bacterial activity (97–99%) during peak discharge period and 40–75% during dry period. Therefore, large amount of terrestrial organic carbon is getting decomposed in the Godavari estuarine system.  相似文献   

18.
根据 1998年 5月的调查资料 ,分析并讨论了春季黄海南部海区溶解无机氮的分布特征。结果表明 :( 1)因受长江冲淡水及沿岸流的影响 ,NH+4 - N、NO-2 - N浓度的平面分布基本呈周边高、中央低 ,NO-3 - N的浓度则基本呈长江口外海域高、中北部深水区低的分布规律。 ( 2 )调查海域深水区的溶解无机氮存在明显的层化现象 ,且底层等值线上凸密集。 10 m以浅水体 ,NO-3 - N的浓度分布均匀 ,10 m以深水体 ,NO-3 - N的浓度急剧增加 ,且呈现出随深度增加而增加的趋势 ,NH+4 - N、NO-2 - N浓度的垂直分布比较均匀。 ( 3)黄海南部表层叶绿素 a的浓度呈现周边高、中央低的分布特征。  相似文献   

19.
20.
长棘海星暴发对珊瑚礁生态系统产生了严重危害,而水体营养盐的补充可能是导致长棘海星暴发的一个关键因素。砂质沉积物对调控珊瑚礁区的营养盐浓度和结构起着关键作用,因此本研究通过流动式反应器对长棘海星和砂质沉积物进行模拟实验,分析长棘海星排泄活动及其死亡后有机体降解对水体营养盐的影响,并探究砂质沉积物的响应。实验结果表明:(1)长棘海星排泄的溶解无机氮(DIN)和溶解无机磷(DIP)通量分别为(83.55±4.74)μmol/(ind.·h)和(2.53±0.03)μmol/(ind.·h),这些营养盐可能给长棘海星的持续暴发提供营养条件;(2)砂质沉积物对长棘海星排泄导致的营养盐浓度升高具有缓冲作用,约70.7%的DIN和91.4%的DIP被截留在沉积物中,但沉积物界面营养盐交换导致的氮磷比升高可能不利于珊瑚生长;(3)长棘海星死后的有机体降解可促使沉积物–水界面释放营养盐,结合海星暴发密度估算,其释放的营养盐可导致上覆水中DIN和DIP浓度分别升高0.32 μmol/L和0.01 μmol/L,这可能会促使大型藻的快速生长而妨碍珊瑚的自我修复。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号