首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Abstract

The aim of this article is to assess the impact of four scenarios combining possible changes in climate, atmospheric carbon dioxide, land use and water use by 2050, on the specific set of ecologically relevant flow regime indicators that define environmental flow requirements in a semi-natural river basin in Poland. This aim is presented through a modelling case study using the Soil and Water Assessment Tool (SWAT). Indicators show both positive and negative responses to future changes. Warm projections from the IPSL-CM4 global climate model combined with sustainable land- and water-use projections (SuE) produce the most negative changes, while warm and wet projections from the MIROC3.2 model combined with market-driven projections (EcF) gave the most positive changes. Climate change overshadows land- and water-use change in terms of the magnitude of projected flow alterations. The future of environmental water quantity is brighter under the market-driven rather than the sustainability-driven scenario, which shows that sustainability for terrestrial ecosystems (e.g. more forests and grasslands) can be at variance with sustainability for riverine and riparian ecosystems (requiring sufficient amount and proper timing of river flows).
Editor D. Koutsoyiannis

Citation Piniewski, M., Okruszko, T., and Acreman, M.C., 2014. Environmental water quantity projections under market-driven and sustainability-driven future scenarios in the Narew basin, Poland. Hydrological Sciences Journal, 59 (3–4), 916–934.  相似文献   

2.
Abstract

Multidisciplinary models are useful for integrating different disciplines when addressing water planning and management problems. We combine water resources management, water quality and habitat analysis tools that were developed with the decision support system AQUATOOL at the basin scale. The water management model solves the allocation problem through network flow optimization and considers the environmental flows in some river stretches. Once volumes and flows are estimated, the water quality model is applied. Furthermore, the flows are evaluated from an ecological perspective using time series of aquatic species habitat indicators. This approach was applied in the Tormes River Water System, where agricultural demands jeopardize the environmental needs of the river ecosystem. Additionally, water quality problems in the lower part of the river result from wastewater loading and agricultural pollution. Our methodological framework can be used to define water management rules that maintain water supply, aquatic ecosystem and legal standards of water quality. The integration of ecological and water management criteria in a software platform with objective criteria and heuristic optimization procedures allows realistic assessment and application of environmental flows to be made. Here, we improve the general methodological framework by assessing the hydrological alteration of selected environmental flow regime scenarios.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Paredes-Arquiola, J., Solera, A., Martinez-Capel, F., Momblanch, A., and Andreu, J., 2014. Integrating water management, habitat modelling and water quality at the basin scale and environmental flow assessment: case study of the Tormes River, Spain. Hydrological Sciences Journal, 59 (3–4), 878–889.  相似文献   

3.
Freshwater systems have increasingly been subjected to a multitude of human pressures and the re-establishment of their ecological integrity is currently a major worldwide challenge. Expected future climate and socioeconomic changes will most probably further exacerbate such challenges. Modelling techniques may provide useful tools to help facing these demands, but their use is still limited within ecological quality assessment of water resources due to its technical complexity.We developed a Bayesian Belief Network (BBN) framework for modelling the ecological quality of rivers and streams in two European river basins located in two distinct European climatic regions: the Odense Fjord basin (Denmark) and the Sorraia basin (Portugal). This method enabled us to integrate different data sources into a single framework to model the effect of multiple stressors on several biological indicators of river water quality and, subsequently, on their ecological status. The BBN provided a simple interactive user interface with which we simulated combined climate and socioeconomic changes scenarios to assess their impacts on river ecological status.According to the resulting BBNs the scenarios demonstrated small impacts of climate and socioeconomic changes on the biological quality elements analysed. This yield a final ecological status similar to the baseline in the Odense case, and slightly worse in Sorraia. Since the present situation already depicts a high percentage of rivers and streams with moderate or worse ecological status in both basins, this means that many of them would not fulfil the Water Framework Directive target in the future. Results also showed that macrophytes and fish indices were mainly responsible for a non-desirable overall ecological status in Odense and Sorraia, respectively. The approach followed in this study is novel, since BBN modelling is used for the first time for assessing the ecological status of rivers and streams under future scenarios, using an ensemble of biological quality elements. An important advantage of this tool is that it may easily be updated with new knowledge on the nature of relationships already established in the BBN or even by introducing new causal links. By encompassing two case studies of very different characteristics, these BBN may be more easily adapted as decision-making tools for water management of other river basins.  相似文献   

4.
ABSTRACT

Somalia has frequently been affected by droughts, famines and water-related humanitarian crises. Water is scarce and the only perennial streams, the Juba and Shabelle rivers, are trans-boundary with river flows mainly originating from the Ethiopian highlands. In both riparian countries water demands are projected to increase. This paper reveals the impact of rising regional water abstractions on stream flows by illustrating sectoral demands and joining them into scenarios of medium and high population and economic growth. These scenarios are associated to the time horizons of 2035 and 2055, respectively. The scenarios disclose alarming trends especially for the Shabelle River: in the medium and high growth scenarios, water demands surpass the available river flows by 200 and 3500 hm3, respectively. The calculated deficits partly derive from conflicting assumptions about river flows by the two main riparian countries, an obstacle to any integrated planning efforts and sustained regional development.
EDITOR Z.W. Kundzewicz; ASSOCIATE EDITOR F. Hattermann  相似文献   

5.
Abstract

The global climate change may have serious impacts on the frequency, magnitude, location and duration of hydrological extremes. Changed hydrological extremes will have important implications on the design of future hydraulic structures, flood-plain development, and water resource management. This study assesses the potential impact of a changed climate on the timing and magnitude of hydrological extremes in a densely populated and urbanized river basin in southwestern Ontario, Canada. An ensemble of future climate scenarios is developed using a weather generating algorithm, linked with GCM outputs. These climate scenarios are then transformed into basin runoff by a semi-distributed hydrological model of the study area. The results show that future maximum river flows in the study area will be less extreme and more variable in terms of magnitude, and more irregular in terms of seasonal occurrence, than they are at present. Low flows may become less extreme and variable in terms of magnitude, and more irregular in terms of seasonal occurrence. According to the evaluated scenarios, climate change may have favourable impacts on the distribution of hydrological extremes in the study area.  相似文献   

6.
The Tagus River basin is an ultimately important water source for hydropower production, urban and agricultural water supply in Spain and Portugal. Growing electricity and water supply demands, over‐regulation of the river and construction of new dams, as well as large inter‐basin and intra‐basin water transfers aggravated by strong natural variability of climate in the catchment, have already imposed significant pressures on the river. The substantial reduction of discharge is observed already now, and projected climatic change is expected to alter the water budget of the catchment further.In this study, we address the effects of projected climate change on the water resources availability in the Tagus River basin and influence of potential changes on hydropower generation of the three important reservoirs in the basin. The catchment‐scale, process‐based eco‐hydrological model soil and water integrated model was set up, calibrated and validated for the entire Tagus River basin, taking into account 15 large reservoirs in the catchment. The future climate projections were selected from those generated within the Inter‐Sectoral Impact Model Intercomparison Project. They include five bias‐corrected climatic datasets for the region, obtained from global circulation model runs under two emissions scenario – moderate and extreme ones – and covered the whole century. The results show a strong agreement among model runs in projecting substantial decrease of discharge of the Tagus River discharge and, consequently, a strong decrease in hydropower production under both future climate scenarios. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
ABSTRACT

Understanding of the effect of basin water resources utilization on lake nutrients is helpful to prevent lake eutrophication and facilitate sustainable water resources management. In this study, a lake basin dualistic water cycle system is established to identify the environmental effect of lake water. Four water utilization indicators were chosen to build a driving relationship with the lake nutrients. Three different trophic lakes in Yunnan Province, China – Dianchi, Erhai and Fuxian – were selected to demonstrate the changes in basin water utilization, runoff, nutrient loads and water-use indicators for the period 2000–2015. In addition, the driving forces of water-use indicators to nutrients (total nitrogen and total phosphorus) were analysed by a general additive model. Finally, an optimized water utilization system for each lake basin is proposed. The research provides a practical tool for water resources and environmental management in lake basins.  相似文献   

8.
ABSTRACT

The endorheic basin of Zayandehrud in Iran suffers from environmental problems, social tensions, and economic instability. Lack of understanding how the water system and the socio-economic system interact may explain these challenges. A system dynamics model, being a holistic simulation tool, was developed for the Zayandehrud basin and used to evaluate several policy scenarios. The indices of employment, gross regional product, the volume of groundwater and surface water stored, flow into the basin’s end lake, and the water flow in the river were used to evaluate the scenarios. The findings demonstrate that focusing on supply-based activities or water demand management cannot solely improve the condition of the Zayandehrud basin. It is required to reconsider the development policies of the region in a broader context. Reducing the irrigated area by 15% and developing new industries up to a certain limit may make the combined water and socio-economic system sustainable.  相似文献   

9.
Abstract

If management of water resources is to fully take into account the requirements of the environment, it will benefit from quantitative predictions of the ecological effects of river flow alterations. A significant relationship between flow reductions caused by groundwater abstraction and ecological conditions (as measured by relevant biotic indices) has been shown in streams in the midlands of England. In this article, we combine this relationship with hydrological indices derived from calibrated regional groundwater models to assess river reaches that are likely to be ecologically impacted by abstraction and might consequently be at risk of failing to meet EC Water Framework Directive standards. We demonstrate the application of this method within the framework of the Ecological Limits of Hydrologic Alteration (ELOHA) approach to making water resource decisions. We provide examples of how this approach can be used to assess the implications of different groundwater abstraction scenarios for river water bodies.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Streetly, M.J., Bradley, D.C., Streetly, H.R., Young, C., Cadman D., and Banham, A., 2014. Bringing groundwater models to LIFE: a new way to assess water resource management options. Hydrological Sciences Journal, 59 (3–4), 578–593.  相似文献   

10.
The main content of the new European Water Framework Directive is presented. Within its river basin management approach, a special mention of coastal waters status is made. Among the issues at stake are the setting up of river basin management plans, including coastal waters, and water quality assessment system leading to an harmonized definition of quality objectives and their appropriate indicators. The Rhone-Mediterranean-Corsica Water Master Plan, launched in 1996, is considered to be well fitted to this river basin approach and the necessary tools which go with it. It shows up how a river quality assessment system (SEQ) can be adapted to the coastal waters and how it can progressively lead to an efficient set of publishable environmental and performance indicators. Since planning and implementation are devolved to the lowest appropriate level, a close look is then been given at how such a system can work at the local level through different selected case studies on the French Mediterranean coast. In conclusion, some guidelines are drawn up for future initiatives towards integrated coastal area and river basin management.  相似文献   

11.
The Nooksack River has its headwaters in the North Cascade Mountains and drains an approximately 2000 km2 watershed in northwestern Washington State. The timing and magnitude of streamflow in a snowpack‐dominated drainage basin such as the Nooksack River basin are strongly influenced by temperature and precipitation. Projections of future climate made by general circulation models (GCMs) indicate increases in temperature and variable changes in precipitation for the Nooksack River basin. Understanding the response of the river to climate change is crucial for regional water resources planning because municipalities, tribes, and industry depend on the river for water use and for fish habitat. We combine three different climate scenarios downscaled from GCMs and the Distributed‐Hydrology‐Soil‐Vegetation Model to simulate future changes to timing and magnitude of streamflow in the higher elevations of the Nooksack River. Simulations of future streamflow and snowpack in the basin project a range of magnitudes, which reflects the variable meteorological changes indicated by the three GCM scenarios and the local natural variability employed in the modeling. Simulation results project increased winter flows, decreased summer flows, decreased snowpack, and a shift in timing of the spring melt peak and maximum snow water equivalent. These results are consistent with previous regional studies, but the magnitude of increased winter flows and total annual runoff is higher. Increases in temperature dominate snowpack declines and changes to spring and summer streamflow, whereas a combination of increases in temperature and precipitation control increased winter streamflow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
ABSTRACT

With global climate change and impacts of human activity, the water cycle, which has a close relationship with local water resources, has changed rapidly. Based on different greenhouse gas emission scenarios, five relatively independent global climate models are selected from 47 CMIP5 models to simulate future climatic conditions. Data are downscaled to the local projection, with bias neutralized before applying them to the hydrological models, by which availability of future water resources are calculated for the Dongting Lake basin. The results show that the water resources of the Dongting Lake basin are likely to increase in the future, but be distributed more unevenly. All scenarios indicate that water availability will increase during the flood season and decrease during the dry season, with a prominent increase in annual discharge. The scenarios also predict that the greater the greenhouse gas emissions, the more uneven the water distribution becomes. Overall, the water resources of the Dongting Lake catchment show the same increasing and unevenly distributed trend in the future, which could be further accelerated by human activities.
Editor Z.W. Kundzewicz; Associate editor Q. Zhang  相似文献   

13.
Abstract

This paper assesses strategic water availability and use under different development pathways on a basin scale using remote sensing (RS), geographical information systems (GIS) and a spatial water budget model (SWBM). The SWBM was applied to the Upper Ing Basin in northern Thailand to investigate the spatial and temporal variations in the location of streams and water yields from different parts of the basin. The base simulation was carried out for the years 1998–2007 using a DEM and actual land-use data at 100-m resolution. The simulated stream network was compared with topographic maps under different flow conditions, which were successfully represented. The 10-year average simulated river flow rate was 1300 L/s, but it more than doubled during periods of heavy rainfall and decreased below 600 L/s in dry seasons. The total length of the streams (based on flow threshold of 25 L/s) on a typical day in the dry season differed by a factor of approx. 1.5. Agricultural water needs and possible extraction were assessed and presented by dividing the basin into 10 different zones based on the stream network. The results show that there is the potential for harvesting significant quantities of water at different spatial gradients with no initial water supply for irrigation. Monthly water yields for each zone were computed; the results varied from less than 50% to over 137% of the per hectare water yield for the entire basin. This variation was due to differences in topography and land cover. The impact of land use and climate change on streamwater availability was also studied. The basin shows very different hydrological responses. The changes in average river flow relative to the base simulation were +27.6%,??32.1%, +94% and +52.9% under deforestation, changing land use from paddy field to orchard, bare soil and increased rainfall scenarios, respectively.

Citation Bahadur KC, K. (2011) Assessing strategic water availability using remote sensing, GIS and a spatial water budget model: case study of the Upper Ing Basin, Thailand. Hydrol. Sci. J. 56(6), 994–1014.  相似文献   

14.
Abstract

The Okavango River system flows through Angola, Namibia and Botswana. It is in near-natural condition and supports globally iconic wetlands and wildlife. The basin’s people are poor and development is inevitable: the next decade is critical. The river could become an example of responsible planning that resolutely addresses the three pillars of sustainable development. Recognizing this, the Member States completed a transboundary diagnostic analysis (TDA) in 2010 funded by the three governments and the Global Environment Facility. A central feature of the TDA was a basin-wide environmental flow assessment using the DRIFT (Downstream Response to Imposed Flow Transformation) holistic approach. This produced scenarios of increasing water resource use that spelled out the costs and benefits in terms of the health of the river ecosystem, associated social structures and local and national economies. The results were used to help create a transboundary strategic action programme, which the Member States are now beginning to act on. This article describes the DRIFT application, the findings and how these could be used to help achieve sustainable development.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation King, J., Beuster, H., Brown, C., and Joubert, A., 2014. Pro-active management: the role of environmental flows in transboundary cooperative planning for the Okavango River system. Hydrological Sciences Journal, 59 (3–4), 786–800.  相似文献   

15.
Abstract

The French national project IMAGINE2030 aims to assess future water availability in the Garonne River basin (southwest France) by taking account of changes in both climate and water management in the 2030s. Within this project, two mountainous drainage basins located in the Pyrenees were examined to assess the specific impact of climate change on reservoir management. The Salat River basin at Roquefort, is considered as a proxy (representative of a natural basin), whereas the Ariège River at Foix is influenced by hydropower production in winter and by water releases to sustain low flows in summer. The Cequeau rainfall–runoff model, combined with a simplified model of reservoir management operations, was calibrated on present-day conditions and forced with climate projections derived from the IPCC AR4 report. The results show that a warming climate over the basins induces a decrease in mean annual runoff, a shift to earlier snow melting in mountainous areas and more severe low-flow conditions. The simulations show a decrease in electricity generation. Under two water management scenarios (one “business-as-usual” and the other incorporating an increased downstream water demand in compliance with requirements for increased minimum flow), simulations for the Ariège River basin suggest an earlier filling of the reservoir is necessary in winter to anticipate the increased release from reservoirs in summer to support minimum flow farther downstream.

Editor Z.W. Kundzewicz; Associate editor D. Hughes

Citation Hendrickx, F. and Sauquet, E., 2013. Impact of warming climate on water management for the Ariège River basin (France). Hydrological Sciences Journal, 58 (5), 976–993.  相似文献   

16.
Abstract

Quantifying the impacts of climate change on the hydrology and ecosystem is important in the study of the Loess Plateau, China, which is well known for its high erosion rates and ecosystem sensitivity to global change. A distributed ecohydrological model was developed and applied in the Jinghe River basin of the Loess Plateau. This model couples the vegetation model, BIOME BioGeochemicalCycles (BIOME-BGC) and the distributed hydrological model, Water and Energy transfer Process in Large river basins (WEP-L). The WEP-L model provided hydro-meteorological data to BIOME-BGC, and the vegetation parameters of WEP-L were updated at a daily time step by BIOME-BGC. The model validation results show good agreement with field observation data and literature values of leaf area index (LAI), net primary productivity (NPP) and river discharge. Average climate projections of 23 global climate models (GCMs), based on three emissions scenarios, were used in simulations to assess future ecohydrological responses in the Jinghe River basin. The results show that global warming impacts would decrease annual discharge and flood season discharge, increase annual NPP and decrease annual net ecosystem productivity (NEP). Increasing evapotranspiration (ET) due to air temperature increase, as well as increases in precipitation and LAI, are the main reasons for the decreasing discharge. The increase in annual NPP is caused by a greater increase in gross primary productivity (GPP) than in plant respiration, whilst the decrease in NEP is caused by a larger increase in heterotrophic respiration than in NPP. Both the air temperature increase and the precipitation increase may affect the changes in NPP and NEP. These results present a serious challenge for water and land management in the basin, where mitigation/adaption measures for climate change are desired.

Editor Z.W. Kundzewicz; Associate editor D. Yang

Citation Peng, H., Jia, Y.W., Qiu, Y.Q., and Niu, C.W., 2013. Assessing climate change impacts on the ecohydrology of the Jinghe River basin in the Loess Plateau, China. Hydrological Sciences Journal, 58 (3), 651–670.  相似文献   

17.
In the Southern African Development Community region, Integrated Water Resources Management (IWRM) principles and tools are being implemented through the existing regional framework for water resources development and management. The IWRM approach is applied at river basin level seeking a balance between the economic efficiency, social equity and environmental sustainability in water resources management and development. This paper uses composite indexes to analyze the performance of River Basin Organizations (RBOs) as key implementing agents of the IWRM framework. The assessment focuses on three RBOs that fall under the Regional Water Administration for Southern Mozambique (ARA-Sul) jurisdiction, namely: Umbeluzi, Incomati and Limpopo River Basin Management Units. The analysis focus on the computation of a set of multidimensional key performance indicators developed by Hooper (2010) but adapted to the Mozambican context. This research used 24 out of 115 proposed universal key performance indicators. The indicators for this case study were selected based on their suitability to evaluate performance in line with the legal and institutional framework context that guides the operations of RBOs in Mozambique. Finally these indicators were integrated in a composite index, using an additive and multiplicative aggregation method coupled with the Analytic Hierarchy Process technique employed to differentiate the relative importance of the various indicators considered. The results demonstrate the potential usefulness of the methodology developed to analyze the RBOs performance and proved useful in identifying the main performance areas in need of improvement for better implementation of IWRM at river basin level in Mozambique. This information should support both the IWRM framework adaptation to local context and the implementation at river basin level in order to improve water governance.  相似文献   

18.
Abstract

The GWAVA (Global Water AVailability Assessment) model for indicating human water security has been extended with a newly developed module for calculating pollutant concentrations. This module is first described and then illustrated by being used to model nitrogen, phosphorus and organic matter concentrations. The module uses solely input variables that are likely to be available for future scenarios, making it possible to apply the module to such scenarios. The module first calculates pollutant loading from land to rivers, lakes and wetlands by considering drivers such as agriculture, industry and sewage treatment. Calculated loadings are subsequently converted to concentrations by considering aquatic processes, such as dilution, downstream transport, evaporation, human water abstraction and biophysical loss processes. Aquatic biodiversity is indicated to be at risk if modelled pollutant concentrations exceed certain water quality standards. This is indicated to be the case in about 35% of the European area, especially where lakes and wetlands are abundant. Human water security is indicated to be at risk where human water demands cannot be fulfilled during drought events. This is found to be the case in about 10% of the European area, especially in Mediterranean, arid and densely-populated areas. Modelled spatial variation in concentrations matches well with existing knowledge, and the temporal variability of concentrations is modelled reasonably well in some river basins. Therefore, we conclude that the updated GWAVA model can be used for indicating changes in human water security and aquatic biodiversity across Europe.

Editor Z.W. Kundzewicz

Citation Dumont, E., Williams, R., Keller, V., Voss, A., and Tattari, S., 2012. Modelling indicators of water security, water pollution and aquatic biodiversity in Europe. Hydrological Sciences Journal, 57 (7), 1378–1403.  相似文献   

19.
ABSTRACT

The impacts of future climate change on the agricultural water supply capacities of irrigation facilities in the Geum River basin (9645.5 km2) of South Korea were investigated using an integrated modeling framework that included a water balance network model (MODSIM) and a watershed-scale hydrologic model (Soil and Water Assessment Tool, SWAT). The discharges and baseflows from upland drainage areas were estimated using SWAT, and the predicted flow was used to feed agricultural reservoirs and multipurpose dams in subwatersheds. Using a split sampling method, we calibrated the daily streamflows and dam inflows at three locations using data from 6 years, including 3 years of calibration data (2005–2007) followed by 3 years of validation data (2008–2010). In the MODSIM model, the entire basin was divided into 14 subwatersheds in which various agricultural irrigation facilities such as agricultural reservoirs, pumping stations, diversions, culverts and groundwater wells were defined as a network of hydraulic structures within each subwatershed. These hydraulic networks between subwatersheds were inter-connected to allow watershed-scale analysis and were further connected to municipal and industrial water supplies under various hydrologic conditions. Projected climate data from the HadGEM3-RA RCP 4.5 and 8.5 scenarios for the period of 2006–2099 were imported to SWAT to calculate the water yield, and the output was transferred to MODSIM in the form of time-series boundary conditions. The maximum shortage rate of agricultural water was estimated as 38.2% for the 2040s and 2080s under the RCP 4.5 scenario but was lower under the RCP 8.5 scenario (21.3% in the 2040s and 22.1% in the 2080s). Under the RCP 4.5 scenario, the projected shortage rate was higher than that during the measured baseline period (1982–2011) of 25.6% and the RCP historical period (1982–2005) of 30.1%. The future elevated drought levels are primarily attributed to the increasingly concentrated rainfall distribution throughout the year under a monsoonal climate, as projected by the IPCC climate scenarios.
EDITOR Z.W. Kundzewicz; ASSOCIATE EDITOR not assigned  相似文献   

20.
The potential for flooding and sediment transport is greatly affected by river channel form and changes in land use. Therefore the modelling of channel morphology prior to canalization and of land‐use change is important with respect to the prediction of floods and sediment yield and their consequences. A combination of land‐use transformation maps and soil properties shows certain decision rules for the conversion of forest into arable or vice versa. The model proposed, from this study, was used to simulate possible past and/or future channel and land‐use patterns. Subsequently, the outcome of this simulation was used to assess the risk of flooding, sediment transport and soil‐erosion under different conditions. In this study, channel morphology prior to canalization and land‐use change in the Ishikari basin, Hokkaido, Japan, were analysed by comparing three scenarios using a physical based channel and slope model. The results indicate that pre‐canalization channel morphology has a significant impact on flood peak, but no significant effect on sediment yield. In contrast, land‐use change has a significant effect on soil eroded from hillslopes, but no significant effect on flooding for Ishikari basin. This study also illustrates the challenges that a simple model, such as a physical based channel and slope model, can simulate large‐scale river basin processes using fewer hydrological data resources. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号