首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The problem of coherent reflection of an acoustic plane wave from a rough seabed with a randomly inhomogeneous sediment layer overlying a uniform elastic basement is considered in this analysis. The randomness of the sound field is attributable to the roughness of the seabed and the sound-speed perturbation in the sediment layer, resulting in a joint rough surface and volume scattering problem. An approach based upon perturbation theory, combined with a derived Green's function for a slab bounded above and below by a fluid and an elastic half-space, respectively, is employed to obtain an analytic solution for the coherent field in the sediment layer. Furthermore, a boundary perturbation theory developed by Kuperman and Schmidt (1989) is applied to treat the problem of rough surface scattering. A linear system is then established to facilitate the computation of the coherent reflection field. The coherent reflection coefficients for various surface roughness, sediment randomness, frequency, sediment thickness, and basement elasticity have been generated numerically and analyzed. It was found that the higher/larger size of surface and/or medium randomness, frequency, thickness, and shear-wave speed, the lower the coherent reflection. Physical interpretations of the various results are provided.  相似文献   

2.
The spatial statistics of the acoustic field in shallow water are strongly affected by interfacial roughness and volume fluctuations in the water column or the seabed. These features scatter energy, reducing the coherence of the acoustic field. This paper introduces a consistent, mode-based modeling framework for ocean scattering. First, the rough surface scattering theory of Kuperman and Schmidt is reformulated in terms of normal modes, resulting in computation times which are reduced by several orders of magnitude. Next, a perturbation theory describing scattering from sound speed and density fluctuations in acoustic media is developed. The scattering theories are combined with KRAKEN, creating a unified normal mode code for wave theory modeling of shallow-water spatial statistics. The scattered field statistics are found to be a complicated function of scattering mechanism, scatterer statistics, and acoustic environment. Bottom properties, including elasticity, strongly influence the scattered field  相似文献   

3.
The construction of stationary expressions for quantities of physical interest such as radiated power and target strength is discussed broadly for acoustic problems involving radiation or scattering from finite objects of arbitrary shape. The Kirchhoff-Helmholtz integral corollaries of the wave equation, which express acoustic pressure at either interior or exterior points in terms of pressure and its normal derivative over any closed surface, yield for both interior and exterior problems two mathematically dissimilar but related functional relations between surface field quantities. One of these is the better known surface Helmholtz integral equation; the other is a differential-integral relation which involves the tangential derivatives of pressure on the surface. The four linear operators involved in these functional relations are studied and it is found that two are self-adjoint, while the other two are an adjoint pair. A general technique for constructing variational expressions recently developed by Gerjuoy et al. [28] is adapted to acoustic radiation and scattering problems with the functional relations taken as the primary governing relations. Included examples are stationary expressions for the radiated power when either the normal velocity or the pressure are specified on the surface (the other quantity being unknown) and the target strength for scattering from a rigid object. The adjoint relations allow simple physical interpretations for the Lagrange multipliers that arise in the theory, such that the guesses for good trial functions can take advantage of existing physical insight. It is demonstrated with a specific example (transversely vibrating disk) that the resulting estimate for radiated power is substantially more accurate than that of the trial function for surface pressure which was inserted into the stationary expression.  相似文献   

4.
High-frequency bubble layer scattering investigations require the measurement of the intensity of backscattered sound and the corresponding depth of the scatterers below the moving surface. Especially at high sea state conditions and high acoustic frequencies, bubbles acoustically mask the surface, i.e., the surface return cannot be detected. However, this environmental condition is the most interesting one in bubble scattering investigations and a reliable method is required to determine the range of the scatterers to the surface displacement. A method for the determination of the vertical profiling of acoustic scattering in the presence of bubbles at high sea state conditions is presented. It is based on the transmission of a low-frequency signal alternately to the high-frequency signal at which the scattering investigations are performed. The only information that is extracted from the low-frequency echo is the onset of the surface return. It is used to compute the true depth of scatterers at the high frequency. Experiments were conducted to determine the optimum low frequency at which the detection of the surface onset in the presence of a high bubble concentration is ensured. A screening ratio is defined to give a measure of the acoustic masking of the sea surface. It is depicted for an extreme wind condition (20 m/s) for the frequency range of 5-25 kHz and as a function of wind speed for 50 kHz measurements. Selected results of subsurface bubble scattering at 50 kHz from experiments under open sea conditions are presented for the wind speed regime from 9 to 22 m/s. Additionally, the two-frequency scatterometer is used to measure sea state characteristics simultaneously to the scattering investigations by remote sensing techniques  相似文献   

5.
The transition-matrix (T-matrix) approach to acoustic scattering is used to investigate scattering by high-aspect-ratio solid elastic targets. Results for several different materials are presented over aKL/2range of 0.5-16.0 for targets with aspect ratios from 1 to 10. It is demonstrated that the phase velocity of the Rayleigh resonances on solid spheroids is closely related to the shear speed of the material. In addition, high-Qresonant peaks are shown to dominate the backscattered response for many high-aspect-ratio targets.  相似文献   

6.
The topography of the seabed is influenced by sediment transport due to wave motion, current disturbance, and biological activities. The bottom roughness generated by these processes can substantially alter acoustic wave penetration into and scattering from the bottom, and therefore, it is essential to make accurate measurements of the bottom roughness for such acoustic applications. Methods to make direct measurements of bottom roughness include stereo photography, laser line scanning, and sediment conductivity. Roughness can also be measured indirectly using high-frequency sound backscatter. For optically-based methods, the accuracy of these measurements is typically evaluated using the elevations, lengths, or diameters of simple surface features of known dimensions. However, for acoustic applications, the statistical characteristics of the surface, e.g., the roughness spectrum, are more meaningful. In this paper, we present a fabricated rough surface milled into a 40 $,times ,$60 cm $^{2}$ plastic block for use as a benchmark in the assessment of two in situ roughness measurement systems: a laser scanning system and a digital stereo photography system. The surface has a realistic roughness power spectrum that is derived from the bottom roughness measured during the 1999 Sediment Acoustics Experiment (SAX99) and was fabricated by a computer numerical controlled milling machine. By comparing the fabricated surface spectrum to the measured spectrum, a determination of the accuracy of the roughness measurement is evaluated, which is of direct relevance to acoustic applications.   相似文献   

7.
It was found in a previous paper that strong acoustic backscattering from a soft sediment in Eckernförde Bay, Germany, is caused by scatterers buried beneath the sea floor. The scatterers are methane gas voids of nonspherical shape. This paper models backscattering due to such gas voids. Scattering cross sections of oblate spheroids are calculated to approximate those of gas voids. Proper statistical averages are taken to make model/data comparisons. It is found that this single scattering model compares favorably with measured acoustic backscattering data at 40 kHz. In the model, density and spatial distribution of gas voids are derived from limited core data.  相似文献   

8.
研究由一振动体的部分边界测量数据再构振动体内部场的逆问题.提出基于偏微分方程控制方法的一种算法,并证明原用于处理散射问题的Null-field method 可用来求解优化问题的随伴问题.  相似文献   

9.
研究由一振动体的部分边界测量数据再构振动体内部场的逆问题。提出基于偏微分方程控制方法的一种算法 ,并证明原用于处理散射问题的 Null- field method可用来求解优化问题的随伴问题。  相似文献   

10.
An acoustic wave scattering model is formulated and solved for three homogeneous layers consisting of a thin solid sediment layer sandwiched by semi-infinite water and solid basalt media. The model is applied to two cases to analyze both the physical parameters affecting reflection loss and the effects of interface roughness scattering. It is shown that effects of attenuation in the sediment layer, especially of S-waves, combine with conversion and scattering processes of the basalt interface to constitute the dominant mechanism of reflection loss, especially in the small grazing angle directions. The scattering process is found not only to produce the well-known acoustic energy loss from specular to nonspecular directions, but also to alter the conversion efficiency between P and S waves with a resulting loss or gain  相似文献   

11.
This paper is aimed at studying the source and receiver motion effects on the energy and correlation characteristics of the acoustic field in shallow water. The statistical analysis is based on the radiation transport equation for the mutual coherence function (MCF) of the multimodal Doppler-shifted field. A general computer program has been elaborated to implement this theory for rough surface scattering by fully developed wind seas. Calculations of the expected total average acoustic intensity and two-point coherence function are presented.   相似文献   

12.
A novel scalable architecture for coherent beam combining with hybrid phase control involving passive phasing and active phasing in master oscillator-power amplifier configuration is presented. Wide-linewidth mutually injected passive phasing fibre laser arrays serve as master oscillators for the power amplifiers, and the active phasing using stochastic parallel gradient descent algorithm is induced. Wide-linewidth seed laser can suppress the stimulated Brillouin scattering effectively and improve the output power of the fibre laser amplifier, while hybrid phase control provides a robust way for in-phase mode coherent beam combining simultaneously. Experiment is performed by active phasing fibre laser amplifiers with passive phasing fibre ring laser array seed lasers. Power encircled in the main-lobe increases1.57 times and long-exposure fringe contrast is obtained to be 78% when the system evolves from passive phasing to hybrid phasing.  相似文献   

13.
高爽  杨光兵  熊学军 《海岸工程》2022,41(2):144-152
声散射是重要的声学现象,海洋水体产生的高频声散射信号既可用于开展多种目的的声学海洋学研究,也可能对水下声学设备产生干扰,而海洋水体背景声散射具有显著的时空变异特征,因此针对特定海区开展声散射时变观测具有重要意义。本文利用在南海北部布放的锚系系统所搭载的声学多普勒流速剖面仪,获取了覆盖4个季节的累计约80 d的声散射数据,数据包括75 kHz和300 kHz两个频段,观测水深几乎覆盖了从海面到约600 m水深的整个水体。结果表明,水体在垂向上分布着上散射层和深散射层2个主要散射层。上散射层分布深度在冬夏较浅,位于约100 m以浅,在春秋较深,位于约200 m以浅;深散射层分布深度同样为冬季最浅,位于约300 m以深,但夏季则最深,位于约400 m以深。因此,两散射层的距离在夏季最远,在春秋最近。2个散射层的声散射强度(Sv)同样具有明显的季节变化,上散射层散射强度夏秋较强而春冬较弱,深散射层则正好相反。  相似文献   

14.
We propose a numerical model for the evaluation of the three-dimensional scattering of sound in the sea. The model is based on the construction of ray patterns both for the primary and secondary (scattered) radiation. The intensity of secondary radiation is expressed via the coefficient of backward volume scattering interpreted as the fraction of backward-scattered acoustic energy per unit length of the primary ray. It is shown that, in the first approximation, it suffices to consider the secondary rays repeating the paths of the primary rays in the opposite direction. The attenuation of the intensity of sound along the paths of the primary and secondary rays is taken into account. The results of numerical analysis of the reverberation signal as a function of time are presented for various conditions (different depths of immersion of the antenna and widths of the directional diagram and the presence of sound-scattering layers). The proposed approach can be used for the purposes of modeling of the surface and bottom reverberation and for the solution of the inverse problems of underwater acoustics. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 5, pp. 50–58, September–October, 2007.  相似文献   

15.
碱性品红光致聚合物薄膜的光致光衍射   总被引:2,自引:0,他引:2       下载免费PDF全文
马晨  张保民  张立  马玉峰  赵维富 《海洋学报》2010,32(9):6266-6272
本文研究了全息存储实验中以波长532 nm的半导体激光器作为记录和读出光源,碱性品红作为光敏剂的丙烯酰胺基光致聚合物薄膜的光致光衍射现 象.它可以考虑为透过全息干涉条纹的原始入射光和反射光,与来自光聚物中未曝光的不均匀表面和内部的散射光四波混频的结果.根据简并四波混频理论中的位相匹配条件对双光束全息写入时产生的衍射光锥,以及单光束辐照复现时产生的衍射光锥现象分别做出了理论解释;并且利用全息散射理论结合三角学知识对入射光的入射角与衍射光锥的锥角的依赖关系进行了深入讨论.  相似文献   

16.
基于二维激光观测的溢油及其乳化过程散射模式研究进展   总被引:2,自引:1,他引:1  
过杰  孟俊敏  何宜军 《海洋科学》2016,40(2):159-164
合成孔径雷达(SAR)以其高分辨率、能不受雨云影响实施全天时全天候全方位监测,在海面溢油灾害应急监测过程中发挥着越来越重要的作用。溢油是因为海面油膜抑制了毛细波和重力波,在SAR图像上呈暗斑而被识别。然而,海面溢油的乳化过程直接影响SAR对海面溢油后向散射截面的观测精度。本研究以物理海洋学和激光原理以及海面电磁散射理论为基础,通过实验利用激光扫描仪观测海面溢油粗糙度,分别与溢油特征参数、后向散射系数建立对应关系;耦合海面溢油参数与后向散射截面的关系,利用电磁散射数值建模方法,建立海面溢油散射模型,研究海面溢油乳化过程对微波后向散射截面的影响。本项目的研究将为SAR监测海面溢油量、溢油厚度及油品分布格局提供了可能;将进一步揭示海面溢油的散射机制,提高SAR海面监测溢油的精度和能力。  相似文献   

17.
An unexplained result of broad-band transmission experiments made more than ten years ago by DeFerrari in the Straits of Florida (center frequency ~500 Hz, bandwidth ~100 Hz, water depth ~200-m, range ~20 km) is that the measured pulse response functions failed to show the expected multipath replicas of the transmitted pulse and instead were smeared into a single broad cluster (duration ~50-~350 ms) in which the unresolved multipaths fluctuated rapidly in geophysical time (coherence time ≪12 min) leaving only a relatively stable envelope that is useful for oceanographic inversion. It is demonstrated here that the effects of internal waves on sound pulse propagation in the Straits of Florida can explain these observed results, and it is suggested that similar instabilities of acoustic multipaths due to internal waves are to be expected in other shallow-water propagation conditions. The demonstration is based on numerical simulations with the broad-band UMPE acoustic model that includes multiple forward scattering from volume inhomogeneities induced by internal wave fluctuations that are described by a broad spectrum of excitation. The simulated temporal variability, stability, and coherence of acoustic pulse arrivals are displayed on geophysical time scales from seconds to many hours and are qualitatively in agreement with the measured data in the Straits of Florida  相似文献   

18.
1 .IntroductionSphericalshellsandcircularcylindricalshellshavebecomethemajorstructuralformsfornaviga tiondevicesunderwater,suchassubmarine ,torpedo ,andsoon .Theintegratedsphericalshellsareoftenusedascommunicationandtransportationtools,andserveasworkroomsforexternalexaminationandrepairoflargenavigationdevicesunderwatertoo .Especiallyforthesphericaldouble shell,itisveryusefulforthedeepmarineworks .Inthesphericaldouble shell,severalinternalringplatesareusuallydesignedtoconnecttheinnerandoutersph…  相似文献   

19.
利用Nd:YAG纳秒激光(波长为532和355 nm)对单晶硅在真空中进行了累积脉冲辐照,研究了表面微结构的演化情况.在激光辐照的初始阶段,532和355 nm激光脉冲均在硅表面诱导出了波纹结构,后者辐照硅表面后形成了近似同心但稍显混乱的环形波纹结构.随着脉冲数的增加,波纹结构逐渐演化为一种类似珠形的凹凸结构,最后形成准规则排列的微米量级锥形结构,该微结构的生长依赖于表面张力波和结构自组织.分析发现,形成的交叉环形结构主要是在355 nm激光辐照硅的过程中,表面张力波导致波纹结构部分叠加的结果.  相似文献   

20.
This paper presents results of combined consideration of sound coherence and array signal processing in long-range deep-water environments. Theoretical evaluation of the acoustic signal mutual coherence function (MCF) of space for a given sound-speed profile and particular scattering mechanism is provided. The predictions of the MCF are employed as input data to investigate the coherence-induced effects on the horizontal and vertical array gains associated with linear and quadratic beamformers with emphasis on the optimal ones. A method of the radiation transport equation is developed to calculate the MCF of the multimode signal under the assumption that internal waves or surface wind waves are the main source of long-range acoustic fluctuations in a deep-water channel. Basic formulations of the array weight vectors and small signal deflection are then exploited to examine optimal linear and quadratic processors in comparison with plane-wave beamformers. For vertical arrays, particular attention is paid also to evaluation of the ambient modal noise factor. The numerical simulations are carried out for range-independent environments from the Northwest Pacific for a sound frequency of 250 Hz and distances up to 1000 km. It was shown distinctly that both signal coherence degradation and modal noise affect large-array gain, and these effects are substantially dependent on the processing technique used. Rough surface sound scattering was determined to cause the most significant effects  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号