首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 122 毫秒
1.
全极化SAR图像中溢油极化特征研究   总被引:2,自引:1,他引:1  
相比于单极化SAR图像,全极化SAR图像不仅能体现海面目标的几何特征、后向散射特征,还能体现目标的极化特征。因此,在溢油检测方面,极化SAR更具优势。特征提取作为溢油检测的关键步骤,直接影响到溢油检测的精度。在本文中,我们分析了全极化SAR图像中海面溢油的极化特征,如极化散射熵、平均散射角等。并提出了新的极化特征P,该特征参数能够反映海面目标电磁散射过程中布拉格散射机制和镜面散射机制的比例。为了研究极化特征溢油检测的能力,本文基于SIR-C/X-SAR和Radarsat-2全极化SAR图像开展了相关实验,并对比分析了溢油的多种极化特征。实验结果显示,在中低风速情况下,C波段溢油探测效果优于L波段;本文提出的极化特征P对海面散射机制敏感;基准高度和特征参数P在C波段比其他极化特征更适于溢油检测。  相似文献   

2.
为研究溢油对海面电磁散射的影响,作者根据海面复合微波散射模型理论和蒙特卡洛统计模型理论,通过引入单分子油膜的黏性阻尼,对粗糙的溢油海面进行建模,定量分析溢油对海浪谱和海面后向散射系数值两个方面的影响。为实现基于X波段雷达海面溢油检测提供理论支撑,有助于解决溢油检测中的虚警率高的问题。  相似文献   

3.
苏腾飞 《海洋通报》2013,32(4):467-473
开展了Envisat ASAR溢油检测的影响因素分析,以2010 年墨西哥湾溢油事故为例,主要从入射角和海面风速两个 方面,开展了油膜和海水的后向散射特征分析,给出了适合ASAR 溢油检测的入射角与海面风速范围。对入射角的分析表 明,在中等风速条件下,入射角在28毅~36毅的范围内,油膜和海水的后向散射值相差大于5dB,两者在SAR影像上容易区分; 在入射角为20毅~24毅时,油膜和海水的后向散射值相差较小;在入射角大于37毅时,油膜的后向散射值接近ASAR 的系统噪 声。对海面风速的分析显示,适合ASAR影像溢油检测的风速范围是3.0~7.0 m/s;风速小于3 m/s时,油膜和海水的后向散 射值均较低;风速为9.7 m/s时,油膜和海水在ASAR影像上难以区分。  相似文献   

4.
陈韩  谢涛  方贺  孟雷  赵立  艾润冰 《海洋学报》2019,41(9):181-190
针对海洋表面SAR影像的特点,采用基于灰度共生矩阵的纹理特征方法是提取海面溢油信息的常用方法,但实际海洋表面复杂的信息使得SAR图像上产生类似溢油现象的暗斑区域,这导致在利用纹理特征方法提取溢油信息时存在虚警率,降低了溢油信息的提取精度。基于RADARSAT-2 SAR四极化影像,本文提出基于SAR极化比影像的纹理特征识别方法对海面油膜进行识别提取。结果显示,基于SAR极化比影像的纹理特征识别方法可以有效且准确地提取海面溢油信息,相比于VV极化影像的纹理特征识别方法,溢油监测过程中的虚警率降低了17.96%,溢油监测总体精度达到96.83%。  相似文献   

5.
本文基于水槽溢油观测实验,研究溢油乳化过程中表面散射特性的变化。利用全极化C波段微波散射计和矢量网络分析仪等测量设备对易发生乳化反应沥青含量小于3%的原油(A型油)、油田中开采出的新鲜原油(B型油)和经过脱水去杂质处理的工业原油(C型油)进行观测。文中详细分析了在C波段微波下乳化油膜与平静水面的后向散射差异,以及油膜乳化过程对后向散射的影响,结果显示在低风速、无浪的条件下(最大波高低于3mm),原油的乳化反应可通过表面粗糙度和自身介电常数的变化来调制雷达后向散射,并且这两种方式中表面粗糙度的影响占主导地位。对比B型和C型原油在乳化状态和未乳化状态下的表面后向散射,结果显示在各状态下B型油膜表面后向散射均大于C型油,且在VV、HH、HV/VH极化方式下两者后向散射平均差异分别为2.19 dB、2.63 dB、2.21 dB,在20%油膜含水率的乳化状态下差异较未乳化状态时小,平均差异分别为0.98 dB、1.49 dB、1.5 dB,结果表明不同类型油种间由于成分和油膜属性的不同会在一定程度上导致油膜表面粗糙度存在差异,影响油膜表面后向散射。  相似文献   

6.
张婷  张杰 《海洋科学》2018,42(6):141-149
溢油污染不仅会造成巨大的经济损失,而且给生态环境带来难以修复的破坏。准确、高效地监测海面溢油仍是当前亟需解决的问题。紫外传感器对油膜非常敏感,可快速发现,但存在误判;而SAR(SyntheticApertureRadar)溢油探测的精度较高,两者相结合可准确探测溢油。无人机平台可低成本地实现溢油快速应急响应,无人机载SAR和紫外传感器的载荷重量小,可同时集成于无人机上开展联合溢油探测,以满足业务化监测需求,此方面的研究尚未见有相关报道。本文拟研究溢油不同种类、厚度、在不同海洋环境条件下的紫外图像特征和SAR纹理特征、形状特征、散射特征,构建溢油特征数据库,并建立一种基于特征组合的溢油SAR与紫外联合探测方法;在此基础上研究对无人机数据获取模式和控制单元等的改造方案,进而实现溢油SAR和紫外图像的高效获取。  相似文献   

7.
杨永红  徐平  林明  奚彩萍 《海洋通报》2012,31(6):636-639
在考虑水深因素的条件下,提出了一种适合于浅海环境下溢油海面的仿真方法,利用TMA谱模型和Marangoni溢油理论模型,计算有限水深下溢油海面的海浪谱;然后根据海浪的色散关系和Longuet-Higgins海浪模型,计算有限水深下溢油海面的铅直位移;并分析了Kitaigorodskii深度函数的特性。仿真结果表明,有限水深下海面的铅直位移比深水的小,而有限水深下溢油海面的粗糙度要比有限水深下和深水清洁海面的都小,结果与Marangoni溢油理论模型相吻合。  相似文献   

8.
雷达波段对多极化SAR海面溢油检测极化特征参数的影响   总被引:1,自引:1,他引:0  
多极化SAR数据海面溢油检测研究日益受到重视。本文研究不同波段极化SAR数据的海面溢油检测能力,为最大程度减小观测条件、环境因素等的影响,选取准同步获取的SIR-C/X多极化SAR数据。针对海面油膜、生物油膜和低风区疑似溢油现象,研究L波段和C波段的共极化相位差、一致性系数、极化熵、各向异性和平均散射角等极化特征对海面油膜以及不同海面暗斑现象的检测能力。研究结果表明:在海面溢油检测以及探测不同暗斑现象间差异方面,C波段总体优于L波段;L波段,极化分解特征各向异性参数优于共极化相位差和一致性系数;C波段,共极化相位差、一致性系数特征优于极化分解特征各向异性和极化熵,结合平均散射角特征有助于滤除生物油膜和低风区。  相似文献   

9.
给出了光散射、后向散射以及拉曼后向散射等基本概念,推导了后向散射截面与后向散射微分截面的基本关系,以及散射微分截面的计算公式。同时还得出了振动拉曼散射、振动一转动拉曼散射、转动拉曼散射、瑞利散射之间的关系。提出了利用647nm红光的拉曼后向散射检测海面以及区分海面与陆地的方法,可以有效地提高机载激光海洋测深的精度。  相似文献   

10.
海上原油泄漏在其风化迁移过程中会形成不同浓度的乳化物,严重威胁海洋生态环境。合成孔径雷达(SAR)因其不受雨、云影响,可昼夜监测的优势,在海上溢油监测过程中发挥着主力军的作用,但是它在原油乳化识别方面还存在着不足。本文利用C波段全极化散射计观测原油的自然乳化过程,并利用人工制备的不同含水率的乳化油品模拟原油乳化进程观测油膜后向散射系数(N_(RCS))的变化。实验结果表明乳化原油M_(RCS)高于未乳化原油,且油膜乳化程度越高相应的N_(RCS)越大。通过油水散射差值(Δσ~0)与阻尼比(D_R)发现能够识别乳化与未乳化原油,反映油膜乳化程度的变化,且在VV极化下效果最佳。  相似文献   

11.
海上溢油极化特征及其探测研究   总被引:3,自引:3,他引:0  
The SAR(Synthetic Aperture Radar) has the capabilities for all-weather day and night use. In the case of determining the effects of oil spill dumping, the oil spills areas are shown as dark spots in the SAR images.Therefore, using SAR data to detect oil spills is becoming progressively popular in operational monitoring, which is useful for oceanic environmental protection and hazard reduction. Research has been conducted on the polarization decomposition and scattering characteristics of oil spills from a scattering matrix using allpolarization of the SAR data, calculation of the polarization parameters, and utilization of the CPD(Co-polarized Phase Difference) of the oil and the sea, in order to extract the oil spill information. This method proves to be effective by combining polarization parameters with the characteristics of oil spill. The results show that when using Bragg, the oil spill backscattering machine with Enopy and a mean scatter α parameter. The oil spill can be successfully identified. However, the parameter mechanism of the oil spill remains unclear. The use of CPD can easily extract oil spill information from the ocean, and the polarization research provides a base for oil spill remote sensing detection.  相似文献   

12.
星载SAR监测海洋溢油污染的初步研究   总被引:1,自引:0,他引:1  
对星载SAR监测海洋溢油的基本原理进行总结并分析了影响溢油监测的SAR参数及干扰SAR海洋溢油监测的各种因素;对搜集到的星载SAR数据进行处理,并给出中国黄海海域的海上溢油分布的初步统计分析,结果表明该海区的溢油主要分布在海上主要航线附近。  相似文献   

13.
溢油对海洋环境造成的危害越来越大,及早发现对于减灾防灾具有重要意义。目前,运用极化SAR进行溢油探测已成为遥感监测的一个重要方面,本文基于SIR-C数据,开展极化SAR的溢油监测,提取极化参数熵H,散射角α和反熵A,运用SVM监督分类方法,进行溢油信息提取。结果表明,基于SVM的分类精度要强于基于H-α分类的分类结果。  相似文献   

14.
覃睿  闫玲  陈子健 《海洋通报》2021,40(6):709-716
海上环境变化多端,造成溢油的漂移和扩散会出现不可预测的情况,精确、实时地监测海上溢油是现今亟待解决的问题.无人机以其部署快、成本低、环境适应性强的优势在海上溢油监测领域得到重视,但单架无人机监测能力弱,而多架无人机监测的准确性仍需提高.为此,本文提出一种无人机群海面溢油自动导航跟踪监测的架构和方法,根据海上溢油浓度的变化进行路径规划.该方法包括建立溢油模型和设计无人机跟踪控制系统.溢油模型主要描述海上溢油时空变化的形态复杂性;控制器可控制无人机追踪和监测溢油漂移及扩散的情况.同时,将无人机跟踪控制系统与人工势场法相结合,避免无人机相撞.最后,进行数值仿真,结果表明该跟踪系统与溢油的重合率达到70%~80%,验证了该方法的可行性.未来,该系统可广泛应用于无人机群对不同环境现象和灾害的跟踪监测.  相似文献   

15.
激光诱导荧光(LIF)是一种主动光学探测技术,该技术已在海面未乳化溢油油种鉴别及油膜厚度评估方面取得了一定的研究成果,但乳化溢油的监测理论基础和探测方法尚未成熟。溢油乳化物的量化会直接影响溢油污染的应急处理和灾害评估,但目前对溢油乳化液溢油量的计算尚未有研究报道。本文以水包油乳化液为研究对象,基于等效思想,根据油量相等建立了水包油乳化液与油膜的荧光检测等效模型,并依据光的辐射传输机理推导出等效油膜厚度的估算公式,最后采用仿真实例对估算方法的适用性和有效性进行了验证。实验结果表明,当水包油乳化液含油率小于12×10-6,厚度小于5.98 cm时,利用所提出的等效方法能有效计算出水包油实际溢油厚度。该方法可为海面乳化溢油量的估算提供一种创新性的方法,具有良好的借鉴意义和实际应用价值。  相似文献   

16.
应用极化合成孔径雷达检测海上溢油研究进展   总被引:4,自引:2,他引:2  
海上溢油给海洋生态环境带来严重的影响,快速准确地探测溢油对于防灾减灾具有重要的意义。利用卫星遥感探测溢油已成为目前主要的检测手段,大多采用合成孔径雷达(SAR)数据,运用图像处理的方法,开展了多种溢油提取算法的研究,取得了较好的结果,但由于海洋的类溢油现象存在,造成提取信息的精度达不到要求。近年来,国内外运用极化SAR数据开展溢油信息提取研究,从极化分解与相位差等角度对溢油特性分析,能有效地区分一些类溢油现象,得到了较理想的结果。分析了应用SAR数据开展溢油信息提取的研究状况,总结了溢油极化SAR探测的研究,指出了目前研究中存在的不足,并提出了今后溢油极化SAR遥感监测的方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号