首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Particulate matter was collected in the Bering Sea and the northern North Pacific Ocean during the cruise of R. V. Hakuho-maru, Ocean Research Institute of Tokyo University in summer of 1975. The particulate matter was analyzed for organic carbon and nitrogen, chlorophylla and amino acids.The concentrations of particulate organic carbon and nitrogen were measured with the range of 16–422gC l–1 and 1–85gN l–1, 19–186gC l–1 and 1–26gN l–1, 46–1,038gC l–1 and 6–79gN l–1 and 19–246gC l–1 and 2–25gN l–1 in the Oyashio, the Deep Bering Sea, the continental shelf of Bering Sea and the northern North Pacific, respectively. Particulate organic carbon and nitrogen decreased with depth throughout the areas. The average concentrations of organic carbon and nitrogen in the entire water column tended to decrease in the following order; the continental shelf > Oyashio > northern North Pacific > Deep Bering Sea.C/N of particulate matter varied in the range of 3–15 (7 on average) in surface waters throughout the areas and these values tended to increase with depth to 5–20 (11 on average) in deep waters without significant regional variability.Linear regressions between chlorophylla and particulate organic carbon in the euphotic layers indicate that detrital organic carbon accounted for 34.2, 44.9, 49.1 and 25.2 % of particulate organic carbon in the Oyashio, the Deep Bering Sea, the continental shelf and the northern North Pacific, respectively.Particulate amino acid was determined in the range of 10.3–78.0g l–1, 104–156g l–1 and 10.4–96.4g l–1 in the Deep Bering Sea, the continental shelf and the northern North Pacific, respectively. Aspartic acid, glutamic acid, serine, glycine and alanine were found as dominant species of amino acid of particulate matter.  相似文献   

2.
Copper concentrations have been measured in more than 200 samples collected from an Alaskan fjord and continental shelf and slope regions in the northwestern Gulf of Alaska. Concentrations were lowest (2·1 nmol kg−1) at depths of 400–1000 m in the continental slope waters of the Gulf of Alaska. Copper increased systematically with decreasing salinities shoreward to concentrations >30 nmol kg−1 in fjord surface waters during summer months of high freshwater runoff. Copper concentrations increased with depth at an inner fjord station where deep basin waters have restricted circulation, and these data together with surface (<5 cm) pore water copper concentrations (mean=122 nmol kg−1) about an order of magnitude higher than bottom water copper concentrations are indicative of a flux of copper across the sediment-seawater interface. This latter was estimated at 32±12 nmol cm−2 annually, and represented less than 20% of the annual input to fjord surface water (228–411 nmol cm−2) added during summer months. Mass balances in bottom waters indicate a vigorous recycling of copper with a residence time estimated at 21±11 days. Most copper that is remobilized in surface sediments is returned to bottom waters and little (3%) is removed by subsequent diagenetic reaction in the buried sediments. However, an estimate of copper accumulating in anoxic fjord sediments was comparable with copper added to fjord surface waters suggesting that input-removal reactions rather than internal cycling controls copper geochemistry in this estuary.  相似文献   

3.
In the summers of 1999 and 2003, the 1st and 2nd Chinese National Arctic Research Expeditions measured the partial pressure of CO2 in the air and surface waters (pCO2) of the Bering Sea and the western Arctic Ocean. The lowest pCO2 values were found in continental shelf waters, increased values over the Bering Sea shelf slope, and the highest values in the waters of the Bering Abyssal Plain (BAP) and the Canadian Basin. These differences arise from a combination of various source waters, biological uptake, and seasonal warming. The Chukchi Sea was found to be a carbon dioxide sink, a result of the increased open water due to rapid sea-ice melting, high primary production over the shelf and in marginal ice zones (MIZ), and transport of low pCO2 waters from the Bering Sea. As a consequence of differences in inflow water masses, relatively low pCO2 concentrations occurred in the Anadyr waters that dominate the western Bering Strait, and relatively high values in the waters of the Alaskan Coastal Current (ACC) in the eastern strait. The generally lower pCO2 values found in mid-August compared to at the end of July in the Bering Strait region (66–69°N) are attributed to the presence of phytoplankton blooms. In August, higher pCO2 than in July between 68.5 and 69°N along 169°W was associated with higher sea-surface temperatures (SST), possibly as an influence of the ACC. In August in the MIZ, pCO2 was observed to increase along with the temperature, indicating that SST plays an important role when the pack ice melts and recedes.  相似文献   

4.
The relationship between Cd and PO4 in the Kuroshio and Oyashio regions and the Okhotsk Sea was examined. The resultant equations are as follows: Cd (ng l–1)=37.0 PO4 (M)+2.6; Cd(ng l–1)=32.1 PO4 (M)+1.2 and Cd (ng l–1)=34.1 PO4 (M)+7.9, respectively. These results are in good agreement with previously reported studies, and indicate that during removal from surface waters to deeper waters by biological assimilation and regeneration in deeper waters Cd and PO4 maintain the same ratio in the open ocean. The relationship between Cd and PO4 in coastal waters, however, differed from that in the open ocean.  相似文献   

5.
Chlorophylla concentrations (Chla) of size-fractionated phytoplankton samples were measured in the western North Pacific Ocean, the Bering Sea, and the Gulf of Alaska during the summer of 1986. Among samples collected in the upper 100 m (total of 210 samples), 207 samples were dominated by micro- (>10 m) or picoplankton (<2 m) and only three samples were represented by nanoplankton (2–10 m). These 207 samples were classified based on the total Chla content into three types: Type H (>1.0 g l–1), Type M (0.5–1.0 g l–1), and Type L (<0.5 g l–1). These types further divided into two subtypes (-p and-m), depending upon dominancy of pico (-p) and microplankton (-m). The phytoplankton community was represented by Type L-p in the Gulf of Alaska, where 80% of the samples fell into this type. It was represented by Type M-p in the western North Pacific and the Oceanic Domain in the Bering Sea, where 53 and 41% of samples were identified as this type, respectively. In the Middle Domain of the Bering Sea, 68% of samples collected below the nitracline was Type H-m, which indicates blooms of microplanton. This type was also observed in the neritic waters near the Aleutian Islands. These types described above are consistent with a general trend that an increase in phytoplankton abundance is attributed to the growth of microplankton. An unusual type occurred above the nitracline of the Middle Domain, where microplankton prevailed, although the total Chla was less (Type L-m). This type represents a feature of late phase of an ice edge bloom. Another unusual type was found mainly in the Outer Domain of the Bering Sea, where the total Chla was high and picoplankton prevailed (Type H-p). The predominance of picoplankton seems to result from the heavy grazing intensity of large calanoid copepods upon microplankton but not upon picoplankton  相似文献   

6.
Dimethylsulfide in coastal zone of the East China Sea   总被引:1,自引:0,他引:1  
Dimethylsulfide (DMS) in seawater were observed four times from February 1993 to August 1994 along a fixed section (PN line) in the East China Sea. The DMS concentrations showed remarkable temporal and spatial variations. The DMS concentrations were generally higher in the upper euphotic layer of the continental shelf zone in summer. The spatial variation, however, was more pronounced even in well mixed winter water, where the concentration of DMS varied widely from 3 to 106 ng-S/l in the continental shelf zone while the salinity was vertically almost uniform. This means that DMS in seawater is rapidly produced and decomposed with a time scale less than one month in the water column. The largest value of 376 ng-S/l was obtained at 5 m depth near the mouth of Changjiang River in August 1994. The mean concentrations in the surface 30 m layer in the continental shelf zone were 21, 54, 126 and 57 ng-S/l in February, October, June and August, respectively, which were about twice as large as those in the Kuroshio region. The mean fluxes of DMS from the East China Sea to the atmosphere are estimated to be 49 g-S/m2/day in winter and 194 g-S/m2/day in summer in the continental shelf zone, and to be 32 and 107 g-S/m2/day in the Kuroshio region.  相似文献   

7.
Acoustic data and net samples were collected during late spring and early fall 1997–1999 to assess zooplankton and micronekton abundance and distribution relative to the Inner Front at three sampling grids (Port Moller, Cape Newenham and Nunivak Island) on the inner shelf of the southeast Bering Sea. Epibenthic scattering layers were observed during May–June and August–September in all three years. Acoustic data were scaled to euphausiid biomass using target strength models. Mean euphausiid biomass determined acoustically for each transect line was 0.7–21 g m−2, with most values below 5 g m−2. There was no consistent relationship between the distribution and biomass of euphausiids and the location of the Inner Front. Zero age pollock were observed on the inner shelf in August–September during all years, but were confined primarily to the stratified side of the Inner Front and to the frontal regime. The acoustic data for pollock were scaled to biomass using laboratory measurements of gas bladder dimensions and target strength models. Acoustic determinations of mean transect biomass for euphausiids did not differ from literature values for the inner shelf of the southeast Bering Sea, and pollock biomass on the inner shelf did not differ from that around the Pribilof Islands. Despite recent anomalies in climate and oceanographic conditions on the inner shelf, and high mortality of shorttail shearwaters during 1997, we found no evidence of significant interannual differences in the biomass of euphausiids or zero-age pollock on the inner shelf of the southeast Bering Sea.  相似文献   

8.
The phytoplankton community was studied in Bering Strait and over the shelf, continental slope, and deep-water zones of the Chukchi and Beaufort seas in the middle of the vegetative season (July–August 2003). Its structure was analyzed in relation to ice conditions and the seasonal patterns of water warming, stratification, and nutrient concentrations. The overall ranges of variation in phytoplankton abundance and biomass were estimated at 2.0 × 102 to 6.0 × 106 cells/l and 0.1 to 444.1 mg C/m3. The bulk of phytoplankton cells concentrated in the seasonal picnocline, at depths of 10–25 m. The highest values of cell density and biomass were recorded in regions influenced by the inflow of Bering Sea waters or characterized by intense hydrodynamics, such as the Bering Strait, Barrow Canyon, and the outer shelf and slope of the Chukchi Sea. In the middle of the vegetative season, the phytoplankton in the study region of the Western Arctic proved to comprise three successional (seasonal) assemblages, namely, the early spring, late spring, and summer assemblages. Their spatial distribution was dependent mainly on local features of hydrological and nutrient regimes rather than on general latitudinal trends of seasonal succession characteristic of arctic ecosystems.  相似文献   

9.
Sedimentation rates were determined with the210Pb technique in six sediment cores from Harima Nada (Harima Sound), Seto Inland Sea. The rate of deposition varies from 0.11 g cm–2y–1 in the northern part to 0.33 g cm–2 y–1 in the southern part of the basin. A marked increase in copper and zinc content was observed above a depth in the core corresponding to about 1900 A.D. as a result of increasing human activities. Anthropogenic input of copper and zinc decreased slightly after 1970. Natural background levels of copper and zinc in the sediment in this sound are 11–16 ppm and 100–120 ppm, respectively. The total amounts of anthropogenic copper and zinc in the sediments were estimated to be 110–180g cm–2 and 610–1,280g cm–2, respectively. These values constitute 40–50% of the total sedimentary input of copper and zinc in the sediments since about 1900 A.D.  相似文献   

10.
Time-series measurements of temperature, salinity, suspended matter and beam attenuation coefficient () were measured at four hour intervals for about two days in June/ July 1982 in the middle shelf region and the coastal region of the southeastern Bering Sea. Current meters were also moored at the same locations.Depth-time distributions of indicated that profiles of suspended matter resulted from a combined process of resuspension of underlying sediments and sinking of suspended particles. Average-values for all measurements for particles revealed that the upward transport of particles due to resuspension formed a boundary layer, with a thickness apparently related to scalar speed. The average-profiles of the particle volume concentration were assumed to result from a balance between the sinking and diffusive flux of particles under a steady state, and the upward fluxes were calculated. Within the boundary layer, values of the upward fluxes of particulate organic matter linearly decreased with the logarithm of distance from the bottom. Fluxes of organic carbon at the upper edge of the boundary layer were 0.375 gC·m–2·day–1 in the middle shelf region (18 m above the bottom, bottom depth=78m) and 0.484gC·m–2·day–1 in the coastal region (25 m above the bottom, bottom depth=33m), and fluxes of nitrogen in both regions were 0.067 gN·m–2·day–1. The flux of organic carbon obtained in the middle shelf region (18 m above the bottom) agreed approximately with the flux (0.416 gC·m–2·day–1) calculated by substituting primary production data into the empirical equation of Suess (1980).  相似文献   

11.
2008年夏季白令海营养盐的分布及其结构状况   总被引:5,自引:2,他引:3       下载免费PDF全文
中国第3次北极考察对白令海营养盐的分布及结构状况进行了观测分析,结果表明,白令海营养盐分布和结构状况区域性特征明显。海盆区表层DIN、磷酸盐和硅酸盐平均浓度分别为9.73,0.94,11.06 μmol/dm3;陆架区表层DIN,磷酸盐和硅酸盐平均浓度分别为0.60, 0.43, 3.74 μmol/dm3。营养盐高值主要出现在白令海西南部的海盆区和海峡口西南侧水域,低值出现于陆架边缘的陆坡区和陆架东部水域。白令海盆区真光层DIN,磷酸盐、硅酸盐浓度普遍较高,叶绿素浓度则较低,具有典型的高营养盐、低叶绿素(HNLC)特征。海盆区生物作用不是营养盐空间分布的主要调控因子,而陆架区营养盐的分布变化不仅受控于物理海洋输运过程的变化,同时也受夏季浮游生物生长、营养盐吸收消耗所影响。陆架和陆坡区表层海水N/P,Si/P比值平均分别为1.8, 9.9和3.2, 2.2,呈明显的低N/P,Si/P比值结构特征,陆坡区缺硅明显,陆架区缺氮显著。在白令海水域磷酸盐浓度普遍较高,它不可能成为浮游植物光合作用限制因子。受硅限制水域主要限于陆坡区硅藻大量繁殖时期,属偶然性限制,在白令海陆架区绝大部分水域主要表现为氮限制。  相似文献   

12.
An ion exchange technique has been used to determine the copper complexing capacity (CuCC) of strong organic complexing agents at 21 stations across the continental shelf of the southeastern United States and in the western Sargasso Sea. The concentration of dissolved organic carbon (DOC) and total particulate materal (TPM), two pools of potential complexing agents, was also measured at each station. The CuCC ranged from 0.014 to 1.681 μM Cu dm−3 on the inner shelf, from 0.043 to 0.095 μM Cu dm−3 in mid and outer shelf waters, and from < 0.010 to 0.036 μM Cu dm−3 at the Sargasso Sea stations. The correlation between CuCC and both DOC and TPM is highly significant (α < 0.01). Two synoptic surveys of the distribution of DOC and TPM across the shelf showed that DOC ranges from > 3 mg C dm−3 nearshore to <1 mg C dm−3 offshore and that TPM ranges from > 50 mg dm−3 nearshore to <1 mg dm−3 offshore. Both TPM and DOC are most variable on the inner shelf. These data are consistent with CuCC data which indicate that the CuCC of inner shelf waters was relatively high and very heterogeneous. In contrast, DOC, TPM and copper complexing capacity are low and nearly invariant at the Sargasso Sea stations. We present a model of the distribution of complexing agents in different marine environments and hypothesize that the mechanisms underlying differences between environments relate to differences in the source(s) and nature of complexing agents in each system.  相似文献   

13.
In the current study, low-background γ-spectrometry was employed to determine the 228Ra/226Ra activity ratio and 137Cs activity of 84 coastal water samples collected at six sites along the main island of Japan (Honshu Island) within the Sea of Japan, including the Tsushima Strait, and two other representative sites on Honshu Island (a Pacific shore and the Tsugaru Strait) at 1-month intervals in 2006.The 228Ra/226Ra ratio of coastal waters in the Sea of Japan exhibited similar patterns of seasonal variation, with minimum values during early summer (228Ra/226Ra = 0.6–0.8), maximum values during autumn (228Ra/226Ra = 1.5–3), and a time lag in their temporal changes ( 2.5 months and over  1300 km distance). However, the 2 other sites represented no clear periodic variation.In contrast to the positive correlation between 137Cs activity (0.6–1.7 mBq/L) and salinity (15–35), the 228Ra/226Ra ratio of coastal water samples from the Sea of Japan was not observed to correlate with salinity, and the increase in the 228Ra/226Ra ratio was not as marked (0.5–1; May–June 2004 and 2005) during the migration along Honshu Island. The input of land-derived water and/or the diffusion of radium from coastal sediments is unlikely to have affected the wide seasonal variation in the 228Ra/226Ra ratio observed in these water samples.The seasonal variation in the 228Ra/226Ra ratio recorded for the coastal waters of the Sea of Japan is considered to be mainly controlled by the remarkable changes in the mixing ratio of the 228Ra-poor Kuroshio and the 228Ra-rich continental shelf waters within the East China Sea (ECS). After passing through the Tsushima Strait, this water mass moves northeast along the coastline of the Sea of Japan as the Tsushima Coastal Branch Current (TCBC).  相似文献   

14.
In the late 1950s, Soviet researchers collected benthic infaunal samples from the southeastern Bering Sea shelf. Approximately 17 years later, researchers at University of Alaska Fairbanks also sampled the region to assess infaunal biomass and abundance. Here, the two data sets were examined to document patterns and reveal any consistent differences in infaunal biomass among major feeding groups between the two time periods. No significant differences in the geometric mean biomass of all taxa pooled were indicated between the two study periods (1958–1959=49.1 g m−2; 1975–1976=60.8 g m−2; P=0.14); however, significant differences were observed for specific functional groups, namely carnivores, omnivores and surface detritivores. Of the 64 families identified from both data sets from all functional groups, 21 showed statistically significant (P0.05) differences in mean biomass. Of the 21 families showing significant differences, 19 (91%) of the families had higher mean biomass in the 1975–1976 data set. The above differences suggest a trend toward higher overall infaunal biomass for specific functional groups during mid 1970s compared with the late 1950s. Temperature measurements and literature data indicate that the mid-1970s was an unusually cold period relative to the period before and after, suggesting a mechanistic link between temperature changes and infaunal biomass. Food-web relationships and ecosystem dynamics in the southeastern Bering Sea indicate that during cold periods, infaunal biomass will be elevated relative to warm periods due to elevated carbon flux to the benthos and exclusion of benthic predators on infaunal invertebrates by the cold bottom water on the shelf. As long-term observations of temperature and sea-ice cover indicate a secular warming trend on the Bering Sea shelf, the potential changes in food-web relationships could markedly alter trophic structure and energy flow to apex consumers, potentially impacting the commercial, tourist and subsistence economies.  相似文献   

15.
The chemical speciation of Cu and Zn was investigated by voltammetric titration methods in the surface waters (10 m) of the western Black Sea during an Istanbul–Sevastopol cruise conducted in November 1998. Supporting parameters (temperature (T), salinity (S), pH, alkalinity (Alk), suspended particulate matter (SPM) and dissolved and particulate 234Th) were obtained in order to distinguish hydrographic features against involvement of the metals in biogeochemical processes. In the Turkish continental slope region, the cruise track intersected a narrow vein of colder water originating on the western shelf. The core of this cold water vein was characterised by a relatively low salinity, higher specific alkalinity and higher metal (especially Cu) and metal-binding ligand concentrations.A very large portion of Cu (93–99.8%) and Zn (82–97%) was organically complexed. The degree of complexation was highest in shelf waters and lowest in the central gyre. Titration data for Cu were modelled by two classes of organic binding ligands characterised by (CL1=3–12 nM, log K1′=13.1–13.9) and (CL2=20–70 nM, log K2′=9.4–11.2). These ligands occurred mainly in the ‘dissolved’ phase, as defined by 0.4-μm filtration. The stronger Cu-binding ligand seemed to be produced in situ in response to Cu concentration, whereas the weaker Cu-binding ligand appeared to be derived from terrestrial sources and/or reducing shelf sediments. Titration results for Zn were generally represented by one class of ligands (CL1=8–23 nM, log K1′=9.4–10.2), which were almost uniformly distributed between the ‘dissolved’ (78±8%) and the particulate phase (22±8%). The concentration of these strong Zn-binding ligands showed a very good correlation with SPM (r2=0.64), which improved when the dissolved ligands alone were considered (r2=0.78). It is hypothesised that these ligands were produced in situ by the bacterial breakdown of particulate organic matter.  相似文献   

16.
Lagrangian experiments with short-term, drifting sediment traps were conducted during a cruise on RRS Charles Darwin to the NW coast of Spain to study the vertical flux and composition of settling biogenic matter. The cruise was split into two legs corresponding to (i) a period of increased production following an upwelling event on the continental shelf (3–10 August 1998) and (ii) an evolution of a cold water filament originating from the upwelled water off the shelf (14–19 August). The export of particulate organic carbon (POC) from the upper layer (0–60m) on the shelf was 90–240mgC.m−2.d−1 and off the shelf was 60–180mgC.m−2.d−1. Off shelf the POC flux at 200m was 50–60mg.m−2.d−1. A modest sedimentation of diatoms (15–30mgC.m−2.d−1) after the upwelling was associated with increased vertical flux of chlorophyll a (1.8–2.1mg.m−2.d−1) and a decrease of the POC:PON molar ratio of the settled material from 9 to 6.4. Most of the pico-, nano-, and microplankton in the settled material were flagellates; diatoms were significant during the on shelf and dinoflagellates during the off shelf leg. Off shelf, the exponential attenuation of POC flux indicated a strong retention capacity of the plankton community between 40 and 75m. POC:PON ratio of the settled particulate matter decreased with depth and the relative portion of flagellates increased, suggesting a novel, flagellate and aggregate mediated particulate flux in these waters. Export of POC from the euphotic layer comprised 14–26% of the integrated primary production per day during the on shelf leg and 25–42% during the off shelf leg, which characterises the importance of sedimentation in the organic carbon budget of these waters.  相似文献   

17.
The uptake of atmospheric carbon dioxide in the water transported over the Bering–Chukchi shelves has been assessed from the change in carbon-related chemical constituents. The calculated uptake of atmospheric CO2 from the time that the water enters the Bering Sea shelf until it reaches the northern Chukchi Sea shelf slope (1 year) was estimated to be 86±22 g C m−2 in the upper 100 m. Combining the average uptake per m3 with a volume flow of 0.83×106 m3 s−1 through the Bering Strait yields a flux of 22×1012 g C year−1. We have also estimated the relative contribution from cooling, biology, freshening, CaCO3 dissolution, and denitrification for the modification of the seawater pCO2 over the shelf. The latter three had negligible impact on pCO2 compared to biology and cooling. Biology was found to be almost twice as important as cooling for lowering the pCO2 in the water on the Bering–Chukchi shelves. Those results were compared with earlier surveys made in the Barents Sea, where the uptake of atmospheric CO2 was about half that estimated in the Bering–Chukchi Seas. Cooling and biology were of nearly equal significance in the Barents Sea in driving the flux of CO2 into the ocean. The differences between the two regions are discussed. The loss of inorganic carbon due to primary production was estimated from the change in phosphate concentration in the water column. A larger loss of nitrate relative to phosphate compared to the classical ΔN/ΔP ratio of 16 was found. This excess loss was about 30% of the initial nitrate concentration and could possibly be explained by denitrification in the sediment of the Bering and Chukchi Seas.  相似文献   

18.
Using geographic information systems (GIS) software and geostatistical techniques, we utilized three decades of water-column chlorophyll a data to examine the relative importance of autochthonous versus allochthonous sources of reduced carbon to benthic communities that occur from the northern Bering to the eastern Beaufort Sea shelf. Spatial trend analyses revealed areas of high benthic biomass (>300 g m−2) and chlorophyll (>150 mg m−2) on both the southern and northern Chukchi shelf; both areas are known as depositional centers for reduced organic matter that originates on the Bering Sea shelf and is advected northward in Anadyr and Bering shelf water masses. We found a significant correlation between biomass and chlorophyll a in the Chukchi Sea, reflective of the strong benthic–pelagic coupling in a system that is utilized heavily by benthic-feeding marine mammals. In contrast, there was no significant correlation between biomass and chlorophyll in the Beaufort Sea, which by comparison, is considerably less productive (biomass and chlorophyll, <75 g m−2 and <50 mg m−2, respectively). One notable exception is an area of relatively high biomass (50–100 g m−2) and chlorophyll (80 mg m−2) near Barter Island in the eastern Beaufort Sea. Compared to other adjacent areas in the Beaufort Sea, the chlorophyll values in the vicinity of Barter Island were considerably higher and likely reflect a long-hypothesized upwelling in that area and close coupling between the benthos and autochthonous production. In the Bering Sea, a drop in benthic biomass in 1994 compared with previous measurements (1974–1993) may support earlier observations that document a decline in biomass that began between the 1980s and 1990s in the Chirikov Basin and south of St. Lawrence Island. The results of this study indicate that the benthos is an excellent long-term indicator of both local and physical advective processes. In addition, this work provides further evidence that secondary production on arctic shelves can be significantly augmented by reduced carbon advected from highly productive adjacent shelves.  相似文献   

19.
We discussed the detailed current structures over the continental shelf off the San'in Coast in June 1988 and June 1989, using ADCP (acoustic Doppler current profiler) data, which were taken by the quadrireciprocal method (Katoh, 1988) for removing tidal currents from observed currents. In waters northwest of Hagi (Yamaguchi Pref.) and Hamada (Shimane Pref.), two mainly northeastward current cores were observed on each of transects. The offshore current core is baroclinic in relation to the bottom cold water with temperature below 10°C, and has velocities mostly between 0.5 and 0.8kt (26 and 41 cm s–1) at 20 m depth. The onshore current core, which is barotropic, has velocities between 0.3 and 0.5 kt (15 and 26 cm s–1) at 20 m depth. In waters northwest of Izumo (Shimane Pref.), where the width of the continental shelf is narrow, it is difficult to distinguish between the two current cores, because the offshore core tends to join the onshore one. Estimating the magnitude of each term in the diurnally averaged equation of motion for about 3.3 nautical miles (6.1 km), we found that the orders of the inertia term and the gradient of tidal stress were 10–4 cm s–2, and the order of the Coriolis force was 10–3 cm s–2. Near the bottom northwest of Hagi and Hamada, two bands of countercurrents were found; one was slightly offshore of the intersection between the continental shelf and permanent thermocline, and the other was in the water colder than 5°C ridging on the continental shelf.  相似文献   

20.
The distributions of the trace metals iron (Fe), copper (Cu) and cadmium (Cd) along with hydrological parameters (salinity, temperature and reactive phosphate) across the New Zealand continental shelf near Otago Peninsula have been studied. This is a region in which the Subtropical Convergence (STC), a major oceanic front separating subtropical and subantarctic waters, is uniquely located close to land, permitting an examination of the influence of terrestrial sources of Fe and Cu on oceanic waters containing excess micronutrients. Acid-soluble (110 nmol kg−1) and dissolved (6.3 nmol kg−1) Fe concentrations were highest over the central shelf, and decreased rapidly across the mixing zone of the STC to about 5 nmol kg−1 for both forms. The distribution of acid-soluble and dissolved Cu were similar to their counterparts for Fe. Depth-concentration profiles for acid-soluble Fe and Cu suggest resuspension of shelf sediments is the main source. The ratio of oxine-labile to acid-soluble Fe varied from 0.03 to 0.26, with the highest values found in the near surface waters. Oxine-labile Fe and Cu also decreased in concentration in a seawards direction, and with depth, indicating the influence of near surface processes on the reactivity of these elements. Cd concentrations across the continental shelf were very low (<200 pmol kg−1) and exhibited no clear spatial trend and no correlation with phosphate. Comparison of the Cd/P ratio across the shelf indicated that the waters in this region were strongly depleted in Cd relative to P. Phosphate concentrations were lowest in neritic water and increased in the seawards direction because of mixing with nutrient-rich Subantarctic Surface Water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号