首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The following article presents constraints of the stability of Mg-rich (Mg/(Mg + Fe2+) > 0.5) calcic amphibole in both calc-alkaline and alkaline magmas, testing of previous thermobarometers, and formulation of new empirical equations that take into consideration a large amount of literature data (e.g. more than one thousand amphibole compositions among experimental and natural crystals). Particular care has been taken in choosing a large number of natural amphiboles and selecting quality experimental data from literature. The final database of experimental data, composed of 61 amphiboles synthesized in the ranges of 800–1,130°C and 130–2,200 MPa, indicates that amphibole crystallization occurs in a horn-like PT stability field limited by two increasing curves (i.e. the thermal stability and an upper limit), which should start to bend back to higher pressures. Among calcic amphiboles, magnesiohornblendes and tschermakitic pargasites are only found in equilibrium with calc-alkaline melts and crystallize at relatively shallow conditions (P up to ~1 GPa). Kaersutite and pargasite are species almost exclusively found in alkaline igneous products, while magnesiohastingsite is equally distributed in calc-alkaline and alkaline rocks. The reliability of previous amphibole applications was checked using the selected experimental database. The results of this testing indicate that none of the previous thermobarometers can be successfully used to estimate the P, T and fO2 in a wide range of amphibole crystallization conditions. Multivariate least-square analyses of experimental amphibole compositions and physico-chemical parameters allowed us to achieve a new thermobarometric model that gives reasonably low uncertainties (T ± 23.5°C, P ± 11.5%, H2Omelt ± 0.78wt%) for calc-alkaline and alkaline magmas in a wide range of PT conditions (up to 1,130°C and 2,200 MPa) and ∆NNO values (±0.37 log units) up to 500 MPa. The AK-[4]Al relation in amphibole can be readily used to distinguish crystals of calc-alkaline liquids from those of alkaline magmas. In addition, several chemometric equations allowing to estimate the anhydrous composition of the melts in equilibrium with amphiboles of calc-alkaline magmas were derived.  相似文献   

2.
OH in zoned amphiboles of eclogite from the western Tianshan,NW-China   总被引:1,自引:0,他引:1  
Chemically-zoned amphibole porphyroblast grains in an eclogite (sample ws24-7) from the western Tianshan (NW-China) have been analyzed by electron microprobe (EMP), micro Fourier-transform infrared (micro-FTIR) and micro-Raman spectroscopy in the OH-stretching region. The EMP data reveal zoned amphibole compositions clustering around two predominant compositions: a glaucophane end-member ( B Na2 C M2+ 3 M3+ 2 T Si8(OH)2) in the cores, whereas the mantle to rim of the samples has an intermediate amphibole composition ( A 0.5 B Ca1.5Na0.5 C M 2+ 4.5 M 0.53+ T Si7.5Al0.5(OH)2) (A = Na and/or K; M 2+ = Mg and Fe2+; M 3+ = Fe3+ and/or Al) between winchite (and ferro-winchite) and katophorite (and Mg-katophorite). Furthermore, we observed complicated FTIR and Raman spectra with OH-stretching absorption bands varying systematically from core to rim. The FTIR/Raman spectra of the core amphibole show three lower-frequency components (at 3,633, 3,649–3,651 and 3,660–3,663 cm−1) which can be attributed to a local O(3)-H dipole surrounded by M(1) M(3)Mg3, M(1) M(3)Mg2Fe2+ and M(1) M(3) Fe2+ 3, respectively, an empty A site and T Si8 environments. On the other hand, bands at higher frequencies (3,672–3,673, 3,691–3,697 and 3,708 cm−1) are observable in the rims of the amphiboles, and they indicate the presence of an occupied A site. The FTIR and Raman data from the OH-stretching region allow us to calculate the site occupancy of the A, M(1)–M(3), T sites with confidence when combined with EPM data. By contrast M(2)- and M(4) site occupancies are more difficult to evaluate. We use these samples to highlight on the opportunities and limitations of FTIR OH-stretching spectroscopy applied to natural high pressure amphibole phases. The much more detailed cation site occupancy of the zoned amphibole from the western Tianshan have been obtained by comparing data from micro-chemical and FTIR and/or Raman in the OH-stretching data. We find the following characteristic substitutions Si(T-site) (Mg, Fe)[M(1)–M(3)-site] → Al(T-site) Al[M(1)–M(3)-site] (tschermakite), Ca(M4-site)□ (A-site) → Na(M4-site) Na + K(A-site) (richterite), and Ca(M4-site) (Mg, Fe) [M(1)–M(3)-site] → Na(M4-site) Al[M(1)–M(3)-site] (glaucophane) from the configurations observed during metamorphism.  相似文献   

3.
Using powder X-ray diffraction of heated solids to pressures reaching 68 GPa, the pressure-volume-temperature (PVT) data on corundum Al2O3 and ɛ-Fe were determined with the following results: *Corundum,*Iron, *Al2O3*ɛ-Fe Isothermal bulk*258 (2)*164 (3)  modulus K'300, 1 (GPa) Pressure derivative K300, 1*4.88 (4)*5.36 (16) Temperature derivative*–0.020 (2)*–0.043 (3)  (∂K T,1 /∂T) P (GPa/K) Molar volume V300,1*25.59 (2)*6.76 (2)  (cm3/mol) Isobaric thermal expansion at 1 atm (0.101 MPa) is given by (K–1): α T =2.6 (2) 10–5+1.81 (9) 10–9 T–0.67 (6)/T 2 for corundum, and α T =5.7 (4) 10–5+4.2 (4) 10–9 T–0.17 (7)/T 2 for iron ɛ-Fe. Received: 1 March 1997 / Revised, accepted: 21 August 1997  相似文献   

4.
We document the presence of dolomite ± apatite in orogenic peridotites from the Ulten Zone (UZ, Italian Alps), the remnants of a Variscan mantle wedge tectonically coupled with eclogitized continental crust. These dolomite peridotites are associated with dominant carbonate-free amphibole peridotites, which formed in response to infiltration of aqueous subduction fluids lost by the associated crustal rocks during high-pressure (HP) metamorphism and retrogression. Dolomite-free and dolomite-bearing peridotites share the same metamorphic evolution, from garnet- (HP) to spinel-facies (low-pressure, LP) conditions. Dolomite and the texturally coexisting phases display equilibrium redistribution of rare earth elements and of incompatible trace elements during HP and LP metamorphism; clinopyroxene and amphiboles from carbonate-free and carbonate-bearing peridotites have quite similar compositions. These features indicate that the UZ mantle rocks equilibrated with the same metasomatic agents: aqueous CO2-bearing fluids enriched in incompatible elements released by the crust. The PT crystallization conditions of the dolomite peridotites (outside the field of carbonatite melt + amphibole peridotite coexistence), a lack of textures indicating quench of carbonic melts, a lack of increase in modal clinopyroxene by reaction with such melts and the observed amphibole increase at the expense of clinopyroxene, all suggest that dolomite formation was assisted by aqueous CO2-bearing fluids. A comparison of the trace element compositions of carbonates and amphiboles from the UZ peridotites and from peridotites metasomatized by carbonatite and/or carbon-bearing silicate melts does not help to unambiguously discriminate between the different agents (fluids or melts). The few observed differences (lower trace element contents in the fluid-related dolomite) may ultimately depend on the solute content of the metasomatic agent (CO2-bearing fluid versus carbonatite melt). This study provides strong evidence that C–O–H subduction fluids can produce ‘carbonatite-like’ assemblages in mantle rocks, thus being effective C carriers from the slab to the mantle wedge at relatively low PT. If transported beyond the carbonate and amphibole solidus by further subduction, dolomite-bearing garnet + amphibole peridotites like the ones from Ulten can become sources of carbonatite and/or C-bearing silicate melts in the mantle wedge. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. In memory of Lauro Morten 1941–2006.  相似文献   

5.
The high-pressure behavior of three synthetic amphiboles crystallized with space group P21/m at room conditions in the system Li2O–Na2O–MgO–SiO2–H2O has been studied by in situ synchrotron infrared absorption spectroscopy. The amphiboles have compositions ANa B(Na x Li1 − x Mg1) CMg5 Si8 O22(OH)2 with = 0.6, 0.2 and 0.0, respectively. The high-P experiments up to 32 GPa were carried out on the U2A beamline at Brookhaven National Laboratory (NY, USA) using a diamond anvil cell under non-hydrostatic or quasi-hydrostatic conditions. The two most intense absorption bands in the OH-stretching infrared spectra can be assigned to two non-equivalent O–H dipoles in the P21/m structure, bonded to the same local environment M1M3Mg3–OH–ANa, and pointing toward two differently kinked tetrahedral rings. In all samples these bands progressively merge to give a unique symmetrical absorption with increasing pressure, suggesting a change in symmetry from P21/m to C2/m. The pressure at which the transition occurs appears to be linearly correlated to the aggregate B-site dimension. The infrared spectra collected for amphibole B(Na0.2Li0.8Mg1) in the frequency range 50 to 1,400 cm−1 also show a series of changes with increasing pressure. The data reported here support the inference of Iezzi et al. (Am Miner 91:479–482, 2006a) regarding a new high-pressure amphibole polymorph.  相似文献   

6.
 The stability of pargasite in the presence of excess quartz has been determined in the range of 0.5–6.0 kbar and 500–950 °C in the system Na2O– CaO–MgO–Al2O3–SiO2–H2O, using synthetic minerals. The experimental results from this study indicate the presence of two distinct mineral assemblage regions: (1) a high temperature supersolidus region containing tremolitic amphibole+melt+quartz; (b) a low temperature subsolidus region consisting of Al-rich amphibole+plagioclase+enstatite+quartz. Compositional reversals have been determined for the following three equilibria: (a) 2 pargasite+9 quartz=tremolite+4 plagioclase (An50)+1.5 enstatite+H2O, (b) 2 pargasite+10 quartz=tremolite+4 plagioclase (An50)+talc, and (c) pargasite+diopside+5 quartz=tremolite+2 plagioclase (An50). These experiments indicate a continuous change of amphibole composition from pargasite to tremolite with increasing temperature, and an opposite effect with increasing pressure. The third equilibria is used to constrain a site-mixing model for the pargasitic amphiboles, which favor a single-coupled NaA-AlT1 site mixing. The thermochemical data for pargasite estimated from the reversal data of the three equilibrium reactions is estimated as for ΔG 0 f ,Pg=−12022.11±5.2 kJ mole-1, and S 0 Pg=591.7 ±7.9 JK-1 mole-1. Received: 31 July 1995/Accepted: 3 June 1996  相似文献   

7.
Mantle xenoliths entrained in Quaternary alkaline basalts from the Turkana Depression in southern Ethiopia (the East Africa Rift) were studied for their geochemical and Sr–Nd–Pb isotopic compositions to constrain the evolution of the lithosphere. The investigated mantle xenoliths are spinel lherzolites in composition with a protogranular texture. They can be classified into two types: anhydrous and hydrous spinel lherzolites; the latter group characterized by the occurrences of pargasite and phlogopite. The compositions of whole-rock basaltic component (CaO = 3.8–5.6 wt%, Al2O3 = 2.5–4.1 wt%, and MgO = 34.7–38.1 wt%), spinel (Cr# = 0.062–0.117, Al2O3 = 59.0–64.4 wt%) and clinopyroxene (Mg# = 88.4–91.7, Al2O3 = 5.2–6.7 wt%) indicate that the lherzolites are fertile and have not experienced significant partial melting. Both types are characterized by depleted 87Sr/86Sr (0.70180–0.70295) and high 143Nd/144Nd (0.51299–0.51348) with wide ranges of 206Pb/204Pb (17.86–19.68) isotopic compositions. The variations of geochemical and isotopic compositions can be explained by silicate metasomatism induced by different degree of magma infiltrations from ascending mantle plume. The thermobarometric estimations suggest that the spinel lherzolites were derived from depths of 50–70 km (15.6–22.2 kb) and entrained in the alkaline magma at 847–1,052°C. Most of the spinel lherzolites from this study record an elevated geotherm (60–90 mW/m2) that is related to the presence of rising mantle plume in an active tectonic setting. Sm–Nd isotopic systematic gives a mean TDM model age of 0.95 Ga, interpreted as the minimum depletion age of the subcontinental lithosphere beneath the region.  相似文献   

8.
Titanium in phengite: a geobarometer for high temperature eclogites   总被引:1,自引:1,他引:0  
Phengite chemistry has been investigated in experiments on a natural SiO2–TiO2-saturated greywacke and a natural SiO2–TiO2–Al2SiO5-saturated pelite, at 1.5–8.0 GPa and 800–1,050°C. High Ti-contents (0.3–3.7 wt %), Ti-enrichment with temperature, and a strong inverse correlation of Ti-content with pressure are the important features of both experimental series. The changes in composition with pressure result from the Tschermak substitution (Si + R2+ = AlIV + AlVI) coupled with the substitution: AlVI + Si = Ti + AlIV. The latter exchange is best described using the end-member Ti-phengite (KMgTi[Si3Al]O10(OH)2, TiP). In the rutile-quartz/coesite saturated experiments, the aluminoceladonite component increases with pressure while the muscovite, paragonite and Ti-phengite components decrease. A thermodynamic model combining data obtained in this and previous experimental studies are derived to use the equilibrium MgCel + Rt = TiP + Cs/Qz as a thermobarometer in felsic and basic rocks. Phengite, rutile and quartz/coesite are common phases in HT-(U)HP metamorphic rocks, and are often preserved from regression by entrapment in zircon or garnet, thus providing an opportunity to determine the TP conditions of crystallization of these rocks. Two applications on natural examples (Sulu belt and Kokchetav massif) are presented and discussed. This study demonstrates that Ti is a significant constituent of phengites that could have significant effects on phase relationships and melting rates with decreasing P or increasing T in the continental crust.  相似文献   

9.
The synthetic amphibole Na0.95(Li0.95Mg1.05)Mg5Si8O22(OH)2 was studied in situ at high-T, using IR OH-stretching spectroscopy and synchrotron X-ray powder diffraction. At room-T the sample has P21 /m symmetry, as shown by the FTIR spectrum. It shows in the OH region two well-defined and intense absorptions at 3,748 and 3,712 cm−1, respectively, and two minor bands at 3,667 and 3,687 cm−1. The main bands are assigned to the two independent O–H groups in the primitive structure. The two minor bands evidencing the presence of small amount of vacant A-site (A0.05). With increasing T, these bands shift continuously and merge into a unique absorption at high temperature. A change as a function of increasing T is revealed by the evolution of the refined unit-cell parameters, whose trend shows a transition to C2/m at about 320–330°C. The spontaneous scalar strain, fitted with a tricritical 2–6 Landau potential, gives a T c of 325(10)°C (β parameter = 0.27). Comparison with the second-order P21 /mC2/m phase transition at 255°C for synthetic amphibole ANa0.8B(Na0.8Mg1.2)CMg5Si8O22(OH)2 indicates that the substitution of Na with Li at the B-sites strongly affects the thermodynamic character and the T c of the phase transition. The comparison of LNMSH amphiboles with cummingtonitic ones shows that the high-T thermodynamic behaviour is affected by A-site occupancy.  相似文献   

10.
 Models for estimating the pressure and temperature of igneous rocks from co-existing clino-pyroxene and liquid compositions are calibrated from existing data and from new data obtained from experiments performed on several mafic bulk compositions (from 8–30 kbar and 1100–1475° C). The resulting geothermobarometers involve thermodynamic expressions that relate temperature and pressure to equilibrium constants. Specifically, the jadeite (Jd; NaAlSi2O6)–diopside/hedenbergite (DiHd; Ca(Mg, Fe) Si2O6) exchange equilibrium between clinopyroxene and liquid is temperature sensitive. When compositional corrections are made to the calibrated equilibrium constant the resulting geothermometer is (i) 104 T=6.73−0.26* ln [Jdpx*Caliq*FmliqDiHdpx*Naliq*Alliq] −0.86* ln [MgliqMgliq+Feliq]+0.52*ln [Caliq] an expression which estimates temperature to ±27 K. Compared to (i), the equilibrium constant for jadeite formation is more sensitive to pressure resulting in a thermobarometer (ii) P=−54.3+299*T104+36.4*T104 ln [Jdpx[Siliq]2*Naliq*Alliq] +367*[Naliq*Alliq] which estimates pressure to ± 1.4 kbar. Pressure is in kbar, T is in Kelvin. Quantities such as Naliq represent the cation fraction of the given oxide (NaO0.5) in the liquid and Fm=MgO+FeO. The mole fractions of Jd and diopside+hedenbergite (DiHd) components are calculated from a normative scheme which assigns the lesser of Na or octahedral Al to form Jd; any excess AlVI forms Calcium Tschermak’s component (CaTs; CaAlAlSiO6); Ca remaining after forming CaTs and CaTiAl2O6 is taken as DiHd. Experimental data not included in the regressions were used to test models (i) and (ii). Error on predictions of T using model (i) is ±40 K. A pressure-dependent form of (i) reduces this error to ±30 K. Using model (ii) to predict pressures, the error on mean values of 10 isobaric data sets (0–25 kbar, 118 data) is ±0.3 kbar. Calculating thermodynamic properties from regression coefficients in (ii) gives VJd f of 23.4 ±1.3 cm3/mol, close to the value anticipated from bar molar volume data (23.5 cm3/mol). Applied to clinopyroxene phenocrysts from Mauna Kea, Hawaii lavas, the expressions estimate equilibration depths as great as 40 km. This result indicates that transport was sufficiently rapid that at least some phenocrysts had insufficient time to re-equilibrate at lower pressures. Received: 16 May 1994/Accepted: 15 June 1995  相似文献   

11.
The reaction glaucophane + 2 diopside + 2 quartz = tremolite + 2 albite is proposed to model the transition from the blueschist to greenschist facies. This reaction was investigated experimentally over the range of 1.0–2.1 GPa and 500–800°C using synthetic phases in the chemical system Na2O–CaO–MgO–Al2O3–SiO2–H2O. Reversals of this reaction were possible at 500 and 550°C and growth of the low-pressure assemblage at 600°C; however, at temperatures of 600°C and higher and at pressures above 1.6 GPa omphacite nucleation (at the expense of diopside and albite) became quite strong and prevented attaining clear reversals of this reaction. Compositional changes in the amphiboles were determined by both electron microprobe analyses and correlations between unit-cell dimensions and composition. Glaucophane and particularly tremolite showed clear signs of compositional re-equilibration and merged to a single amphibole of winchite composition by about 754°C. These data were used to model the miscibility gap between glaucophane and tremolite using either the asymmetric multicomponent formulism parameters of W TR,GL of 68 kJ with αTR of 1.0 and αGL of 0.75 or a simple two-site asymmetric thermodynamic mixing expression with Margules parameters W NaCa of 13.4 kJ and W CaNa of 19.3 kJ. Combination of these thermodynamic models of the miscibility gap with extant thermodynamic data for the other phases yields a calculated location of the above reaction, involving pure diopside and albite, that is in good agreement with the observed experimental reversals and amphibole compositions over the range of 0.94–1.93 GPa and 400–754°C. The calculated effect of jadeite solid solution into diopside is to reduce the dP/dT slope from 0.0028 to 0.0021 GPa/°C and decrease the pressure by 0.28 GPa at 754°C. The dP/dT slope of this reaction boundary lies close to a linear geotherm of 13°C/km and is consistent with the slopes of other solid–solid reactions that have been used to model the blueschist-to-greenschist facies transition.  相似文献   

12.
Mafic rocks of a Permian crust to mantle section in Val Malenco (Italy) display a multi-stage evolution: pre-Alpine exhumation to the ocean floor, followed by burial and re-exhumation during Alpine convergence. Four prominent generations of amphiboles were formed during these stages. On the basis of microstructural investigations combined with electron microprobe analyses two amphibole generations can be assigned to the pre-Alpine decompression and two to the Alpine metamorphic P–T evolution. The different amphiboles have distinct NaM4, Ca, K and Cl contents according to different P–T conditions and fluid chemistry. Analysing these mixed amphiboles by the 39Ar−40Ar stepwise heating technique yielded very complex age spectra. However, by correlating amphibole compositions directly obtained from the electron microprobe with the components deduced from the release of Ar isotopes during stepwise heating, obtained ages were consistent with the geological history deduced from field and petrological studies. The two generations of pre-Alpine amphiboles gave distinguishable Triassic to Late Jurassic/Early Cretaceous ages (≈225 and 130–140 Ma respectively). High-NaM4 amphiboles have higher isotopic ages than low-NaM4 ones, in agreement with their decompressional evolution. The exhumation of the Permian crust to mantle section is represented by the former age. The latter age concerns Cl-dominated amphibole related to an Early Cretaceous oceanic stage. For the early Alpine, pressure-dominated metamorphism we obtained a Late Cretaceous age (83–91 Ma). The later, temperature-dominated overprint is significantly younger, as indicated by 39Ar−40Ar ages of 67–73 Ma. These Late Cretaceous ages favour an Adriatic origin for the Malenco unit. Our data show that 39Ar−40Ar dating combined with detailed microprobe analysis can exploit the potential to relate conditions of amphibole formation to their respective ages. Received: 1 March 1999 / Accepted: 18 August 2000  相似文献   

13.
The thermoelastic parameters of synthetic Ca3Al2Si3O12 grossular garnet were examined in situ at high-pressure and high-temperature by energy dispersive X-ray diffraction, using a Kawai-type multi-anvil press apparatus coupled with synchrotron radiation. Measurements have been conducted at pressures up to 20 GPa and temperatures up to 1,650 K: this P, T range covered the entire high-P, T stability field of grossular garnet. The analysis of room temperature data yielded V 0,300 = 1,664 ± 2 ?3 and K 0 = 166 ± 3 GPa for K0 K^{\prime}_{0} fixed to 4.0. Fitting of our PVT data by means of the high-temperature third order Birch–Murnaghan or the Mie–Grüneisen–Debye thermal equations of state, gives the thermoelastic parameters: (∂K 0,T /∂T) P  = −0.019 ± 0.001 GPa K−1 and α 0,T  = 2.62 ± 0.23 × 10−5 K−1, or γ 0 = 1.21 for fixed values q 0 = 1.0 and θ 0 = 823 (Isaak et al. Phys Chem Min19:106–120, 1992). From the comparison of fits from two different approaches, we propose to constrain the bulk modulus of grossular garnet and its pressure derivative to K T0 = 166 GPa and KT0 K^{\prime}_{T0}  = 4.03–4.35. Present results are compared with previously determined thermoelastic properties of grossular-rich garnets.  相似文献   

14.
The thermoelastic behaviour of anthophyllite has been determined for a natural crystal with crystal-chemical formula ANa0.01 B(Mg1.30Mn0.57Ca0.09Na0.04) C(Mg4.95Fe0.02Al0.03) T(Si8.00)O22 W(OH)2 using single-crystal X-ray diffraction to 973 K. The best model for fitting the thermal expansion data is that of Berman (J Petrol 29:445–522, 1988) in which the coefficient of volume thermal expansion varies linearly with T as α V,T  = a 1 + 2a 2 (T − T 0): α298 = a 1 = 3.40(6) × 10−5 K−1, a 2 = 5.1(1.0) × 10−9 K−2. The corresponding axial thermal expansion coefficients for this linear model are: α a ,298 = 1.21(2) × 10−5 K−1, a 2,a  = 5.2(4) × 10−9 K−2; α b ,298 = 9.2(1) × 10−6 K−1, a 2,b  = 7(2) × 10−10 K−2. α c ,298 = 1.26(3) × 10−5 K−1, a 2,c  = 1.3(6) × 10−9 K−2. The thermoelastic behaviour of anthophyllite differs from that of most monoclinic (C2/m) amphiboles: (a) the ε 1 − ε 2 plane of the unit-strain ellipsoid, which is normal to b in anthophyllite but usually at a high angle to c in monoclinic amphiboles; (b) the strain components are ε 1 ≫ ε 2 > ε 3 in anthophyllite, but ε 1 ~ ε 2 ≫ ε 3 in monoclinic amphiboles. The strain behaviour of anthophyllite is similar to that of synthetic C2/m ANa B(LiMg) CMg5 TSi8 O22 W(OH)2, suggesting that high contents of small cations at the B-site may be primarily responsible for the much higher thermal expansion ⊥(100). Refined values for site-scattering at M4 decrease from 31.64 epfu at 298 K to 30.81 epfu at 973 K, which couples with similar increases of those of M1 and M2 sites. These changes in site scattering are interpreted in terms of Mn ↔ Mg exchange involving M1,2 ↔ M4, which was first detected at 673 K.  相似文献   

15.
We present elemental and Sr–Nd–Pb isotopic data for the magmatic suite (~79 Ma) of the Harşit pluton, from the Eastern Pontides (NE Turkey), with the aim of determining its magma source and geodynamic evolution. The pluton comprises granite, granodiorite, tonalite and minor diorite (SiO2 = 59.43–76.95 wt%), with only minor gabbroic diorite mafic microgranular enclaves in composition (SiO2 = 54.95–56.32 wt%), and exhibits low Mg# (<46). All samples show a high-K calc-alkaline differentiation trend and I-type features. The chondrite-normalized REE patterns are fractionated [(La/Yb) n  = 2.40–12.44] and display weak Eu anomalies (Eu/Eu* = 0.30–0.76). The rocks are characterized by enrichment of LILE and depletion of HFSE. The Harşit host rocks have weak concave-upward REE patterns, suggesting that amphibole and garnet played a significant role in their generation during magma segregation. The host rocks and their enclaves are isotopically indistinguishable. Sr–Nd isotopic data for all of the samples display I Sr = 0.70676–0.70708, ε Nd(79 Ma) = −4.4 to −3.3, with T DM = 1.09–1.36 Ga. The lead isotopic ratios are (206Pb/204Pb) = 18.79–18.87, (207Pb/204Pb) = 15.59–15.61 and (208Pb/204Pb) = 38.71–38.83. These geochemical data rule out pure crustal-derived magma genesis in a post-collision extensional stage and suggest mixed-origin magma generation in a subduction setting. The melting that generated these high-K granitoidic rocks may have resulted from the upper Cretaceous subduction of the Izmir–Ankara–Erzincan oceanic slab beneath the Eurasian block in the region. The back-arc extensional events would have caused melting of the enriched subcontinental lithospheric mantle and formed mafic magma. The underplating of the lower crust by mafic magmas would have played a significant role in the generation of high-K magma. Thus, a thermal anomaly induced by underplated basic magma into a hot crust would have caused partial melting in the lower part of the crust. In this scenario, the lithospheric mantle-derived basaltic melt first mixed with granitic magma of crustal origin at depth. Then, the melts, which subsequently underwent a fractional crystallization and crustal assimilation processes, could ascend to shallower crustal levels to generate a variety of rock types ranging from diorite to granite. Sr–Nd isotope modeling shows that the generation of these magmas involved ~65–75% of the lower crustal-derived melt and ~25–35% of subcontinental lithospheric mantle. Further, geochemical data and the Ar–Ar plateau age on hornblende, combined with regional studies, imply that the Harşit pluton formed in a subduction setting and that the back-arc extensional period started by least ~79 Ma in the Eastern Pontides.  相似文献   

16.
Sodic amphiboles in high pressure and ultra-high pressure (UHP) metamorphic rocks are complex solid solutions in the system Na2O–MgO–Al2O3–SiO2–H2O (NMASH) whose compositions vary with pressure and temperature. We conducted piston-cylinder experiments at 20–30?kbar and 700–800?°C to investigate the stability and compositional variations of sodic amphiboles, based on the reaction glaucophane=2jadeite+talc, by using the starting assemblage of natural glaucophane, talc and quartz, with synthetic jadeite. A close approach to equilibrium was achieved by performing compositional reversals, by evaluating compositional changes with time, and by suppressing the formation of Na-phyllosilicates. STEM observations show that the abundance of wide-chain structures in the synthetic amphiboles is low. An important feature of sodic amphibole in the NMASH system is that the assemblage jadeite–talc?±?quartz does not fix its composition at glaucophane. This is because other amphibole species such as cummingtonite (Cm), nyböite (Nyb), Al–Na-cummingtonite (Al–Na-Cm) and sodium anthophyllite (Na-Anth) are also buffered via the model reactions: 3cummingtonite?+?4quartz?+?4H2O=7talc, nyböite?+?3quartz=3jadeite?+?talc, 3Al–Na-cummingtonite + 11quartz + 2H2O=6jadeite + 5talc, and 3 sodium anthophyllite?+?13quartz?+?4H2O=3 jadeite + 7talc. We observed that at all pressures and temperatures investigated, the compositions of newly grown amphiboles deviate significantly from stoichiometric glaucophane due to varying substitutions of AlIV for Si, Mg on the M(4) site, and Na on the A-site. The deviation can be described chiefly by two compositional vectors: [NaAAlIV]<=>[□ASi] (edenite) toward nyböite, and [Na(M4)AlVI]<=>[Mg(M4)MgVI] toward cummingtonite. The extent of nyböite and cummingtonite substitution increases with temperature and decreases with pressure in the experiments. Similar compositional variations occur in sodic amphiboles from UHP rocks. The experimentally calibrated compositional changes therefore may prove useful for thermobarometric applications.  相似文献   

17.
《International Geology Review》2012,54(13):1497-1531
The NW–SE-trendingLate Cretaceous–Cenozoic Urumieh-Dokhtar Magmatic Arc (UDMA) in southwest Iran hosts numerous Plio-Quaternary subvolcanic porphyritic andesitic to rhyodacitic domes intruded into a variety of rock sequences. Bulk-rock geochemical data show that the calc-alkaline dacitic to rhyodacitic subvolcanic rocks share compositional affinities with high-silica adakites, including high ratios of Na2O/K2O >1, Sr/Y (most >70), and La/Yb (>35), high Al2O3 (>15 wt.%), low Yb (<1.8 ppm) and Y (<18 ppm) contents, no significant Eu anomalies, and flat to gently upward-sloping chondrite-normalized heavy rare-earth element (HREE) patterns. All analysed rocks are characterized by enrichment in large-ion lithophile elements (LILEs) and depletion in high field strength elements (HFSEs). They also display typical features of subduction-related calc-alkaline magmas. In chondrite-normalized rare-earth element patterns, the light rare-earth elements (LREEs) are enriched ((La/Sm) N = 3.49–7.89) in comparison to those of the HREE ((Gd/Yb) N = 1.52–2.38). Except for the G-Aliabad Dome, plagioclase crystals in the Shamsabad, Ostaj, Abdollah, and Bouragh Domes are mostly oligoclase to andesine (An19–49). Amphibole and biotite are abundant ferromagnesian minerals in the subvolcanic rocks. Calcic amphiboles are dominantly magnesiohornblende, magnesiohastingsite, and tschermakite with Mg/(Mg + Fetot) ratios ranging from 0.58 to 0.78. In all the studied domes, amphiboles are typically ferric iron-rich, but that those the Shamsabad Dome have the highest Fe3+/(Fe3+ + Fe2+) ratios, between 0.69 and 0.98. Amphiboles from the Ostaj and Shamsabad Domes are relatively rich in F (0.39–1.01 wt.%) in comparison to the other studied domes. This phase commonly shows pargasitic and hastingsitic substitutions with a combination of tschermakitic and edenitic types.

Temperature-corrected Al-in-hornblende data show that amphibole phenocrysts from the Ostaj, Abdollah, and G-Aliabad Domes crystallized at pressures ranging from 2.14 to 3.42 kbar, 3.49 to 3.96 kbar, and 2.02 to 3.47 kbar, respectively. Temperatures of crystallization calculated with the amphibole–plagioclase thermometer for the Ostaj, Abdollah, and G-Aliabad subvolcanic domes range from 735°C to 826°C (mean = 786 ± 29), 778°C to 808°C (mean = 791 ± 13), and 866°C to 908°C (mean = 885 ± 12), respectively. In the annite–siderophyllite–phlogopite–eastonite quadrilateral, biotite from the G-Aliabad, Bouragh, and Ostaj Domes are characterized by relatively low total Al contents with variable Fetot/(Fetot + Mg) values from 0.26 to 0.43. All biotite analyses define a nearly straight line in the X Mg versus Fetot plot, with r = –0.96 correlation coefficient. In comparison to other domes, the F content of biotite from the G-Aliabad Dome shows high concentrations in the range of 1.80–2.57 wt.% (mean = 2.20). Inferred pre-eruptive conditions based on the calcic amphibole thermobarometric calculations for the Shamsabad, Abdollah, and Ostaj Domes show that the calc-alkaline subvolcanic magma chamber, on average, was characterized by a water content of 6.10 wt.%, a relatively high oxygen fugacity of 10–10.66 (ΔNNO + 1.28), a temperature of 896°C, and a pressure of 2.75 kbar.  相似文献   

18.
Central Iberian Variscan granite batholiths and anatectic complexes are punctuated by coeval stocks of hydrous, high-K calc-alkaline, ultrabasic to intermediate rock series. Despite their overall calc-alkaline affinity, the mafic–ultramafic members contain high-Ti amphibole oikocrysts rimmed by lower-Ti amphibole ± cummingtonite and high-Ti amphibole replacing early phlogopite. To understand the factors controlling the saturation of high-Ti amphibole in the parental magmas, clinopyroxene-melt, phlogopite-melt and amphibole-melt relationships are reviewed. This analysis reveals that for melts with intermediate compositions, the affinity of TiO2 for amphibole rises in alkalic magmas. Accordingly, mildly alkalic trachytoid to subalkaline medium- to high-K andesite and dacite compositions are estimated for interstitial high-Ti amphibole-saturated melts. Amphibole Ce/Pb ratios reveal a mantle–crust hybrid nature for interstitial melts with subalkaline trachytoid compositions. The hydrous character of the Variscan basic magmas favoured an overall magmatic evolutionary trend with a low rate of variation of Na2O with respect to silica during amphibole crystallization. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Diffusion coefficients of Cr and Al in chromite spinel have been determined at pressures ranging from 3 to 7 GPa and temperatures ranging from 1,400 to 1,700°C by using the diffusion couple of natural single crystals of MgAl2O4 spinel and chromite. The interdiffusion coefficient of Cr–Al as a function of Cr# (=Cr/(Cr + Al)) was determined as D Cr–AlD 0 exp {−(Q′ + PV*)/RT}, where D 0 = exp{(10.3 ± 0.08) × Cr#0.54±0.02} + (1170 ± 31.2) cm2/s, Q′ = 520 ± 81 kJ/mol at 3 GPa, and V* = 1.36 ± 0.25 cm3/mol at 1,600°C, which is applicable up to Cr# = 0.8. The estimation of the self-diffusion coefficients of Cr and Al from Cr–Al interdiffusion shows that the diffusivity of Cr is more than one order of magnitude smaller than that of Al. These results are in agreement with patterns of multipolar Cr–Al zoning observed in natural chromite spinel samples deformed by diffusion creep.  相似文献   

20.
Electron probe and wet chemical analyses of amphibole pairs from the sillimanite zone of central Massachusetts and adjacent New Hampshire indicated that for a particular metamorphic grade there should be a restricted composition range in which three amphiboles can coexist stably. An unequivocal example of such an equilibrium three amphibole rock has been found in the sillimanite-orthoclase zone. It contains a colorless primitive clinoamphibole, space group P21/m, optically and chemically like cummingtonite with blue-green hornblende exsolution lamellae on (100) and (¯101) of the host; blue-green hornblende, space group C2/m, with primitive cummingtonite exsolution lamellae on (100) and (¯101) of the host; and pale pinkish tan anthophyllite, space group Pnma, that is free of visible exsolution lamellae but is a submicroscopic intergrowth of two orthorhombic amphiboles. Mutual contacts and coarse, oriented intergrowths of two and three host amphiboles indicate the three grew as an equilibrium assemblage prior to exsolution. Electron probe analyses at mutual three-amphibole contacts showed little variation in the composition of each amphibole. Analyses believed to represent most closely the primary amphibole compositions gave atomic proportions on the basis of 23 oxygens per formula unit as follows: for primitive cummingtonite (Na0.02Ca0.21 Mn0.06Fe2+ 2.28Mg4.12Al0.28) (Al0.17Si7.83), for hornblende (Na0.35Ca1.56Mn0.02Fe1.71Mg2.85Al0.92) (Al1.37Si6.63), and for anthophyllite (Na0.10Ca0.06Mn0.06Fe2.25Mg4.11Al0.47) (Al0.47Si7.53). The reflections violating C-symmetry, on X-ray single crystal photographs of the primitive cummingtonite, are weak and diffuse, and suggest a partial inversion from a C-centered to a primitive clinoamphibole. Single crystal photographs of the anthophyllite show split reflections indicating it is an intergrowth of about 80% anthophyllite and about 20% gedrite which differ in their b crystallographic dimensions. Split reflections are characteristic of all analyzed orthorhombic amphiboles so far examined from Massachusetts and New Hampshire except the most aluminous gedrites, and the relative intensity of the gedrite reflections is roughly proportional to the degree of Na and Al substitution. Thin sections of a few of these anthophyllite specimens show lamellae parallel to (010) that are just resolved with a high power objective.Publication approved by the Director, U.S. Geological Survey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号