首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examine results from a cruise in May 1997. CTD casts to near the bottom were made south of the Aleutian Islands, across Amchitka Pass, and north of the islands. We computed a westward geostrophic speed of 123 cm s–1 at 173.5°W in the Alaskan Stream. The computed volume transport there, referred to the bottom, was 25×106m3s–1. On other similar sections, transports were 8–15 × 106 m3s–1. Various complex variations in geopotential height along the Stream apparently altered the cross-stream gradients, and hence the transports. Rotational tendencies were also present. Northward inflow through Amchitka Pass was quite strong (6 × 106 m3s–1). Data north of the islands supported the existence of a zero-velocity reference level of variable depth.  相似文献   

2.
Between late January and March of 1966, the western Subarctic region was widely investigated by MVArgo and MVG. B. Kelez. That is the first oceanographic measurement in this region during winter season. Oceanographic conditions and relative transports are discussed using these data. The Alaskan Stream which is closely related with the formation of the salmon fishing ground, is continuous as far west as long. 170°E and the westward transport of 8×106m3/sec occurs across long. 165°W. That are similar to the conditions in summer. The isolated warm water mass separated from the Alaskan Stream is more clearly defined as a clockwise gyre at the west of Komandorski Ridge. Transport of approximately 9×106m3/sec in the East Kamchatka Current reaches east of the Kurile Islands, where its water, mixing with the Okhotsk Sea water, forms the Oyashio Current having the volume transport of 7×106m3/sec. Generally, the circulation pattern in winter is similar to that in summer. Schematic diagram of relative transport and circulation in the Subarctic region in the North Pacific Ocean in winter is proposed.  相似文献   

3.
The subarctic North Pacific is one of the three major high nitrate low chlorophyll (HNLC) regions of the world. The two gyres, the NE and the NW subarctic Pacific gyres dominate this region; the NE subarctic Pacific gyre is also known as the Alaska Gyre. The NE subarctic Pacific has one of the longest time series of any open ocean station, primarily as a result of the biological sampling that began in 1956 on the weathership stationed at Stn P (50°N, 145°W; also known as Ocean Station Papa (OSP)). Sampling along Line P, a transect from the coast (south end of Vancouver Island) out to Stn P has provided valuable information on how various parameters change along this coastal to open ocean gradient. The NW subarctic Pacific gyre has been less well studied than the NE gyre. This review focuses mainly on the NE gyre because of the large and long term data set available, but makes a brief comparison with the NW gyre. The NE gyre has saturating NO3 concentrations all year (winter = about 16 μM and summer = about 8 μM), constantly very low chlorophyll (chl) (usually <0.5 mg m−3) which is dominated by small cells (<5 μm). Primary productivity is low (about 300–600 mg C m−2 d−1 and varies little (2 times) seasonally. Annual primary productivity is 3 to 4 times higher than earlier estimates ranging from 140 to 215 g C m−2 y−1. Iron limits the utilization of nitrate and hence the primary productivity of large cells (especially diatoms) except in the winter when iron and light may be co-limiting. There are observations of episodic increases in chl above 1 mg m−3, suggesting episodic iron inputs, most likely from Asian dust in the spring/early summer, but possibly from horizontal advection from the Alaskan Gyre in summer/early fall. The small cells normally dominate the phytoplankton biomass and productivity, and utilize the ammonium produced by the micrograzers. They do not appear to be Fe-limited, but are controlled by microzooplankton grazers. The NW Subarctic Gyre has higher nutrient concentrations and a shallower summer mixed depth and photic zone than Stn P in the NE gyre. Chl concentrations tend to be higher (0.5 to 1.5 μg L−1) than Stn P, but primary productivity in the summer is similar to Stn P (600 mg C m−2 d−1). There are no seasonal data from this gyre. Iron enrichment experiments in October, resulted in an increase in chl (mainly the centric diatom Thalassiosira sp.) and a draw down of nitrate, suggesting that large phytoplankton are Fe-limited, similar to Stn P.  相似文献   

4.
Year-long moorings were deployed across the Alaskan Stream near Samalga Pass (169°W) on two occasions, first in 2001–2002 (5 moorings) and again in 2003–2004 (3 moorings). Currents were measured throughout the water column, and temperature and salinity were measured at selected depths. Satellite altimetry and satellite-tracked drifters revealed a well defined Alaskan Stream, with the largest near-surface average speeds (>60 cm s−1) and highest eddy kinetic energy just upstream from the mooring sites. Excluding periods when large eddies disrupted the flow, transport in the Alaskan Stream ranged from 10 to 30×106 m3 s−1. The estimated mean transport in 2001–2002 was 19×106 m3 s−1, and in 2003–2004 was 21×106 m3 s−1. Large (diameter>200 km), anti-cyclonic eddies were not uncommon in the vicinity of Samalga Pass (14 times in 20 year period, 1992–2012). Although there were no such eddies observed during the period 2000–2003, one of the largest ever recorded eddies occurred in spring 2004. In addition, smaller eddies occurred on several occasions. Eddies disrupted the flow, shifting the Alaskan Stream farther off shore and were clearly evident in both the satellite imagery and the mooring data. Other energetic events, which were less evident in the satellite records, but clearly evident in the mooring measurements, also disrupted the flow. In addition to the moorings in the Alaskan Stream, pressure gauges were placed in Samalga Pass and a single mooring measuring currents was placed in the Aleutian North Slope Current (ANSC) in the Bering Sea. The alongshore, near-surface flow measured at the moorings deployed on the 1000-m isobaths in the Alaskan Stream and the ANSC were significantly correlated with the bottom pressure time series. In addition, at periods longer than 14 days, the bottom pressure measured at the mooring sites in Samalga Pass was significantly correlated with the sea surface height measured by the satellites. The eddy kinetic energies measured from the satellites and from moorings were also significantly correlated.  相似文献   

5.
Abundances and biomasses of planktonic ciliates and copepod nauplii, major components of the microzooplankton community, were investigated in the subarctic North Pacific and the Bering Sea in summer of 1997. Their regional variation was illustrated by demarcating the entire area into five regions. Ciliates always predominated both in abundance (>94%) and biomass (>78%) over nauplii. Regional means of ciliates in the water column were higher in the Alaskan Gyre (120 × 106 cells/m2) and the Western Subarctic Gyre (110 × 106 cells/m2) in terms of abundance, and rich in the Bering Sea Gyre (360 mgC/m2) and the Western Subarctic Gyre (340 mgC/m2) in terms of biomass. By contrast, standing crops of ciliates were poor in the Oyashio Region (67 × 106 cells/m2; 170 mgC/m2) and the Transition Region (64 × 106 cells/m2; 160 mgC/m2). The values of biomass reported here are generally in agreement with the values reported previously from the Bering Sea Gyre and the Alaskan Gyre but are considerably higher than the previous value found in the Western Subarctic Gyre. No significant correlations could be found between chlorophyll a crop and standing crops of ciliates and copepod nauplii over the entire subarctic North Pacific and the Bering Sea during this summer.  相似文献   

6.
In the central North Pacific Subarctic Gyre, CTD hydrographic measurements were carried out yearly in late June from 1990 to 1998 at 9 stations along 180° meridian from 48°N to 51.2°N. Vertical sections of 9-year means, anomalies for each year and others of potential temperature, salinity, potential density and geostrophic velocity (referred to 3000 m) were calculated based on this data set. Empirical Orthogonal Function (EOF) analysis was adopted in the investigation of spatial characteristics and its temporal variation in vertical sections. The spatial distribution of the 1st mode EOF of velocity shows the westward Alaskan Stream and the eastward Subarctic Current. This mode explains 37.6% of the total variance. Two positive maxims appear in its amplitude in 1991 and 1997, which is similar to the variation in volume transport of the eastward Subarctic Current. These variations are closely related to the vertical movement of Ridge Domain deep water.  相似文献   

7.
The Luzon Strait transport variations during 1997~2000   总被引:1,自引:0,他引:1  
1IntroductionTheSouthChinaSea(SCS)isthelargestmarginalseainSoutheastAsia.TheSCSiscon-nectedtotheopenoceanthroughseveralstraitsbetweenthesurroundinglandmassesandis-lands.TheLuzonStrait(seeFig.1)islocatedinthenortheastoftheSCSbetweenTaiwanIslandandthePhilippineIslands,whichisabout380kmwideanditslargestdepthismorethan2500m.Sincetheotherstraitsareveryshallow,theLuzonStraitistheonlymajorchannelallowingeffectivewaterexchangewiththewesternNorthPacific. Wyrtki(1961)firstlyassocia…  相似文献   

8.
The biomass, abundance, and vertical distribution of micronekton, including enidarians, mysids, euphausiids, decapods, thaliaceans, and fishes, were studied on the basis of samples collected with an 8-m2 opening-closing rectangular midwater trawl (RMT-8, mesh size: 4.5 mm) at three stations in the subarctic Pacific (the western subarctic gyre, the central Subarctic, and the Gulf of Alaska) and one station in the oceanic Bering Sea. The total biomass in the 0–1000 m water column ranged from 2.9 to 5.1 gDW m–2. Except for primary consumers that showed highly variable biomass (thaliaceans and euphausiids), biomass was highest in the oceanic Bering Sea followed by the central (boundary between eastern and western gyres), western gyre, and eastern Gulf of Alaska. The biomass compositions by higher taxa were basically similar between regions: fishes were most dominant, followed by enidarians at all stations, except for the marked predominance of thaliaceans in the Gulf of Alaska. High biomasses of gelatinous animals (31% of overall dry weight), occasionally comparable to those of fishes and crustaceans, suggest their potential importance in the subarctic Pacific. Characteristics in vertical patterns of micronekton biomass common in all stations were: (1) a mesopelagic peak around 500–600 m both day and night, (2) a layer of low biomass in the cold intermediate water and/or in the upper mesopelagic zone, (3) a nighttime shift of biomass to upper layers, and (4) an highly variable biomass of epipelagic/interzonal migrants (euphausiids and thaliaceans).  相似文献   

9.
A Continuous Mapping of Tidal Current Structures in the Kanmon Strait   总被引:1,自引:0,他引:1  
Tidal current structures at the Hayatomono-Seto of the Kanmon Strait are mapped continuously during March 17 to 20, 2003, including a spring tide, by the eight coastal acoustic tomography (CAT) systems distributed on both the sides of the strait. Detailed structures of strong tidal currents and their associated vortices are well reconstructed by the inverse analysis of travel-time difference data obtained from the reciprocal sound transmission between the paired CAT systems located at both sides of the strait mainly. The results are well compared to the shipboard acoustic Doppler current profiler (ADCP) data at the correlation rate of 0.84/0.82 and the RMS difference of 0.47/0.48 ms−1 for the east-west/north-south current after the selection of good data. During the observation period, the maximum hourly mean volume transport for the upper 7 m layer across the strait reached 13,314 m3 s−1 for the eastward and 5,547 m3 s−1 for the westward. The daily mean transport is directed to the eastward and estimated 1,470 m3 s−1 and 2,140 m3 s−1 for March 18 and 19, respectively, when a spring tide occurs.  相似文献   

10.
Time-series sediment traps were deployed in the subtropical oligotrophic northwestern Pacific (SONP) at three depths from August to September 2015 to better understand vertical flux of sinking particles. Sinking particles were collected at 5-day intervals over the sediment trap deployment period. The average total mass flux at water depths of 400 m, 690 m, and 1,710 m was 9.1, 4.4, and 4.1 mg m-2day-1, respectively. CaCO3 materials constituted 50 to 70% of sinking particles while in comparison particulate organic carbon (POC) constituted up to 20%. A synchronous variation of total mass flux was observed at the three depths, indicating that calcite-dominated particles sank from 400 to 1,710 m within a 5-day period. POC flux at these water depths was 2.4, 0.38, and 0.31 mg m-2day-1, respectively. Our results indicate low transfer efficiencies of 16% from 400 to 690 m and 13% for the 400 to 1,710 m depth range. The estimated transfer efficiencies were significantly lower than those observed at the K2 station in the northwest Pacific subarctic gyre, presumably because of a prevalence of pico-cyanobacteria in the SONP. Because cyanobacteria have a semi-permeable proteinaceous shell, they are more readily remineralized by bacteria than are siliceous phytoplankton in the northwest Pacific subarctic gyre. Continued surface water warming and expansion of the SONP will likely have a profound impact on ocean acidification in the northwest Pacific, possibly affecting the transfer efficiency of sinking POC to the deep-sea.  相似文献   

11.
Dependences have been determined which connect the parameters of the dispersion relation of the lowest mode of internal waves with the integral characteristics of the seasonal thermocline when 10 min30 min, 20 mh150 m, and 0·4 m2/s2 Q5·2 m2/s2.Translated by Mikhail M. Trufanov.  相似文献   

12.
We present a detailed account of the changing hydrography and the large-scale circulation of the deep waters of the Eastern Mediterranean (EMed) that resulted from the unique, high-volume influx of dense waters from the Aegean Sea during the 1990s, and of the changes within the Aegean that initiated the event, the so-called ‘Eastern Mediterranean Transient’ (EMT). The analysis uses repeated hydrographic and transient tracer surveys of the EMed in 1987, 1991, 1995, 1999, and 2001/2002, hydrographic time series in the southern Aegean and southern Adriatic Seas, and further scattered data. Aegean outflow averaged nearly 3 × 106 m3 s−1 between mid-1992 and late 1994, and was largest during 1993, when south and west of Crete Aegean-influenced deep waters extended upwards to 400 m depth. EMT-related Aegean outflow prior to 1992, confined to the region around Crete and to 1800 m depth-wise, amounted to about 3% of the total outflow. Outflow after 1994 up to 2001/2002, derived from the increasing inventory of the tracer CFC-12, contributed 20% to the total, of 2.8 × 1014 m3. Densities in the southern Aegean Sea deep waters rose by 0.2 kg/m3 between 1987 and 1993, and decreased more slowly thereafter. The Aegean waters delivered via the principal exit pathway in Kasos Strait, east of Crete, propagated westward along the Cretan slope, such that in 1995 the highest densities were observed in the Hellenic Trench west of Crete. Aegean-influenced waters also crossed the East Mediterranean Ridge south of Crete and from there expanded eastward into the southeastern Levantine Sea. Transfer into the Ionian mostly followed the Hellenic Trench, largely up to the trench’s northern end at about 37°N. From there the waters spread further west while mixing with the resident waters. Additional transfer occurred through the Herodotus Trough in the south. Levantine waters after 1994 consistently showed temperature–salinity (T–S) inversions in roughly 1000–1700 m depth, with amplitudes decreasing in time. The T–S distributions in the Ionian Sea were more diverse, one cause being added Aegean outflow of relatively lower density through the Antikithira Strait west of Crete. Spreading of the Aegean-influenced waters was quite swift, such that by early 1995 the entire EMed was affected. and strong mixing is indicated by near-linear T–S relationships observed in various places. Referenced to 2000 and 3000 dbar, the highest Aegean-generated densities observed during the event equaled those generated by Adriatic Sea outflow in the northern Ionian Sea prior to the EMT. A precarious balance between the two dense-water source areas is thus indicated. A feedback is proposed which helped triggering the change from a dominating Adriatic source to the Aegean source, but at the same time supported the previous long-year dominance of the Adriatic. The EMed deep waters will remain transient for decades to come.  相似文献   

13.
Wind data from NCEP and hydrographic data obtained from August 28 to September 10, 1994 have been used to compute circulation in the northern South China Sea and near Luzon Strait using three-dimensional diagnostic models with a modified inverse method. The numerical results are as follows: the main Kuroshio is located above 400 m levels near Taiwan’s eastern coast and above 800 m levels away from it. Near Luzon Strait above 400 m levels a branch of the Kuroshio joins with a part of the northward current, which comes from an area west of Luzon’s western coast and intrudes northwestward, then it branchs into western and eastern parts near 20°30′ N. The eastern part flows northward into an area east of Taiwan, while its western part continues to intrude northwestward, flowing through an area southwest of Taiwan. Net westward intruded volume transport through longitude Section AB at 121°00′ E from 19°00′ N to 21° 43′ N is about 3.5 × 106 m3s−1 in a layer above 400 m levels. The anticyclonic eddies W1 and W3 exist above 700 m levels east of Dongsha Islands and below 200 m levels in the eastern part of the region, respectively. The circulation in the middle region is dominated mainly by a basin-scale cyclonic gyre, and consists of three cyclonic eddies. Strong upwelling occurs in the middle region. The joint effect of baroclinity and relief and interaction between wind stress and relief both are important for real forcing of flow across contours of fH −1 in effecting the circulation pattern.  相似文献   

14.
Using climatological atlas data and historical hydrographic data, the relationship between dynamic height anomaly D and acoustic round-trip travel time in the Pacific Ocean is investigated. A tight, linear relation is found in a region centered on the Kuroshio and Kuroshio Extension. In this region, the slopem of the relation is approximately –50 dyn m s–1, about equal to the value expected for first-baroclinicmode response and twice as large as the value form in the Gulf Stream region of the Atlantic Ocean. The value ofm in the Pacific generally increases in magnitude towards the south and with increasing depth to which the integrals for D and are carried. It is changed only slightly by correcting for the temperature and salinity march of the seasons in the surface layer. The Kuroshio region is established as one in which the record of from an inverted echo sounder can be interpreted reliably in terms of D. An inverted echo sounder can also be used in this way in a number of other regions of the Pacific, although the available hydrographic data sets are too sparse to establish their boundaries clearly.  相似文献   

15.
16.
本文利用HYCOM (Hybrid Coordinate Ocean Model)再分析数据对北赤道流(NEC)、棉兰老流(MC)以及黑潮(KC)所构成的NMK环流系统在2015/2016年超强厄尔尼诺事件期间的变化特征及其影响机制进行了研究,并与其他厄尔尼诺期间的变化特征进行了对比。结果表明,在2015/2016年超强厄尔尼诺事件期间,NEC和MC输运均显著增强,最大值分别达到66 Sv (1 Sv=106 m3/s)和49.4 Sv,北赤道流分叉纬度最北可达16°N,KC输运没有明显增强。NMK环流系统的年际变化主要与此次厄尔尼诺事件期间热带西北太平洋15°N以南、160°E以西海域出现的气旋式环流异常有关。该环流异常出现自厄尔尼诺事件的前期阶段,并于爆发阶段达到顶峰,主要是由15°N以南区域出现的强西风异常所引起的。进一步分析表明,此次厄尔尼诺事件期间NEC、MC输运和NBL的平均值均大于1992— 2014年间所有厄尔尼诺事件的平均状况,但与1997/1998年超强厄尔尼诺事件期间的平均值相近。  相似文献   

17.
In October and November 2002, high and relatively high values of the chlorophyll a concentration at the sea surface (C chl) were observed in the English Channel (0.47 mg/m3), in the waters of the North Atlantic Current (0.25 mg/m3), in the tropical and subtropical anticyclonic gyres (0.07–0.42 mg/m3), and also in the southwestern region of the southern subtropical anticyclonic gyre (usually 0.11–0.23 mg/m3). The central regions of the southern subtropical anticyclonic gyre (SATG) and the North Atlantic tropical gyre (NATR) were characterized by lower values of C chl (0.02–0.08 mg/m3 for the SATG and 0.07–0.14 mg/m3 for the NATR). At most of the SATG stations, the values of the surface primary production (C phs) varied from 2.5 to 5.5 mg C/m3 per day and were mainly defined by the fluctuations of C chl (r = +0.78) rather than by those of the assimilation number (r = +0.54). The low assimilation activity of phytoplankton in these waters (1.3–4.6 mg chl a per hour) pointed to a lack of nutrients. An analysis of the variability of their concentration and the composition of photosynthetic pigments showed that, in the waters north of 30° N, the growth of phytoplankton was mostly restricted by the deficiency of nitrogen, while, in more southern areas, at the majority of stations (about 60%), the phosphorus concentrations were the minimum. At the low concentrations of nitrates and nitrites, ammonium represented itself as a buffer that prevented planktonic algae from extreme degrees of nitric starvation. In the tropical waters and in the waters of the SATG, the primary production throughout the water column varied from 240 to 380 mg C/m2 30° per day. This level of productivity at stations with low values of C chl (<0.08 mg/m3) was provided by a well-developed deep chlorophyll maximum and a high transparency of the water. The light curves of photosynthesis based on in situ measurements point to the high efficiency of utilizing the penetrating solar radiation by phytoplankton on cloudy days.  相似文献   

18.
The water mass structure and circulation of the continental shelf waters west of the Antarctic Peninsula are described from hydrographic observations made in March–May 1993. The observations cover an area that extends 900 km alongshore and 200 km offshore and represent the most extensive hydrographic data set currently available for this region. Waters above 100–150 m are composed of Antarctic Surface Water and its end member Winter Water. Below the permanent pycnocline is a modified version of Circumpolar Deep Water, which is a cooled and freshened version of Upper Circumpolar Deep Water. The distinctive signature of cold and salty water from the Bransfield Strait is found at some inshore locations, but there is little indication of significant exchange between Bransfield Strait and the west Antarctic Peninsula shelf. Dynamic topography at 200 m relative to 400 m indicates that the baroclinic circulation on the shelf is composed of a large, weak, cyclonic gyre, with sub-gyres at the northeastern and southwestern ends of the shelf. The total transport of the shelf gyre is 0.15 Sv, with geostrophic currents of order 0.01 m s-1. A simple model that balances across-shelf diffusion of heat and salt from offshore Upper Circumpolar Deep Water with vertical diffusion of heat and salt across the permanent pycnocline into Winter Water is used to explain the formation of the modified Circumpolar Deep Water that is found on the shelf. Model results show that the observed thermohaline distributions across the shelf can be maintained with a coefficient of vertical diffusion of 10-4 m2 s-1 and horizontal diffusion coefficients for heat and salt of 200 and 1200 m2 s-1, respectively. When the effects of double diffusion are included in the model, the required horizontal diffusion coefficients for heat and salt are 200 and 400 m2 s-1, respectively.  相似文献   

19.
The upper Oyashio intermediate water, one of the source waters for the Sea of Okhotsk intermediate water, is exhibiting a warming trend. The historical data show that the upper Oyashio temperature increased by 2.4°C during 1953 to 2007 at the potential density of 26.75 at depths of approximately 170 m. This rate of warming is much faster than that of the global ocean and the Sea of Okhotsk. The upper Oyashio warming is likely linked to the penetration of warm water of the Alaskan Stream westward. One mechanism of this warm Alaskan Stream water penetration is associated with large Aleutian eddies.  相似文献   

20.
The distribution of chlorophylla and photosynthetic characterestics of phytoplankters were investigated along 155°W between 50°N and 15°S during the KH-69-4 cruise of the R. V. Hakuh Maru (Aug. 12–Nov. 13, 1969). High concentrations of chlorophylla (more than 0.2 mg Chla/m3) were observed above the depths of 150 m at all stations except in 17°N, 5°S and 15°S. North of 20°N, the depths of chlorophyll accumulation shifted from near the surface to 50–100 m with southwards. In the equatorial region, chlorophyll accumulation centered at a depth of about 70 m and ranged vertically between 10 and 150 m. In all cases in the present study area, chlorophyll accumulation occurred within the euphotic zone (above the depth corresponding to 1% of the surface illumination), and except in the subarctic and some equatorial waters, this was usually prevalent in the lower half of the euphotic zone.The photosynthetic activities (initial slope of P vs I curve) of samples from the depths of chlorophyll accumulation were similar to, or lower than, those of shallow samples from the depths of upper half of the euphotic zone. At the depths of chlorophyll accumulation, calculatedin situ photosynthesis was high in the central Pacific and equatorial waters but low in the subarctic waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号