首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a 2-D numerical study on the nonlinear seismic response of buildings equipped with two types of energy dissipators, which dissipate energy activating two different mechanisms. Three types of reinforced concrete buildings with 3, 7 and 15 stories, respectively representative of short, medium and long period ranges, are considered. Dissipators are placed on steel diagonal braces at all the floors; their sliding threshold (or yielding) forces are taken as 100% of those generated by the equivalent static lateral forces recommended by EC8 for a ductile moment resisting frame. The input consists of six recorded earthquakes, 3 representatives of near-field earthquakes and 3 representatives of far-field earthquakes. Each input is considered once from the bedrock and once filtered by a common ground with several layers of different thicknesses. The responses of the buildings are discussed and compared emphasizing the filtering effects produced by the ground.  相似文献   

2.
This paper describes a new seismic protection system for timber platform frame buildings, either for new construction or retrofit. The system consists in connecting the timber frame to a steel structure that includes hysteretic energy dissipators designed to absorb most of the seismic input energy thus protecting the timber frame and the other steel members; alternatively, the system might use other types of dissipative devices. The steel structure consists of four steel stacks (located at each of the four façades) and steel collectors embracing each slab; the stacks and the collectors are connected, at each floor level, through the energy dissipators. The steel structure is self‐supporting, that is, the timber frame is not affected by horizontal actions and can be designed without accounting for any seismic provision; in turn, the steel members do not participate in the main load‐carrying system. The timber‐steel interface is designed to avoid any stress concentration in the transfer of horizontal forces and to guarantee that the yielding of the dissipators occurs prior to any timber failure. The energy dissipation capacity of the suggested system is discussed, and an application example on a six‐story timber building is presented; this case corresponds to highly demanding conditions because of the relatively large building height and weight, the high local seismicity, and the soft soil condition. This research belongs to a wider project aiming to promote the structural use of timber by improving the seismic capacity of wooden buildings; this research includes experiments and advanced numerical simulation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Nowadays, one of the most important methodologies to reduce the destructive effects of severe earthquakes on structures is the use of energy dissipation devices (EDDs). In this paper, a new configuration of special truss moment frame (STMF) systems including EDDs is theoretically proposed to improve their seismic performance. Such an improvement is achieved by provision of bending performance in these frames. For this purpose, the devices called buckling resistant braces (BRBs) are located at the side of beam‐column connections as the top and bottom members of truss‐girders. In this context, a five‐bay nine‐story STMF is designed using the damage and energy concepts recently proposed in the literature. To show the effectiveness of the proposed system with respect to the similar recently presented STMFs, this frame is then subjected to non‐linear static and non‐linear time‐history analyses under several ground motion records in order to survey on its seismic performance. Subsequently, such engineering demand parameters as lateral displacement, inter‐story drift ratio, overturning moment and shearing forces of stories, residual deformations and maximum time‐history displacement at roof level, as well as the process of plastic hinges formation are investigated. The results show the effectiveness of proposed configuration of EDDs used to improve the seismic safety of STMFs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents the results from unidirectional shaking table tests of two reduced scale steel models of a building frame, with one and two floors, respectively. These frames incorporate friction dissipators at every floor. The inputs are sine-dwells and artificial and registered earthquakes. This study is part of a larger research project aiming to assess the seismic efficiency of friction dissipators by means of an integrated numerical and experimental approach. Inside this framework, the main objectives of these experiments are to: (i) collect a wide range of results to calibrate a numerical model derived within the project, (ii) clarify some of the most controversial issues about friction dissipators (including behavior for inputs containing pulses, capacity to reduce resonance peaks, introduction of high frequencies in the response, and self-generated eccentricities), (iii) better understand their dynamic behavior, (iv) provide insight on the feasibility and reliability of using simple friction dissipators for seismic protection of building structures and (v) characterize the hysteretic behavior of these devices. Most of these objectives are satisfactorily reached and relevant conclusions are stated.  相似文献   

5.
A rocking podium structure is a class of structures consisting of a superstructure placed on top of a rigid slab supported by free‐standing columns. The free‐standing columns respond to sufficiently strong ground motion excitation by uplifting and rocking. Uplift works as a mechanical fuse that limits the forces transmitted to the superstructure, while rocking enables large lateral displacements. Such ‘soft‐story’ system runs counter to the modern seismic design philosophy but has been used to construct several hundred buildings in countries of the former USSR following Polyakov's rule‐of‐thumb guidelines: (i) that the superstructure behave as a rigid body and (ii) that the maximum lateral displacement of the rocking podium frame be estimated using elastic earthquake displacement response spectra. The objectives of this paper are to present a dynamic model for analysis of the in‐plane seismic response of rocking podium structures and to investigate if Polyakov's rule‐of‐thumb guidelines are adequate for the design of such structures. Examination of the rocking podium structure response to analytical pulse and recorded ground motion excitations shows that the rocking podium structures are stable and that Polyakov's rule‐of‐thumb guidelines produce generally conservative designs. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
提出了古木结构建筑采用基于位移的抗震加固方法,通过限制水平地震作用下结构的最大侧移和最大滑移而防止结构倒塌,其中最大侧移限值由结构的最大水平惯性力及其自身抗倾覆条件确定,最大滑移限值为柱基础半径。根据最大侧移限值并考虑古木结构建筑的特殊性,确定了在罕遇地震作用下的目标位移角及相应的目标刚度。最后分析了构架刚度下对古木结构建筑侧移和滑移的影响,认为适当加大刚度对建筑是有利的。研究结果可为古木建筑的抗震加固提供科学依据。  相似文献   

7.
A design procedure for seismic retrofitting of concentrically and eccentrically braced frame buildings is proposed and validated in this paper. Rocking walls are added to the existing system to ensure an almost uniform distribution of the interstorey displacement in elevation. To achieve direct and efficient control over the seismic performance, the design procedure is founded on the displacement‐based approach and makes use of overdamped elastic response spectra. The top displacement capacity of the building is evaluated based on a rigid lateral deformed configuration of the structure and on the ductility capacity of the dissipative members of the braced frames. The equivalent viscous damping ratio of the braced structure with rocking walls is calculated based on semi‐empirical relationships specifically calibrated in this paper for concentrically and eccentrically braced frames. If the equivalent viscous damping ratio of the structure is lower than the required equivalent viscous damping ratio, viscous dampers are added and arranged between the rocking walls and adjacent reaction columns. The design internal forces of the rocking walls are evaluated considering the contributions of more than one mode of vibration. The proposed design procedure is applied to a large set of archetype braced frame buildings and its effectiveness verified by nonlinear dynamic analysis.  相似文献   

8.
Several reinforced concrete frames with different dissipator distributions, and a conventional moment-resisting frame, are compared in order to select the best dissipator distribution from the point of view of seismic response and structural design. The structures with dissipators are designed according to a criterion proposed in the present paper. Each frame is excited with a set of eleven simulated accelerograms. The choice of the best dissipation distribution is based mainly on the differences between the mean of the maximum overturning moments developed at the base of the frames and between the weights of steel reinforcement and concrete resulting from the structural design of each frame. A comparison of initial construction costs of a building with dissipators and a conventional building shows that the former is 3·5 per cent more expensive.  相似文献   

9.
Viscous energy dissipators (EDORs) have good suppressing effects on acceleration or base shear and they do not add axial pressure to the column when peak moment in the column occurs at peak displacement. Pall frictional EDORs can dissipate energy even when the compression brace buckles due to a special frictional damping mechanism. Retaining the advantages of viscous and Pall EDORs and overcoming their disadvantages, a pseudo‐viscous frictional energy dissipator (PVEDOR) is developed. PVEDORs use the frictional damping mechanism of Pall EDORs, but the slip force of PVEDORs is made variable so that the slip force reduces with increasing displacement. Behaviour testing of PVEDORs shows that they possess the important hysteretic feature of viscous EDORs, i.e. the restoring force of PVEDORs are out‐of‐phase with displacement. Earthquake simulation tests of a 16‐storey frame structure incorporating PVEDORs and ordinary steel braces and bare frame are carried out. The test results show that PVEDORs have good vibration‐suppressing effects. An analytical hysteretic model of PVEDORs basically agrees with the behaviour testing results. Finally, the parameter influence of PVEDORs on suppressive effectiveness of structural vibration under earthquake conditions is studied. Numerical analyses show that PVEDORs have good control effects on both seismic displacement and acceleration, and that control effects of PVEDORs on base shear are much better than Coulomb‐type frictional EDORs or metallic EDORs. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Semi‐active control of buildings and structures for earthquake hazard mitigation represents a relatively new research area. Two optimal displacement control strategies for semi‐active control of seismic response of frame structures using magnetorheological (MR) dampers or electrorheological (ER) dampers are proposed in this study. The efficacy of these displacement control strategies is compared with the optimal force control strategy. The stiffness of brace system supporting the smart damper is also taken into consideration. An extensive parameter study is carried out to find the optimal parameters of MR or ER fluids, by which the maximum reduction of seismic response may be achieved, and to assess the effects of earthquake intensity and brace stiffness on damper performance. The work on example buildings showed that the installation of the smart dampers with proper parameters and proper control strategy could significantly reduce seismic responses of structures, and the performance of the smart damper is better than that of the common brace or the passive devices. The optimal parameters of the damper and the proper control strategy could be identified through a parameter study. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
The results of experimental tests carried out on reinforced concrete (RC) full‐scale 2‐storey 2‐bays framed buildings are presented. The unretrofitted frame was designed for gravity loads only and without seismic details; such frame was assumed as a benchmark system in this study. A similar RC frame was retrofitted with buckling‐restrained braces (BRBs). The earthquake structural performance of both prototypes was investigated experimentally using displacement‐controlled pushover static and cyclic lateral loads. Modal response properties of the prototypes were also determined before and after the occurrence of structural damage. The results of the dynamic response analyses were utilized to assess the existing design rules for the estimation of the elastic and inelastic period of vibrations. Similarly, the values of equivalent damping were compared with code‐base relationships. It was found that the existing formulations need major revisions when they are used to predict the structural response of as‐built RC framed buildings. The equivalent damping ratio ξeq was augmented by more than 50% when the BRBs was employed as bracing system. For the retrofitted frame, the overstrength Ω and the ductility µ are 1.6 and 4.1, respectively; the estimated R‐factor is 6.5. The use of BRBs is thus a viable means to enhance efficiently the lateral stiffness and strength, the energy absorption and dissipation capacity of the existing RC substandard frame buildings. The foundation systems and the existing members of the superstructure are generally not overstressed as the seismic demand imposed on them can be controlled by the axial stiffness and the yielding force of the BRBs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The paper presents a comparative study of an existing retrofit for a mid-rise steel building using additional stiff steel braced-frames against an alternate retrofit using ADAS (Added Damping and Stiffness) passive energy dissipation devices. The subject building, located near Alameda Park in downtown Mexico City, is a ten-storey office building that was built in the 1950s. The structure was damaged during the 1985 Michoacán Earthquake because of resonant response with the site. The building was later retrofitted using additional braced frames according to the seismic provisions of Mexico's 1987 Federal District Code. The retrofit scheme was planned to take the structure away from resonant responses and to inhibit structural damage. A proposed upgrade using ADAS energy dissipation devices was studied to compare energy dissipation against traditional stiffening using steel braces as retrofit options for mid-rise buildings in Mexico City's lake-bed zone. Different sets of analyses were carried out to compare both alternatives: (a) three-dimensional elastic analyses; (b) limit analyses and; (c) nonlinear dynamic analyses for postulated site ground motions for a Ms=8.1 earthquake. Initial costs of the retrofit schemes were also studied. The comparative studies suggest that a retrofit using ADAS devices would have a better dynamic performance than the one using steel braces. However, the steel bracing retrofit provides more strength and its initial cost of retrofit is less than that of the ADAS retrofit. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
摩擦型与软钢屈服型耗能器的性能与减振效果的试验比较   总被引:20,自引:5,他引:20  
本文通过两类四种百余个耗能器(其中摩擦类型的两种,普遍摩擦型和Pall摩擦型;软钢屈服类型的两种:X钢板和三角钢板屈服型)的静力反复加载和低周疲劳试验,进一步了解这些耗能器的滞回特性和疲劳性能。其次,通过分别安装上述四种耗能器的单层剪切型钢框架模型在输入地震动分别为EICentro、Taft和天津记录等五十余种工况下的振动台试验,较全面地揭示了这些耗能器的减振效果。最后,在试验的基础上较好地建立了  相似文献   

14.
The behavior of braced excavation in dry sand under a seismic condition is investigated in this paper. A series of shake table tests on a reduced scale model of a retaining wall with one level of bracing were conducted to study the effect of different design parameters such as excavation depth, acceleration amplitude and wall stiffness. Numerical analyses using FLAC 2D were also performed considering one level of bracing. The strut forces, lateral displacements and bending moments in the wall at the end of earthquake motion were compared with experimental results. The study showed that in a post-seismic condition, when other factors were constant, lateral displacement, bending moment, strut forces and maximum ground surface displacement increased with excavation depth and the amplitude of base acceleration. The study also showed that as wall stiffness decreased, the lateral displacement of the wall and ground surface displacement increased, but the bending moment of the wall and strut forces decreased. The net earth pressure behind the walls was influenced by excavation depth and the peak acceleration amplitude, but did not change significantly with wall stiffness. Strut force was the least affected parameter when compared with others under a seismic condition.  相似文献   

15.
地震作用会造成钢筋混凝土框架发生平面和垂直方向的变形,导致其结构受到更大的地震力,加剧损伤程度。形状记忆合金(SMA)材料在外力作用下能够快速恢复变形前形状,降低框架损伤程度,进一步提高框架结构的承载能力和稳定性。基于此,有必要研究形状记忆合金混凝土框架建筑的抗震性能。以某实际工程为例,采用ANSYS软件建立钢筋混凝土框架有限元模型,选取天津地震波、北岭地震波、印度洋地震波及人工地震波作为地震震动输入,记录地震震动下时程结果。研究结果表明,预应力筋断裂后,该结构在地震作用下的滞回曲线为饱满的旗帜形,最大层间位移为1/125,残余变形在±10 mm之间,最高峰值荷载为211 kN,水平承载力较强,表明其自复位性能较高、地震响应效果较优、抗震承载力较强,可以有效提高建筑结构的安全性和可靠性。  相似文献   

16.
The seismic performance of three‐ and six‐story buildings with fluidic self‐centering system is probabilistically assessed. The fluidic self‐centering systems consist of devices that are based on the technology of fluid viscous dampers but built in a way that pressurization of the devices results in preload that is explored to reduce or eliminate residual drift. The design of these buildings followed a procedure that parallels the design for structures with damping systems in ASCE 7 but modified to include the preload effect. Reference conventional buildings were also designed per ASCE 7 for comparison. These buildings were then analyzed to examine and compare their seismic collapse resistance and residual drift, where the residual drift limits of 0.2, 0.5, 1.0 and 2.0% of story height were selected as important thresholds. The study further calculated the mean annual frequency of collapse and corresponding exceedance probability over 50 years, and the mean annual frequency of exceeding the threshold residual story drift limits and the corresponding exceedance probability over 50 years. Variations in the design procedures by considering increased displacement capacity or damping or preload of the devices, different types of damping, increased ultimate strength of the self‐centering device–brace systems and increased frame strength were considered. It was found that increasing either the ultimate force capacity of the self‐centering device–brace system or the frame strength results in important improvements in the collapse resistance and in minimizing residual drift, whereas the variation of other design parameters has minor effects. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
A scheme is proposed to calculate the effect of torsion on each lateral load resisting element of asymmetrical buildings in the context of the response spectrum technique. The scheme consists of: (i) Obtain the modal shear and torque on the building by the response spectrum technique, (ii) Compute the total modal shear forces on each frame by resolving the modal shear and torque on the building according to principles of structural mechanics. The shears on each frame due to the lateral load effect and torsional effect are combined algebraically, (iii) Obtain the total shear force on each frame by combining the total modal shears on that frame in a root sum square manner. Since the proper phase relationship between the lateral load effect and torsional effect is accounted for on a modal basis, it is believed that the proposed scheme provides a more realistic load estimate on the frames than the conventional approach. An example of a simplified mono-symmetrical frame structure is chosen to illustrate the accuracy of the proposed scheme, using dynamic time-history analysis as a standard for comparison.  相似文献   

18.
This research study is aimed at evaluating the accuracy of the displacement coefficient method (DCM) of FEMA 440 and associated nonlinear static procedure (NLSP) for actual buildings with soft story mechanism and various ductility capacities. The DCM and associated NLSP are evaluated using two existing seismically vulnerable buildings with soft story mechanism. The buildings are first retrofitted using a ductile steel‐brace‐link system to represent those with good ductility capacity and then retrofitted with RC squat infill shear panels (SISPs) to represent those with relatively poor ductility capacity. The evaluation of the DCM of FEMA 440 and associated NLSP is then performed by comparing the roof displacements (target displacements), maximum interstory drifts, and maximum plastic hinge rotations of the original and retrofitted buildings obtained from NLSP (at the target displacement level of DCM) with those obtained from nonlinear response history (NRH) analyses for three different seismic performance levels. It is observed that the DCM, and hence, the NLSP fail to accurately predict the NRH analyses results mainly due to uncertainties in the coefficient C1 of the DCM in the short period range, the inability of the DCM to capture the failure of structural members beyond a certain lateral displacement or plastic rotation limit and associated soft story mechanism. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Results of a detailed statistical study of constant relative strength inelastic displacement ratios to estimate maximum lateral inelastic displacement demands on existing structures from maximum lateral elastic displacement demands are presented. These ratios were computed for single‐degree‐of‐freedom systems with different levels of lateral strength normalized to the strength required to remain elastic when subjected to a relatively large ensemble of recorded earthquake ground motions. Three groups of soil conditions with shear wave velocities higher than 180m/s are considered. The influence of period of vibration, level of lateral yielding strength, site conditions, earthquake magnitude, distance to the source, and strain‐hardening ratio are evaluated and discussed. Mean inelastic displacement ratios and those associated with various percentiles are presented. A special emphasis is given to the dispersion of these ratios. It is concluded that distance to the source has a negligible influence on constant relative strength inelastic displacement ratios. However, for periods smaller than 1s earthquake magnitude and soil conditions have a moderate influence on these ratios. Strain hardening decreases maximum inelastic displacement at a fairly constant rate depending on the level of relative strength for periods of vibration longer than about 1.0s while it decreases maximum inelastic displacement non‐linearly as the period of vibration shortens and as the relative‐strength ratio increases for periods of vibration shorter than 1.0s. Finally, results from non‐linear regression analyses are presented that provide a simplified expression to be used to approximate mean inelastic displacement ratios during the evaluation of existing structures built on firm sites. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, a contribution of various types of masonry infill to the behaviour of reinforced concrete frames under lateral loads is presented. As a part of the bigger project, ten one‐bay, one‐storey reinforced concrete frames were designed according to the EC8, built in a scale 1:2.5, infilled with masonry and tested under constant vertical and cyclic lateral load. The masonry wall had various strength properties, namely, high strength hollow clay brick blocks, medium strength hollow clay brick blocks and low strength lightweight autoclaved aerated concrete blocks. There were no additional shear connectors between the masonry and frame. The results showed that the composite ‘framed wall’ structure had much higher stiffness, damping and initial strength than the bare frame structure. Masonry infill filled in the load capacity gap from very low (0.05%) to drifts when the frame took over (0.75%). The structures behaved as linear monolithic elements to drifts of 0.1%, reached the maximum lateral capacities at drift of 0.3%, maintained it to drifts of 0.75% and after that their behaviour depended on the frame. Masonry infill had severe damage at drift levels of about 0.75% but contributed to the overall system resistance to drifts of about 1%. At that drift level, the frame had only minor damage and was tested to drifts of about 2% without any loss of capacity. Improvement of the ‘infill provisions’ in the codes could be sought by taking into account the contribution of a common masonry that reduces expected damages by lowering the drift levels. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号