首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The optimum parameters of tuned mass dampers (TMD) that result in considerable reduction in the response of structures to seismic loading are presented. The criterion used to obtain the optimum parameters is to select, for a given mass ratio, the frequency (tuning) and damping ratios that would result in equal and large modal damping in the first two modes of vibration. The parameters are used to compute the response of several single and multi-degree-of-freedom structures with TMDs to different earthquake excitations. The results indicate that the use of the proposed parameters reduces the displacement and acceleration responses significantly. The method can also be used in vibration control of tall buildings using the so-called ‘mega-substructure configuration’, where substructures serve as vibration absorbers for the main structure. It is shown that by selecting the optimum TMD parameters as proposed in this paper, significant reduction in the response of tall buildings can be achieved. © 1997 John Wiley & Sons, Ltd.  相似文献   

2.
土木工程结构的双层多重调谐质量阻尼器控制策略   总被引:4,自引:0,他引:4  
为能得到用尽可能少的调谐质量阻尼器(TMD)组成有效性和鲁棒性高的多重调谐质量阻尼器控制系统,本文提出了一种适用于土木工程结构的新控制策略——双层多重调谐质量阻尼器(DMT—MD)。使用定义的优化目标函数,评价了双层多重调谐质量阻尼器(DMTMD)的控制性能。数值结果表明,双层多重调谐质量阻尼器(DMTMD)比多重凋谐质量阻尼器(MTMD)具有更好的有效性和对频率调谐的鲁棒性。DMTMD比双重调谐质量阻尼器(DTMD)具有更好的有效性,而DMTMD和DT—MD对频率调谐的鲁棒性近似相同。因此,双层多重调谐质量阻尼器是一种先进的结构控制策略。  相似文献   

3.
This paper studies tuned mass dampers (TMDs) resulting in high modal damping for mechanical systems incorporating such devices for the purpose of seismic response reduction. Focusing on the determination of damping and tuning, the proposed methodology identifies a point of multiplicity of complex eigenvalues and eigenvectors, resulting in different parameters for TMDs according to their location with respect to such multiplicity condition. It is shown that significant equal modal damping and average modal damping can be induced by properly tuning highly damped TMDs, obtaining parameters intrinsic to the mechanical systems, and excitation independent. Further, it is shown that the methodology yields, as particular cases, two proposals by others using TMDs for the same purpose of seismic response abatement. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
多维地震作用下非对称结构利用TLCD减震控制研究   总被引:5,自引:1,他引:5  
本文提出在结构两正交方向同时设置U形调液阻尼器(TLCD)用来减小地震作用下的平动-扭转反应,文中建立了结构-TLCD体系在多维地震动作用下的运动方程,分析了系统参数对减震效果的影响,最后通过数值算例,给出了高层建筑平扭耦联地震反应的减震效果。  相似文献   

5.
本文提出了一种新的控制策略——多重双重调谐质量阻尼器(以下简称为MDTMD)。MDTMD系统参数的可能组合形成十种MDTMD模型,本文评价其中最易制作的一种MDTMD模型。利用定义的优化目标函数,评价了MDTMD的控制性能。数值结果表明MDTMD比双重调谐质量阻尼器(DTMD)具有更好的有效性和对频率调谐的鲁棒性。但MDTMD的冲程大于DTMD的冲程。  相似文献   

6.
This paper presents a theoretical investigation on the performance of multiple‐tuned liquid column dampers (MTLCD) for reducing torsional vibration of structures in comparison with single‐tuned liquid column dampers (STLCD). The analytical model is first developed for torsional vibration of a structure with an MTLCD under either harmonic excitation or white noise excitation. The experimental results are then used to verify the analytical model for coupled MTLCD‐structure systems under harmonic excitation. The performance of an MTLCD and its beneficial parameters for achieving the maximum torsional response reduction to white noise excitation are finally investigated through an extensive parametric study in terms of the distance from the centre line of the MTLCD to the rotational axis of the structure, the ratio of the horizontal length to the total length of liquid column, frequency bandwidth, head‐loss coefficient, the number of TLCD units in an MTLCD, frequency‐turning ratio and the spectral level of excitation moment. The results show that there is an optimal head‐loss coefficient and an optimal frequency bandwidth for an MTLCD to achieve the maximum torsional response reduction. It is also demonstrated that the sensitivity of an optimized MTLCD to the frequency‐tuning ratio is less than that of an optimized STLCD, and it can be further improved by increasing the bandwidth but at the cost of less torsional vibration reduction. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
调质阻尼器地震反应控制应用研究   总被引:6,自引:0,他引:6  
本文在结构地震反应时程分析基础上,研究调质阻尼器控制地震反应的最优参数设计方法,分析了多自由度体系的阻尼器设计以及调质阻尼器控制的失调效应.并用算例验证了该设计方法用于地震反应控制的可行性。  相似文献   

8.
土木工程结构鲁棒控制的发展   总被引:1,自引:0,他引:1  
评述了结构控制的发展,指出发展结构鲁棒控制策略的重要性。重点评述了结构双重调谐质量阻尼器(DTMD)和多重双重调谐质量阻尼器(MDTMD)的控制策略,提出了需进一步发展主动双重调谐质量阻尼器(ADTMD)和主动多重双重调谐质量阻尼器(AMDTMD)控制策略、此外,评述了结构鲁棒控制的设计准则与高层建筑和大跨桥梁在风与地震作用下的统一自适应主动鲁棒控制策略。  相似文献   

9.
It is well established that small tuned mass dampers (TMDs) attached to structures are very effective in reducing excessive harmonic vibrations induced by external loads but are not as interesting within the context of earthquake engineering problems. For this reason, large mass ratio TMDs have been proposed with the objective of adding a significant amount of damping to structures, thus constituting a good means of reducing structural response in these cases. This solution has other important and attractive dynamic features such as robustness to system uncertainties and reduction of the motion of the inertial mass. In this context, this paper aims to describe an alternative methodology to existing procedures used to tune these devices to earthquake loads and to present some additional considerations regarding its performance in controlling seismic vibrations. The main feature of the proposed method consists of establishing a direct proportion between the damping ratios of the structure's first two vibration modes and the adopted mass ratio. By equalizing the damping ratios of the system's main vibration modes, this proposal also facilitates the use of simplified methods, such as modal analysis based on response spectra. To demonstrate the usefulness of this alternative methodology, an application example is presented, which was also used to perform a parametric study involving other tuning methods and to estimate mass ratio values from which there is no significant advantage in increasing the TMD mass. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Active multiple tuned mass dampers (referred to as AMTMD), which consist of several active tuned mass dampers (ATMDs) with identical stiffness and damping coefficients but varying mass and control force, have recently been proposed to suppress undesirable oscillations of structures under ground acceleration. It has been shown that the AMTMD can remarkably improve the performance of multiple tuned mass dampers (MTMDs) and is also more effective in reducing structure oscillation than single ATMDs. Notwithstanding this, good performance of AMTMD (including a single ATMD illustrated from frequency-domain analysis) may not necessarily translate into a good seismic reduction behavior in the time-domain. To investigate these phenomena, a three-story steel structure model controlled by AMTMD with three ATMDs was implemented in SIMULINK and subjected to several historical earthquakes. Likewise, the structure under consideration was assumed to have uncertainty of stiffness, such as 4-15% of its initial stiffness, in the numerical simulations. The optimum design parameters of the AMTMD were obtained in the frequency-domain by implementing the minimization of the minimum values of the maximum dynamic magnification factors (DMF) of general structures with AMTMD. For comparison purposes, response analysis of the same structure with a single ATMD was also performed. The numerical analysis and comparison show that the AMTMD generally renders better effectiveness when compared with a single ATMD for structures subjected to historical earthquakes. In particular, the AMTMD can improve the effectiveness of a single ATMD for a structure with an uncertainty of stiffness of 4-15% of its initial stiffness.  相似文献   

11.
The effectiveness of viscous and viscoelastic dampers for seismic response reduction of structures is quite well known in the earthquake engineering community. This paper deals with the optimal utilization of these dampers in a structure to achieve a desired performance under earthquake‐induced ground excitations. Frequency‐dependent and ‐independent viscous dampers and viscoelastic dampers have been considered as the devices of choice. To determine the optimal size and location of these dampers in the structure, a genetic algorithm is used. The desired performance is defined in terms of several different forms of performance functions. The use of the genetic approach is not limited to any particular form of performance function as long as it can be calculated numerically. For illustration, numerical examples for different building structures are presented showing the distribution and size of different dampers required to achieve a desired level of reduction in the response or a performance index. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents an experimental investigation on the performance of multiple‐tuned liquid column dampers (MTLCD) for reducing torsional vibration of structures in comparison with single‐tuned liquid column dampers (STLCD). A large structure model simulating its torsional vibration and several STLCDs and MTLCDs of different configurations are designed and constructed. A series of harmonically forced vibration tests are conducted to evaluate the effectiveness of MTLCDs in reducing torsional vibration of the structure and to assess the performance effects of various design parameters, which include the number of TLCD units in a MTLCD, the bandwidth of a MTLCD, the frequency tuning ratio and the moment excitation amplitude. An averaging method is also used to identify the head loss coefficients of STLCDs and MTLCDs in conjunction with the free vibration test technique. The experimental results show that the performance of a MTLCD is better than a STLCD with the same water volume in reducing the torsional vibration of structure. The performance sensitivity to frequency tuning ratio can be improved by using MTLCDs. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
In this study, several mass dampers were designed and fabricated to suppress the seismic responses of a ¼‐scale three‐storey building structure. The dynamic properties of the dampers and structure were identified from free and forced vibration tests. The building structure with or without the dampers was, respectively, tested on a shake table under the white noise excitation, the scaled 1940 El Centro earthquake and the scaled 1952 Taft earthquake. The dampers were placed on the building floors using the sequential procedure developed by the authors in previous studies. Experimental results indicated that the multiple damper system is substantially superior to a single tuned mass damper in mitigating the floor accelerations even though the multiple dampers are sub‐optimal in terms of tuning frequency, damping and placement. These results validated the sequential procedure for placement of the multiple dampers. The structure was also analysed numerically based on the shake table excitation and the identified structure and damper parameters for all test cases. Numerical and experimental results are in good agreement, validating the dynamic properties identified. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
Tuned mass dampers for response control of torsional buildings   总被引:1,自引:0,他引:1  
This paper presents an approach for optimum design of tuned mass dampers for response control of torsional building systems subjected to bi‐directional seismic inputs. Four dampers with fourteen distinct design parameters, installed in pairs along two orthogonal directions, are optimally designed. A genetic algorithm is used to search for the optimum parameter values for the four dampers. This approach is quite versatile as it can be used with different design criteria and definitions of seismic inputs. It usually provides a globally optimum solution. Several optimal design criteria, expressed in terms of performance functions that depend on the structural response, are used. Several sets of numerical results for a torsional system excited by random and response spectrum models of seismic inputs are presented to show the effectiveness of the optimum designs in reducing the system response. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents an energy‐based theoretical model for a two degree‐of‐freedom mechanical system. After a general formulation in Appendix A, the model is specialized to study tuned mass dampers as a means to substantially increase modal damping in order to induce a consequential decrease of the seismic response of the structures thus provided. Although approximate since it neglects coupling due to damping, it is shown that the model yields a first‐order approximation to the exact frequencies, providing values of optimum damping that closely match exact results proposed by others. In view of this, it is proposed that the model be applied through an iterative numerical procedure that identifies the pertinent optimum parameters. It is also shown that for certain particular benchmark cases the model provides closed‐form equations for the parameters defining the dynamic states related to these special conditions. Despite its approximate nature the model presented in this paper is rational, and due to its explicit consideration of energy balance and overall simplicity, it provides a convenient platform for the study of tuned mass dampers, as well as for other methods of structural passive control. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
本文通过Maxwell模型模拟的黏滞阻尼器连接的2种不同相邻结构的地震反应分析,对阻尼器设置的位置和阻尼参数进行了同时优化。在El Centro波、Tianjin波和Taft波3种较典型的地震动作用下,分别对不同质量比和不同刚度比的主、子结构在无阻尼和有阻尼情况下进行了地震反应分析,并以主结构的顶层最大相对位移最小作为优化目标,寻求出最优的阻尼器摆放位置以及对应的最优阻尼系数。结果显示,当阻尼器选择合适的安放位置和合理的阻尼参数时,主、子结构的地震反应都会有一定程度的降低,从而收到较好的减震效果。  相似文献   

17.
基于定义的二类优化目标函数,评价双层多重调谐质量阻尼器(DMTMD)控制策略对漂移频率系数(DFR)摄动的鲁棒性。数值研究表明,使用第二类优化准则设计的DMTMD、双重调谐质量阻尼器(DTMD)和多重调谐质量阻尼器(MTMD)比使用第一类优化准则设计的DMTMD、DTMD和MTMD具有更高的对DFR摄动的鲁棒性。而且,使用第二类优化准则设计的总数为4的DMTMD、DTMD和总数为11的MTMD具有近似相同的对DFR摄动的鲁棒性。  相似文献   

18.
Various types of passive control systems have been used to suppress the seismic response of structures in recent years. Among these systems, Tuned Liquid Column Dampers (TLCDs) dissipate the input earthquake energy by combining the effects of the movement of the liquid mass in the container, the restoring force on the liquid due to the gravity loads and the damping due to the liquid movement through orifices. In this study, the effects of seismic excitation characteristics such as frequency content and soil condition on the seismic performance of TLCDs are investigated using nonlinear time-history analyses. In this regard, among the past earthquake ground motion records of Iran, 16 records with different parameters were selected. In the structural model developed, the attached TLCD is simulated as a Tuned Mass Damper (TMD) having the same vibration period and damping ratio as the original TLCD. The numerical results show that the seismic excitation characteristics have a substantial role on the displacement reduction capability of TLCDs and they should be considered accordingly in the design of TLCDs.  相似文献   

19.
A continuously variable semi‐active damper is used in a tuned mass damper (TMD) to reduce the level of vibration of a single‐degree‐of‐freedom system subjected to harmonic base excitations. The ground hook dampers as have been used in the auto‐industry are being studied here. Using these dampers a new class of tuned mass dampers, named as ground hook tuned mass dampers (GHTMD) is being introduced. In order to generalize the design properties of the GHTMDs, they are defined in terms of non‐dimensional parameters. The optimum design parameters of GHTMDs for lightly damped systems are obtained based on the minimization of the steady‐state displacement response of the main mass. These parameters are computed for different mass ratios and main system damping ratios. Frequency responses of the resulting systems are compared to that of equivalent TMDs using passive dampers. In addition, other characteristics of this system as compared to the passive TMDs are discussed. A design guide to obtain the optimum parameters of GHTMD using the developed diagrams in this paper based on non‐dimensional values is presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
This paper develops a two‐stage optimum design procedure for multiple tuned mass dampers (MTMD) to reduce structural dynamic responses with the limitation of MTMD's stroke. A new performance index, which is a linear combination of structural response ratio and MTMD stroke ratio by a weighting factor α, is proposed; α is in the range from 0 to 1.0. The larger the α, the more important the stroke. The case of α=1.0 indicates that MTMD is locked. The analytical results show that the MTMD's stroke can be significantly suppressed with little sacrifice of structural control effectiveness when an appropriate α is selected. To verify the design algorithm, a 360 kg‐MTMD composed of five TMD units arranged in parallel was fabricated. Shaking table tests of a large‐scale three‐story building with and without the MTMD under earthquake excitations were conducted at the National Center for Research on Earthquake Engineering (NCREE) in Taiwan. The experimental results show that MTMD is not only effective in mitigating the building responses but also is successful in suppressing its stroke. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号