首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Recent work has shown the dominance of the Himalaya in supporting the Indian summer monsoon(ISM),perhaps by surface sensible heating along its southern slope and by mechanical blocking acting to separate moist tropical flow from drier midlatitude air.Previous studies have also shown that Indian summer rainfall is largely unaffected in sensitivity experiments that remove only the Tibetan Plateau.However,given the large biases in simulating the monsoon in CMIP5 models,such results may be model dependent.This study investigates the impact of orographic forcing from the Tibetan Plateau,Himalaya and Iranian Plateau on the ISM and East Asian summer monsoon(EASM) in the UK Met Office's Had GEM3-GA6 and China's Institute of Atmospheric Physics FGOALS-FAMIL global climate models.The models chosen feature oppositesigned biases in their simulation of the ISM rainfall and circulation climatology.The changes to ISM and EASM circulation across the sensitivity experiments are similar in both models and consistent with previous studies.However,considerable differences exist in the rainfall responses over India and China,and in the detailed aspects such as onset and retreat dates.In particular,the models show opposing changes in Indian monsoon rainfall when the Himalaya and Tibetan Plateau orography are removed.Our results show that a multi-model approach,as suggested in the forthcoming Global Monsoon Model Intercomparison Project(GMMIP) associated with CMIP6,is needed to clarify the impact of orographic forcing on the Asian monsoon and to fully understand the implications of model systematic error.  相似文献   

2.
The year 2019 experienced an excess monsoon season over the Indian region, with the seasonal rainfall being 110 % of the long period average (LPA). Several zones across the country suffered multiple extreme rainfall events and flood situations resulting in a massive loss of life and property. The first half of 2019 experienced a moderate El Niño Modoki event that lasted till mid-summer. Another important feature of 2019 was the strongest recorded positive Indian Ocean Dipole (IOD) that lasted approximately seven months from May to November. This study has examined the reasons for the intra-seasonal variability of rainfall over India during the 2019 monsoon using available remote sensing and reanalysis data. Our analysis has shown that the presence of El Niño and the formation of a very severe cyclonic storm (VSCS) in the Arabian Sea were unfavorable for the monsoon onset and its northward advancement during June. However, the Walker circulation associated with El Niño helped strengthen the IOD developed early in the Indian Ocean, much before the monsoon onset. The anomalously strong IOD strengthened the monsoon circulation during July-September and resulted in excess rainfall over India.  相似文献   

3.

The Indian landmass has been divided into homogeneous clusters by applying the cluster analysis to the probability density function of a century-long time series of daily summer monsoon (June through September) rainfall at 357 grids over India, each of approximately 100 km × 100 km. The analysis gives five clusters over Indian landmass; only cluster 5 happened to be the contiguous region and all other clusters are dispersed away which confirms the erratic behavior of daily rainfall over India. The area averaged seasonal rainfall over cluster 5 has a very strong relationship with Indian summer monsoon rainfall; also, the rainfall variability over this region is modulated by the most important mode of climate system, i.e., El Nino Southern Oscillation (ENSO). This cluster could be considered as the representative of the entire Indian landmass to examine monsoon variability. The two-sample Kolmogorov-Smirnov test supports that the cumulative distribution functions of daily rainfall over cluster 5 and India as a whole do not differ significantly. The clustering algorithm is also applied to two time epochs 1901–1975 and 1976–2010 to examine the possible changes in clusters in a recent warming period. The clusters are drastically different in two time periods. They are more dispersed in recent period implying the more erroneous distribution of daily rainfall in recent period.

  相似文献   

4.
关于亚洲夏季风爆发的动力学研究的若干近期进展   总被引:6,自引:1,他引:5  
资料分析显示,与850 hPa风场相比,地面风的变化能更好地表征亚洲各季风系统的特征。基于地面风的季节性反转和降水的显著变化所构建的亚洲夏季风(ASM)爆发指数和等时线图表明:亚洲热带夏季风(TASM)在5月初首先在孟加拉湾(BOB)东南部爆发后不是向西传播,而是向东经中印半岛向东推进,于5月中到达中国南海(SCS),6月初到达热带西北太平洋。印度夏季风的表面低压系统源于近赤道阿拉伯海地区,于6月初到达印度西南部喀拉拉邦,印度夏季风随之爆发。亚洲副热带夏季风(STASM)5月初在西北太平洋日本本州东南的海区发生后向西南伸展,于6月初与南海季风降水区连接,形成东北—西南向雨带,夏季风在中国东南沿海登陆,日本的“梅雨”(Baiu)开始。6月中该雨带向北到达长江流域和韩国,江淮梅雨和韩国的“梅雨”(Changma) 开始。本文还回顾了亚洲热带夏季风爆发的动力学研究的若干近期进展。春季青藏高原和南亚海陆分布的联合强迫作用使海表温度(SST)在BOB中东部形成短暂但强盛的暖池,在高层南亚高压的抽吸作用下,常伴有季风爆发涡旋(MOV)发展,使冬季连续带状的副高脊线在孟加拉湾东部断裂,导致亚洲热带季风首先在BOB爆发。BOB东/西部有东/西风型垂直切变,利于激发/抑制对流活动,并增加/减少海洋向大气的表面感热加热,从而使得亚洲夏季风爆发的向西传播在BOB西海岸遇到屏障。季风爆发逐渐向东伸展引发南海和热带西太平洋夏季风相继爆发。季风降水释放的强大潜热使南亚高压发展西伸,纬向非对称位涡强迫显著增强;在阿拉伯半岛强烈的表面感热加热所诱发的中层阿拉伯反气旋的共同作用下,位于阿拉伯海近赤道的低压系统北移发展成为季风爆发涡旋,导致印度季风爆发。由此可见,历时约一个月的亚洲热带夏季风爆发的三个阶段(孟加拉湾、南海和印度季风爆发)是发生在特定的地理环境下受特定的动力—热力学规律驱动的接续过程。  相似文献   

5.
This work attempts to reconcile in a common and comprehensive framework the various conflicting results found in the literature regarding Indian Summer Monsoon (ISM) rainfall-Sea Surface Temperature (SST) relationships, especially the links with El-Ni?o Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). To do so, we first examine the linear relationships between ISM rainfall and global SST anomalies during 1950–1976 and 1979–2006 periods. Our results highlight the existence of significant modulations in SST teleconnections and precursory patterns between the first (June–July, JJ) and second part (August–September, AS) of the monsoon. This JJ–AS rainfall dichotomy is more pronounced after the 1976–1977 climate regime shift and tends to blur the global ISM-ENSO signal during the recent period, leading to an apparent weakening of this relationship at the seasonal time scale. Although ISM rainfall in JJ and AS is still strongly linked to ENSO over both periods, the lead-lag relationships between ENSO and AS Indian rainfall have changed during recent decades. Indeed, ENSO variability in the preceding boreal winter has now a significant impact on rainfall variability during the second half of ISM. To evaluate in more details the impact of this JJ-AS dichotomy on the ISM-ENSO-IOD relationships, ISM correlations are also examined separately during El Ni?o and La Ni?a years. Results indicate that the early onset of El Ni?o during boreal spring causes deficient monsoon rainfall in JJ. In response to weaker monsoon winds, warm SST anomalies appear in the west equatorial IO, generating favorable conditions for the development of a positive IOD in AS. Local air-sea processes triggered by the SST anomalies in the eastern node of IOD seem, in turn, to have a more active role on AS rainfall variability, as they may counteract the negative effect of El Ni?o on ISM rainfall via a modulation of the local Hadley circulation in the eastern IO. The JJ–AS rainfall dichotomy and its recent amplification may then result from an enhancement of these IO feedbacks during recent El Ni?o years. This explains why, although El Ni?o events are stronger, a weakening of the ISM-ENSO relationship is observed at the seasonal scale after 1979. Results during La Ni?a years are consistent with this hypothesis although local processes in the southeast IO now play a more prominent role and act to further modulate ISM rainfall in AS. Finally, our results highlight the existence of a biennal rhythm of the IOD-ENSO-ISM system during the recent period, according to which co-occurring El Ni?o and positive IOD events tend to be followed by a warming of the IO, a wet ISM during summer and, finally, a La Ni?a event during the following boreal winter.  相似文献   

6.
Sea surface temperature associations with the late Indian summer monsoon   总被引:1,自引:1,他引:0  
Recent gridded and historical data are used in order to assess the relationships between interannual variability of the Indian summer monsoon (ISM) and sea surface temperature (SST) anomaly patterns over the Indian and Pacific oceans. Interannual variability of ISM rainfall and dynamical indices for the traditional summer monsoon season (June–September) are strongly influenced by rainfall and circulation anomalies observed during August and September, or the late Indian summer monsoon (LISM). Anomalous monsoons are linked to well-defined LISM rainfall and large-scale circulation anomalies. The east-west Walker and local Hadley circulations fluctuate during the LISM of anomalous ISM years. LISM circulation is weakened and shifted eastward during weak ISM years. Therefore, we focus on the predictability of the LISM. Strong (weak) (L)ISMs are preceded by significant positive (negative) SST anomalies in the southeastern subtropical Indian Ocean, off Australia, during boreal winter. These SST anomalies are mainly linked to south Indian Ocean dipole events, studied by Besera and Yamagata (2001) and to the El Niño-Southern Oscillation (ENSO) phenomenon. These SST anomalies are highly persistent and affect the northwestward translation of the Mascarene High from austral to boreal summer. The southeastward (northwestward) shift of this subtropical high associated with cold (warm) SST anomalies off Australia causes a weakening (strengthening) of the whole monsoon circulation through a modulation of the local Hadley cell during the LISM. Furthermore, it is suggested that the Mascarene High interacts with the underlying SST anomalies through a positive dynamical feedback mechanism, maintaining its anomalous position during the LISM. Our results also explain why a strong ISM is preceded by a transition in boreal spring from an El Niño to a La Niña state in the Pacific and vice versa. An El Niño event and the associated warm SST anomalies over the southeastern Indian Ocean during boreal winter may play a key role in the development of a strong ISM by strengthening the local Hadley circulation during the LISM. On the other hand, a developing La Niña event in boreal spring and summer may also enhance the east–west Walker circulation and the monsoon as demonstrated in many previous studies.  相似文献   

7.
Monsoon precipitation in the AMIP runs   总被引:5,自引:1,他引:4  
 We present an analysis of the seasonal precipitation associated with the African, Indian and the Australian-Indonesian monsoon and the interannual variation of the Indian monsoon simulated by 30 atmospheric general circulation models undertaken as a special diagnostic subproject of the Atmospheric Model Intercomparison Project (AMIP). The seasonal migration of the major rainbelt observed over the African region, is reasonably well simulated by almost all the models. The Asia West Pacific region is more complex because of the presence of warm oceans equatorward of heated continents. Whereas some models simulate the observed seasonal migration of the primary rainbelt, in several others this rainbelt remains over the equatorial oceans in all seasons. Thus, the models fall into two distinct classes on the basis of the seasonal variation of the major rainbelt over the Asia West Pacific sector, the first (class I) are models with a realistic simulation of the seasonal migration and the major rainbelt over the continent in the boreal summer; and the second (class II) are models with a smaller amplitude of seasonal migration than observed. The mean rainfall pattern over the Indian region for July-August (the peak monsoon months) is even more complex because, in addition to the primary rainbelt over the Indian monsoon zone (the monsoon rainbelt) and the secondary one over the equatorial Indian ocean, another zone with significant rainfall occurs over the foothills of Himalayas just north of the monsoon zone. Eleven models simulate the monsoon rainbelt reasonably realistically. Of these, in the simulations of five belonging to class I, the monsoon rainbelt over India in the summer is a manifestation of the seasonal migration of the planetary scale system. However in those belonging to class II it is associated with a more localised system. In several models, the oceanic rainbelt dominates the continental one. On the whole, the skill in simulation of excess/deficit summer monsoon rainfall over the Indian region is found to be much larger for models of class I than II, particularly for the ENSO associated seasons. Thus, the classification based on seasonal mean patterns is found to be useful for interpreting the simulation of interannual variation. The mean rainfall pattern of models of class I is closer to the observed and has a higher pattern correlation coefficient than that of class II. This supports Sperber and Palmer’s (1996) result of the association of better simulation of interannual variability with better simulation of the mean rainfall pattern. The hypothesis, that the skill of simulation of the interannual variation of the all-India monsoon rainfall in association with ENSO depends upon the skill of simulation of the seasonal variation over the Asia West Pacific sector, is supported by a case in which we have two versions of the model where NCEP1 is in class II and NCEP2 is in class I. The simulation of the interannual variation of the local response over the central Pacific as well as the all-India monsoon rainfall are good for NCEP2 and poor for NCEP1. Our results suggest that when the model climatology is reasonably close to observations, to achieve a realistic simulation of the interannual variation of all-India monsoon rainfall associated with ENSO, the focus should be on improvement of the simulation of the seasonal variation over the Asia West Pacific sector rather than further improvement of the simulation of the mean rainfall pattern over the Indian region. Received: 2 June 1997 / Accepted: 8 January 1998  相似文献   

8.
National Centers for Environmental Prediction (NCEP) Coupled Forecast System (CFS) is selected to play a lead role for monsoon research (seasonal prediction, extended range prediction, climate prediction, etc.) in the ambitious Monsoon Mission project of Government of India. Thus, as a prerequisite, a detail analysis for the performance of NCEP CFS vis-a-vis IPCC AR4 models for the simulation of Indian summer monsoon (ISM) is attempted. It is found that the mean monsoon simulations by CFS in its long run are at par with the IPCC models. The spatial distribution of rainfall in the realm of Indian subcontinent augurs the better results for CFS as compared with the IPCC models. The major drawback of CFS is the bifurcation of rain types; it shows almost 80–90 % rain as convective, contrary to the observation where it is only 50–65 %; however, the same lacuna creeps in other models of IPCC as well. The only respite is that it realistically simulates the proper ratio of convective and stratiform rain over central and southern part of India. In case of local air–sea interaction, it outperforms other models. However, for monsoon teleconnections, it competes with the better models of the IPCC. This study gives us the confidence that CFS can be very well utilized for monsoon studies and can be safely used for the future development for reliable prediction system of ISM.  相似文献   

9.
Crétat  Julien  Braconnot  Pascale  Terray  Pascal  Marti  Olivier  Falasca  Fabrizio 《Climate Dynamics》2020,55(9-10):2761-2784

The low-frequency evolution of Indian rainfall mean-state and associated interannual-to-decadal variability is discussed for the last 6000 years from a multi-configuration ensemble of fully coupled global transient simulations. This period is marked by a shift of Indian Summer Monsoon Rainfall (ISMR) distribution towards drier conditions, including extremes, and a contraction of the rainy season. The drying is larger in simulations with higher horizontal resolution of the atmosphere and revised land surface hydrology. Vegetation–climate interactions and the way runoff is routed to ocean modulate the timing of the monsoon onset but have negligible effects on the evolution of seasonal rainfall amounts in our modeling framework in which carbon cycling is always active. This drying trend is accompanied by changes in ISMR interannual-to-decadal variability decreasing over north and south India but increasing over central India (20°–25° N). The ISMR interannual-to-decadal variability is decomposed into six physically consistent regimes using a clustering technique to further characterize its changes and associated teleconnections. From 6 to 3.8 kyr bp, the century-to-century modulations in the frequency of occurrence associated to the regimes are asynchronous between the simulations. Orbitally-driven trends can only be detected for two regimes over the whole 6–0 kyr bp period. These two regimes reflect increased influence of ENSO on both ISMR and Indian Ocean Dipole as the inter-hemispheric energy gradient weakens. Severe long-term droughts are also shown to be a combination of long-term drying and internally generated low-frequency modulations of the interannual-to-decadal variability.

  相似文献   

10.
A Study of the Teleconnections in the Asian-Pacific Monsoon Region   总被引:2,自引:0,他引:2       下载免费PDF全文
The interactions among the Asian-Pacific monsoon subsystems have significant impacts on the climatic regimes in the monsoon region and even the whole world. Based on the domestic and foreign related research, an analysis is made of four different teleconnection modes found in the Asian-Pacific monsoon region, which reveal clearly the interactions among the Indian summer monsoon (ISM), the East Asian summer monsoon (EASM), and the western North Pacific summer monsoon (WNPSM). The results show that: (1) In the period of the Asian monsoon onset, the date of ISM onset is two weeks earlier than the beginning of the Meiyu over the Yangtze River Basin, and a teleconnection mode is set up from the southwestern India via the Bay of Bengal (BOB) to the Yangtze River Basin and southern Japan, i.e., the "southern" teleconnection of the Asian summer monsoon. (2) In the Asian monsoon culmination period, the precipitation of the Yangtze River Basin is influenced significantly by the WNPSM through their teleconnection relationship, and is negatively related to the WNPSM rainfall, that is, when the WNPSM is weaker than normal, the precipitation of the Yangtze River Basin is more than normal. (3) In contrast to the rainfall over the Yangtze River Basin, the precipitation of northern China (from the 4th pentad of July to the 3rd pentad of August) is positively related to the WNPSM. When the WNPSM is stronger than normal, the position of the western Pacific subtropical high (WPSH) becomes farther northeast than normal, the anomalous northeastward water vapor transport along the southwestern flank of WPSH is converged over northern China, providing adequate moisture for more rainfalls than normal there. (4) The summer rainfall in northern China has also a positive correlation with the ISM. During the peak period of ISM, a teleconnection pattern is formed from Northwest India via the Tibetan Plateau to northern China, i.e., the "northern" teleconnection of the Asian summer monsoon. The  相似文献   

11.
Peninsular India and Sri Lanka receive major part of their annual rainfall during the northeast monsoon season (October–December). The long-term trend in the northeast monsoon rainfall over the Indian Ocean and peninsular India is examined in the vicinity of global warming scenario using the Global Precipitation Climatology Project (GPCP) dataset available for the period 1979–2010. The result shows a significant increasing trend in rainfall rate of about 0.5 mm day?1 decade?1 over a large region bounded by 10 °S–10 °N and 55 °E–100 °E. The interannual variability of seasonal rainfall rate over peninsular India using conventional rain gauge data is also investigated in conjunction to the Indian Ocean dipole. The homogeneous rain gauge data developed by Indian Institute of Tropical Meteorology over peninsular India also exhibit the considerable upward rainfall trend of about 0.4 mm day?1 decade?1 during this period. The associated outgoing longwave radiation shows coherent decrease in the order of 2 W?m?2 decade?1 over the rainfall increase region.  相似文献   

12.
Various SST indices in the Indo-Pacific region have been proposed in the literature in light of a long-range seasonal forecasting of the Indian Summer Monsoon (ISM). However, the dynamics associated with these different indices have never been compared in detail. To this end, the present work re-examines the variabilities of ISM rainfall, onset and withdrawal dates at interannual timescales and explores their relationships with El Ni?o-Southern Oscillation (ENSO) and various modes of coupled variability in the Indian Ocean. Based on recent findings in the literature, five SST indices are considered here: Ni?o3.4 SST index in December?CJanuary both preceding [Nino(?1)] and following the ISM [Nino(0)], South East Indian Ocean (SEIO) SST in February?CMarch, the Indian Ocean Basin (IOB) mode in April?CMay and, finally, the Indian Ocean Dipole (IOD) averaged from September to November, also, both preceding [IOD(?1)] and following the ISM [IOD(0)]. The respective merits and associated dynamics of the selected indices are compared through various correlation and regression analyses. Our first result is a deceptive one: the statistical relationships with the ISM rainfall at the continental and seasonal scales are modest and only barely significant, particularly for the IOD, IOB and Nino(?1) indices. However, a detailed analysis shows that statistical relationships with the ISM rainfall time series are statistically biased as the ISM rainfall seems to be shaped by much intraseasonal variability, linked in particular to the timing of the onset and withdrawal of the ISM. Surprisingly, analysis within the ISM season shows that Nino(?1), IOB and SEIO indices give rise to prospects of comparatively higher ISM previsibility for both the ISM onset and the amount of rainfall during the second half of the ISM season. The IOD seems to play only a secondary role. Moreover, our work shows that these indices are associated with distinct processes occurring within the Indian Ocean from late boreal winter or early spring onwards. The regression analyses also illustrate that these (local) mechanisms are dynamically and remotely linked to different phases of ENSO in the equatorial Pacific, a result which may have useful implications in terms of forecasting strategies since the choice of the better indices then hinges on the concurrent phasing of the ENSO cycle.  相似文献   

13.
This study has investigated the possible relation between the Indian summer monsoon and the Pacific Decadal Oscillation (PDO) observed in the sea surface temperature (SST) of the North Pacific Ocean. Using long records of observations and coupled model (NCAR CCSM4) simulation, this study has found that the warm (cold) phase of the PDO is associated with deficit (excess) rainfall over India. The PDO extends its influence to the tropical Pacific and modifies the relation between the monsoon rainfall and El Niño-Southern Oscillation (ENSO). During the warm PDO period, the impact of El Niño (La Niña) on the monsoon rainfall is enhanced (reduced). A hypothesis put forward for the mechanism by which PDO affects the monsoon starts with the seasonal footprinting of SST from the North Pacific to the subtropical Pacific. This condition affects the trade winds, and either strengthens or weakens the Walker circulation over the Pacific and Indian Oceans depending on the phase of the PDO. The associated Hadley circulation in the monsoon region determines the impact of PDO on the monsoon rainfall. We suggest that knowing the phase of PDO may lead to better long-term prediction of the seasonal monsoon rainfall and the impact of ENSO on monsoon.  相似文献   

14.
Summary The relationship between the all-India summer monsoon rainfall and surface/upper air (850, 700, 500 and 200 mb levels) temperatures over the Indian region and its spatial and temporal characteristics have been examined to obtain a useful predictor for the monsoon rainfall. The data series of all-India and subdivisional summer monsoon rainfall and various seasonal air temperatures at 73 surface observatories and 9 radiosonde stations (1951–1980) have been used in the analysis. The Correlation Coefficients (CCs) between all-India monsoon rainfall and seasonal surface air temperatures with different lags relative to the monsoon season indicate a systematic relationship.The CCs between the monsoon rainfall and surface-air temperature of the preceding MAM (pre-monsoon spring) season are positive over many parts of India and highly significant over central and northwestern regions. The average surface air temperature of six stations i.e., Jodhpur, Ahmedabad, Bombay, Indore, Sagar and Akola in this region (Western Central India, WCI) showed a highly significant CC of 0.60 during the period 1951–1980. This relationship is also found to be consistently significant for the period from 1950 to present, though decreasing in magnitude after 1975. WCI MAM surface air temperature has shown significant CCs with the monsoon rainfall over eleven sub-divisions mainly in northwestern India, i.e., north of 15 °N and west of 80 °E.Upper air temperatures of the MAM season at almost all the stations and all levels considered show positive CCs with the subsequent monsoon rainfall. These correlations are significant at some central and north Indian stations for the lower and middle tropospheric temperatures.The simple regression equation developed for the period 1951–1980 isy = – 183.20 + 8.83x, wherey is the all-India monsoon rainfall in cm andx is the WCI average surface air temperature of MAM season in °C. This equation is significant at 0.1% level. The suitability of this parameter for inclusion in a predictive regression model along with five other global and regional parameters has been discussed. Multiple regression analysis for the long-range prediction of monsoon rainfall, using several combinations of these parameters indicates that the improvement of predictive skill considerably depends upon the selection of the predictors.With 9 Figures  相似文献   

15.
The space-time evolution of convection over the monsoon region containing the Indian subcontinent, the Indian Ocean and the West Pacific has been studied. A multi-channel singular spectrum analysis of the daily outgoing longwave radiation has yielded two intraseasonal oscillatory patterns and two large-scale standing patterns as the most dominant modes of intraseasonal variability. The oscillatory modes vary on time scales of about 45 and 28 days and their average cycles of variability are shown to correspond to the life cycles of active and break periods of monsoon rainfall over India. During an active (break) cycle, a convection (dry) anomaly zone first appears in the equatorial Indian Ocean, subsequently expands to cover the Indian subcontinent and finally contracts to disappear in the northern part of India. Some eastward and northward movements are found to be associated with both oscillatory modes, while westward movement may also be associated with the 28-day mode. The oscillatory modes are shown to have a large spatial scale extending to the West Pacific. One of the standing modes has anomalies of uniform sign covering the entire region and is related to El Niño and southern oscillation (ENSO) pattern. The other standing mode has a dipole structure in the equatorial Indian Ocean associated with large-scale anomalies over India with the same sign as those over the western part of the dipole. These two standing modes persist throughout the monsoon season, each maintaining its respective pattern. The seasonal mean monsoon is mainly determined by the two standing patterns, without much contribution from the oscillatory modes. The relative role of the standing patterns (ENSO mode and dipole mode) seems to be important in determining the seasonal mean during certain years.  相似文献   

16.
Karmakar  Nirupam  Misra  Vasubandhu 《Climate Dynamics》2020,54(11):4693-4710
Climate Dynamics - Onset and demise of the Indian summer monsoon (ISM) and intraseasonal variability (ISV) embedded within the ISM are dominant climatological phenomena observed over the Indian...  相似文献   

17.
The day-to-day behavior of Indian summer monsoon rainfall (IMR) is associated with a hierarchy of quasi-periods, namely 3?C7, 10?C20 and the 30?C60?days. These two periods, the 10?C20?days and the 30?C60?days have been related with the active and break cycles of the monsoon rainfall over the Indian sub-continent. The seasonal strength of Indian summer monsoon rainfall may depend on the frequency and duration of spells of break and active periods associated with the fluctuations of the above intra-seasonal oscillations (ISOs). Thus the predictability of the seasonal (June through September) mean Indian monsoon depends on the extent to which the intra-seasonal oscillations could be predicted. The primary objective of this study is to bring out the dynamic circulation features during the pre-monsoon/monsoon season associated with the extreme phases of these oscillations The intense (weak) phase of the 10?C20 (30?C60) days oscillation is associated with anti-cyclonic circulation over the Indian Ocean, easterly flow over the equatorial Pacific Ocean resembling the normal or cold phase (La Nina) of El Nino Southern Oscillation (ENSO) phenomenon, and weakening of the north Pacific Sub-tropical High. On the other hand the weak phase of 10?C20?days mode and the intense phase of 30?C60?days mode shows remarkable opposite flow patterns. The circulation features during pre-monsoon months show that there is a tendency for the flow patterns observed in pre-monsoon months to persist during the monsoon months. Hence some indications of the behavior of these modes during the monsoon season could be foreshadowed from the spring season patterns. The relationship between the intensity of these modes and some of the long-range forecasting parameters used operationally by the India Meteorological Department has also been examined.  相似文献   

18.
张盈盈  李忠贤  刘伯奇 《大气科学》2015,39(6):1059-1072
本文基于日本气象厅(JMA)的JRA-25再分析资料,分析了春季青藏高原表面感热加热年际变化的时空特征,及其对印度夏季风爆发过程的影响。EOF分析结果表明,春季高原感热加热的年际变化在高原中西部最为明显,这主要与局地地-气温差的年际变率有关。统计分析表明,当春季高原中西部表面感热偏强(弱)时,印度夏季风爆发偏早(晚),且高原中西部表面感热与ENSO事件无显著相关。春季高原中西部感热能够通过改变印度季风区对流层高层和低层的经向热力结构来影响印度夏季风的爆发时间。当春季高原中西部感热偏强时,造成的上升气流在高原以西的印度季风区北部下沉,通过绝热增暖引起局地对流层中上部的异常暖中心,令印度季风区对流层中上部平均温度经向梯度由冬至夏的季节性反转提早。同时,印度季风区北部的下沉运动能够抑制当地降水,令陆面温度升高,并通过非绝热过程造成对流层低层的异常暖中心,进一步增强了印度季风区的海陆热力对比。在印度季风区以北地区对流层高、低层异常增暖的共同作用下,印度夏季风提前爆发。  相似文献   

19.
Summary The present study involves the use of Empirical Orthogonal Function (EOF) analysis/Principal Component Analysis (PCA) to compare the dominant rainfall patterns from normal rainfall records over India, coupled with the major modes of the Outgoing Long-wave Radiation (OLR) data for the period (1979–1988) during the monsoon period (June–September). To understand the intraseasonal and interannual variability of the monsoon rainfall, daily and seasonal anomalies have been obtained by using the (EOF) analysis. Importantly, pattern characteristics of seasonal monsoon rainfall covering 68 stations in India are highlighted.The purpose is to ascertain the nature of rainfall distribution over the Indian continent. Based on this, the percentage of variance for both the rainfall and OLR data is examined. OLR has a higher spatial coherence than rainfall. The first principal component of rainfall data shows high positive values, which are concentrated over northeast as well as southeast, whereas for the OLR, the area of large positive values is concentrated over northwest and lower value over south India apart from the Indian ocean. The first five principal components explain 92.20% of the total variance for the rainfall and 99.50% of the total variance for the outgoing long-wave radiation. The relationship between monsoon rainfall and Southern Oscillations has also been examined and for the Southern Oscillations, it is 0.69 for the monsoon season. The El-Niño events mostly occurred during Southern Oscillations, i.e. Walker circulation. It has been found that the average number of low pressure system/low pressure system days play an important role during active (flood) or inactive (drought) monsoon year, but low pressure system days play more important role in comparison to low pressure systems and their ratio are (16:51) and (13:25) respectively. Significantly, the analysis identifies the spatial and temporal pattern characteristics of possible physical significance.  相似文献   

20.
A number of significant weaknesses existed in our previous analysis of the changes in the Asian monsoon onset/retreat from coupled model intercomparison project phase 3 (CMIP3) models, including a lack of statistical significance tests, a small number of models analysed, and limited understanding of the causes of model uncertainties. Yet, the latest IPCC report acknowledges limited confidence for projected changes in monsoon onset/retreat. In this study we revisit the topic by expanding the analysis to a large number of CMIP5 models over much longer period and with more diagnoses. Daily 850 hPa wind, volumetric atmospheric precipitable water and rainfall data from 26 CMIP5 models over two sets of 50-year periods are used in this study. The overall model skill in reproducing the temporal and spatial patterns of the monsoon development is similar between CMIP3 and CMIP5 models. They are able to show distinct regional characteristics in the evolutions of Indian summer monsoon (ISM), East Asian summer monsoon (EASM) and West North Pacific summer monsoon (WNPSM). Nevertheless, the averaged onset dates vary significantly among the models. Large uncertainty exists in model-simulated changes in onset/retreat dates and the extent of uncertainty is comparable to that in CMIP3 models. Under global warming, a majority of the models tend to suggest delayed onset for the south Asian monsoon in the eastern part of tropical Indian Ocean and Indochina Peninsula and nearby region, primarily due to weakened tropical circulations and eastward shift of the Walker circulation. The earlier onset over the Arabian Sea and part of the Indian subcontinent in a number of the models are related to an enhanced southwesterly flow in the region. Weak changes in other domains are due to the offsetting results among the models, with some models showing earlier onsets but others showing delayed onsets. Different from the analysis of CMIP3 model results, this analysis highlights the importance of SST warming patterns over both the tropical Pacific and Indian Oceans in affecting the modelling results. The increased atmospheric moisture content offsets some effects of the delayed onset and results in increased rainfall intensity during the active monsoon period. The deficiencies of using rainfall alone in assessing the potential changes of the monsoon system are also shown in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号