首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
亚洲热带夏季风的首发地区和机理研究   总被引:28,自引:5,他引:28  
文中分析了多年逐候平均 85 0hPa风场和黑体辐射温度等物理量的时空演变 ,结果表明 ,90°E以东的孟加拉湾、中南半岛和南海是亚洲热带夏季风首先爆发的地区 ,爆发时间在 2 7~ 2 8候 ,具有突发性和同时性。 90°E以西的印度半岛和阿拉伯海是热带夏季风爆发较晚的地区 ,季风首先在该区 10°N以南爆发 ,时间约在 30~ 31候 ,然后向北推进 ,6月末在全区建立 ,爆发过程具有渐进性。机制分析表明 ,由于 110~ 12 0°E的中高纬东亚大陆在春季和初夏地面感热通量、温度和气压的迅速变化 ,使热带低压带首先在该处冲破高压带 ,生成大陆低压 ,并引导西南气流在 90°E以东地区首先建立。在 90°E以西的印度半岛地区 ,地面感热通量在 4~ 5月间几乎没有明显变化 ,因而印度季风比南海季风晚爆发约 1个月。由此得出 ,90°E是东亚夏季风和南亚夏季风的分界线。此外 ,还着重探讨了南亚高压的季节变化与亚洲热带夏季风爆发的时间联系。发现南亚高压中心位置与亚洲热带夏季风爆发时间有较好的对应关系。南亚高压中心跳过 2 0°N时 ,南海夏季风爆发 ,跳过 2 5°N时 ,印度夏季风在其南部爆发。将用上述方法确定的爆发时间与用其他方法确定的爆发时间相比较 ,发现它们在南海地区有较好的一致性 ,在印度地区略有差异。  相似文献   

2.
孟加拉湾西南季风与南海热带季风季节内振荡特征的比较   总被引:4,自引:2,他引:2  
李汀  琚建华 《气象学报》2013,71(3):492-504
采用美国国家环境预报中心的向外长波辐射和风场资料及日本气象厅的降水资料,用30-60d滤波后的夏季风指数在孟加拉湾和南海的区域平均值分别代表孟加拉湾西南季风和南海热带季风季节内振荡,对两支季风的季节内振荡特征进行比较分析,发现孟加拉湾西南季风的季节内振荡和南海热带季风的季节内振荡在夏季风期间(5-10月)都有约3次半的波动.夏季风期间,在阿拉伯海-西太平洋纬带上,夏季风的季节内振荡有4次从阿拉伯海的东传和3次从西太平洋的西传,其中7月后东传可直达西太平洋.孟加拉湾和南海在夏季风期间都有4次季节内振荡的经向传播,但孟加拉湾在约15°N以南为季节内振荡从热带东印度洋的北传,在约15°N以北则为副热带季风季节内振荡的南传;而在南海则是4次季节内振荡从热带的北传.在以孟加拉湾西南季风季节内振荡和南海热带季风季节内振荡分别划分的6个位相中,都存在1-3位相和4-6位相中低频对流、环流形势相反的特征,这是由热带东印度洋季节内振荡的东传和北传所致.热带印度洋季节内振荡沿西南-东北向经过约14d传到孟加拉湾,激发了孟加拉湾西南季风季节内振荡的东传,经过约6d到达南海,激发了南海热带季风季节内振荡的北传,经过约25d到达华南,形成热带印度洋季节内振荡向华南的经纬向接力传播(45d).孟加拉湾西南季风季节内振荡所影响的降水主要是在20°N以南的热带雨带随低频对流的东移而东移;而南海热带季风季节内振荡所影响的降水除了这种热带雨带随低频对流的东移外,还有在20°N以北的东亚副热带地区存在雨带随南海低频对流的北移而北移.  相似文献   

3.
采用NCEP/NCAR再分析资料、FY2E-TBB及台站降水资料,对2011年南海夏季风爆发前后的环流特征进行分析。结果表明:2011年强对流活动由孟加拉湾扩展到南海地区,同时伴随着南亚高压移至中南半岛北部,西太平洋副热带高压向东撤出南海地区,南海夏季风于5月第4候(第28候)爆发;季风爆发后,印度-孟加拉湾季风槽形成,南海地区低空开始盛行西南气流,并伴有对流降水的发展和温、湿等要素的突变。随着季风活动的推进,我国雨带北抬,长江中下游一带进入梅雨期,出现降水大值区。通过分析发现长江中下游梅雨与南海夏季风均受副热带高压影响,且两者的强度为显著的负相关关系,梅雨开始时间与南海夏季风爆发时间呈显著的正相关关系。2011年南海夏季风偏弱,爆发时间偏早,长江中下游梅雨强度偏强,入梅时间异常偏早。  相似文献   

4.
本文是系列文章的第二篇,首先分析了1989年亚洲夏季风爆发时期青藏高原及邻近地区地表感热通量和大气温度场季节变化的基本特征,着重讨论了春季高原地表感热加热和亚洲季风爆发的联系,然后分析了1980~1989年10a南海季风爆发的气候学特征。上述工作表明,在春末初夏过渡季节,高原上空大气温度变化出现阶段性的跃升,并同亚洲夏季风阶段性的爆发有很好的对应关系。高原地表感热通量的持续增大导致了对流层高层局地反气旋式扰动环流的出现,使南亚反气旋北进的过程明显受到高原局地热力环流的调制,而热带东风急流入口区所产生的强烈的高层辐散,提供了有利于热带季风对流在南海地区首先爆发的动力学条件。此外,从5月份至6月中下旬,青藏高原、伊朗—阿富汗上空强大暖中心相继建立的结果,直接导致了热带地区上空大气南北温度梯度的反向依次在南海—孟加拉湾东部和阿拉伯海—印度次大陆由东向西相继建立,从而决定了亚洲季风建立的过程在不同地区爆发的时间不同。  相似文献   

5.
张永生  吴国雄 《气象学报》1998,56(5):513-528
该工作将亚洲季风区作为一个复杂的海-陆-气耦合系统,来深入考察季风区海-气、陆-气相互作用的基本事实和物理过程,探讨它们在决定亚洲季风爆发及北半球行星尺度大气环流的季节突变的物理机理。本文是系列文章的第一篇,着重研究亚洲夏季风爆发的区域性和阶段性特征,以及过渡季节热带、副热带地区海-气、陆-气相互作用的基本事实,初步分析了它们之间的联系。研究表明,热带季风对流于4月底到5月初越过赤道进入北半球,首先出现在孟加拉湾东部-中南半岛西南部地区,然后于5月中旬和6月上旬末分别出现在南海和印度半岛地区,呈阶段性爆发的特征。季风对流在孟加拉湾东部-中南半岛西南部地区爆发阶段,在大气环流变化和对流活动中心位置出现区别于南海季风和印度季风爆发的特征。通过对地表感热通量和海表潜热通量的分析,表明热带海洋上海表感热通量甚小于海表潜热通量,南海季风爆发时期印度洋上海表潜热通量显著增大,印度季风爆发后海表潜热通量的高值中心在孟加拉湾和阿拉伯海上建立起来。印度洋上低层增强的过赤道气流引起的强烈的海-气相互作用导致海表水汽的大量蒸发,并通过其输送作用,为季风对流的爆发提供了充足的水汽来源。过渡季节在副热带地区(沿27.5~37.5°N纬带上), 青藏高原和西太平洋上地(海)表感热通量和潜热通量均有迅速的季节变化性, 但趋势相反。当青藏高原上地表感热通量和潜热通量呈阶段性的显著加大, 西太平洋上海表感热通量和潜热通量迅速减小。这种大陆和海洋对大气加热的显著的季节化的差异, 影响着大气环流的季节转变。  相似文献   

6.
吴国雄  张永生 《大气科学》1998,22(6):825-838
使用欧洲中期天气预报中心(ECMWF)的客观分析资料、ECMWF/TOGA补充数据集,美国NMC气候分析中心的向外长波辐射(OLR)资料以及国家气候中心存档的中国336个测站的降水资料,研究了1989年春天青藏高原和邻近地区的热力特征和环流特征,及其对亚洲季风区季节转换的影响。文中集中分析了表面感热和潜热通量的时空分布特征。结果表明:1989年亚洲季风的爆发由三个接续的阶段组成。第一阶段是5月上旬在孟加拉湾东岸,称为孟加拉(BOB)季风爆发阶段。第二阶段是5月20日左右开始的中国南海(SCS)季风爆发阶段。第三阶段是6月10日左右开始的印度上空的南亚季风(或称印度季风)的爆发阶段。分析表明,正是由于青藏高原的热力和机械强迫作用才使亚洲季风首先在孟加拉湾地区出现。BOB季风环流提供了有利的背景条件,使SCS季风接着爆发。最后随着亚洲热带流型的西移,印度季风爆发才发生。  相似文献   

7.
东亚地区夏季风爆发过程   总被引:72,自引:5,他引:67  
利用中国194站1961~1995年日降水资料及NCEP1979~1997年候格点降水资料,探讨了亚洲地区自春到夏的雨季开始分布。结果表明,东亚地区自春到夏存在副热带季风雨季开始和热带季风雨季开始。前者于4月初开始于华南北部和江南地区,随后向南和向西南扩展,于4月末扩展到华南沿海和中南半岛,这个雨带主要是冷空气和副热带高压西侧转向的SW风以及南亚地区冬春副热带南支西风槽中西风汇合而形成的,是副热带季风雨季开始。后者是南海热带季风爆发后使原来由江南移到华南沿岸的副热带季风雨带随副热带高压北进而北进,前汛期雨季进入盛期,江南出现第二次雨峰,形成梅雨期和江淮及华北雨季。同时,热带季风雨带也自东向西传播到达南亚地区而形成热带季风雨季。还讨论了1998年东亚地区夏季风爆发过程,指出南海夏季风爆发期的季风由副高北侧形成的新生气旋进入南海造成南海中部西风和南海越赤道气流转向的SW季风加强汇合而形成,因而是东亚季风系统中环流系统季节变化造成的,和印度季风无关。在南海季风爆发期阿拉伯海仍由副热带反气旋控制,南亚仍是上述副热带反气旋北侧NW风南下后转向的偏西副热带气流所控制,索马里低空急流仍未爆发,赤道西风并未影响南海。  相似文献   

8.
夏季亚洲季风槽的断裂过程及其结构特征   总被引:2,自引:0,他引:2  
本文分析了1982年7月一次亚洲季风槽的断裂过程。结果发现,在盛夏亚洲季风盛行期间,中南半岛与南海地区的季风槽可在西太平洋副热带高压东退与孟加拉湾季风低压的西移过程中断裂消失。与此同时,热带西南季风北进,梅雨雨带北移,雨景加大。此外,根据季风区内纬向风的垂直结构,说明了下列事实的成因:在印度和中南半岛季风槽附近及其南侧广大地区内,经常出现大量的季风云团和季风低压;而在西太平洋季风槽的北侧及槽的附近,则经常产生强的热带气旋和台风螺旋云系;南海地区的状况介于以上两者之间,在这里可以有弱的台风生成,也可以有季风云团存在。   相似文献   

9.
李汀  琚建华 《高原气象》2013,32(3):617-625
利用云南省124个气象观测站降水资料和NCEP OLR再分析资料,分析了云南主汛期(6-8月)季节内振荡(ISO)的活动特征及其传播的年际差异,并着重分析了云南主汛期ISO活跃年热带印度洋ISO向云南传播的两条路径和两个亚洲季风系统ISO分别对云南主汛期ISO的影响。云南主汛期平均降水量与区域平均OLR呈显著负相关,用低频(30~60天)OLR表征云南夏季风ISO,其强度具有明显的年际差异。在云南主汛期ISO活跃年,ISO主要来自于两条传播路径:一条是从副热带西太平洋或中国东南部的三次西传,强度较大,分别造成云南主汛期内3次低频对流显著活跃期;另一条是从热带印度洋沿孟加拉湾西岸的西南-东北向传播,到达云南时加剧了云南主汛期的低频对流。在云南主汛期ISO不活跃年,主汛期仅有两次弱的低频对流,主要来自于副热带两次弱的纬向低频OLR传播,第一次是从副热带西太平洋的西传,第二次是从阿拉伯海北部的东传。在云南主汛期ISO活跃年,热带印度洋低频对流一方面沿孟加拉湾西岸向西南-东北方向传播,激发了孟加拉湾西南季风ISO继续向云南传播;另一方面东传到南海以南的热带洋面并向南海北传,激发了南海夏季风ISO北传到副热带中国东部地区,再向云南西传,越过云南后与从东北方向传来的低频对流在孟加拉湾以北地区交汇,完成了一个经纬向接力传播的周期。因此,正是热带印度洋ISO通过两条路径对南海夏季风ISO和孟加拉湾西南季风ISO的激发,使得东亚夏季风和南亚夏季风这两个亚洲季风系统共同作用于云南主汛期ISO。  相似文献   

10.
李汀  琚建华 《气象学报》2013,71(1):38-49
通过对1979—2008年热带太平洋30—60 d振荡(Madden-Julian Oscillation,MJO)指数、美国国家环境预报中心再分析资料和日本气象厅降水资料的分析,发现热带东印度洋MJO强度和传播状况影响孟加拉湾西南夏季风季节内振荡及相关低频环流、对流和降水分布。当热带东印度洋MJO在春末夏初较活跃时,孟加拉湾西南季风季节内振荡活动在4—8月比其不活跃时提前约20 d(约1/2个周期),其对于孟加拉湾西南季风季节内振荡的影响可持续整个季风期,使西南季风的季节内振荡不仅酝酿期和活跃期提前发生,季风期有所延长,季节内振荡也更强。西南季风季节内振荡具有明显的北传和东传特征,北传沿孟加拉湾通道从赤道向副热带推进,而东传则沿10°—20°N从孟加拉湾向东传至南海地区。春末夏初时热带东印度洋MJO的异常状况,正是通过对西南季风季节内振荡东传和北传的影响,进而对孟加拉湾西南季风季节内振荡在季风期的酝酿、维持和活跃产生作用,这种作用同时体现在强度和时间上。孟加拉湾西南夏季风季节内振荡强度与热带东印度洋MJO在4月21日—5月5日的活动呈现显著负相关,当热带东印度洋MJO在春末夏初较活跃时,孟加拉湾西南夏季风季节内振荡的强度较大,在5—8月经历3次季节内振荡波动,低频对流场和环流场在1—3位相(孟加拉湾西南夏季风季节内振荡为正位相)和4—6位相(负位相)时呈反位相特征,这是由MJO低频对流的东传及在孟加拉湾和南海这两个通道上的北传引起的。从印度半岛到菲律宾群岛的降水在1—3位相和4—6位相上分别为正异常和负异常,其中,在第2位相(孟加拉湾西南季风季节内振荡波峰)和第5位相(孟加拉湾西南季风季节内振荡波谷)时分别为降水最大正异常和最大负异常。反之,在热带印度洋MJO在春末夏初不活跃年时,孟加拉湾西南夏季风季节内振荡活动较弱,强度偏弱且振荡也不规律。  相似文献   

11.
The Earliest Onset Areas and Mechanism of the Tropical Asian Summer Monsoon   总被引:1,自引:0,他引:1  
The multi-yearly averaged pentad meteorological fields at 850 hPa of the NCEP/NCAR reanalysis dada and the TBB fields of the Japan Meteorological Agency during 1980-1994 are analyzed. It is found that if the pentad is taken as the time unit of the monsoon onset, then the tropical Asian summer monsoon (TASM) onsets earliest, simultaneously and abruptly over the whole area in the Bay of Bengal (BOB), the Indo-China Peninsula (ICP), and the South China Sea (SCS), east of 90°E, in the 27th to 28th pentads of a year (Pentads 3 to 4 in May), while it onsets later in the India Peninsula (IP) and the Arabian Sea (AS), west of 90°E. The TASM bursts first at the south end of the IP in the 30th to 31st pentads near 10°N, and advances gradually northward to the whole area, by the end of June. Analysis of the possible mechanism depicts that the rapid changes of the surface sensible heat flux, air temperature, and pressure in spring and early summer in the middle to high latitudes of the East Asian continent between 100°E and 120癊are crucially responsible for the earliest onset of the TASM in the BOB to the SCS areas. It is their rapid changes that induce a continental depression to form and break through the high system of pressure originally located in the above continental areas. The low depression in turn introduces the southwesterly to come into the BOB to the SCS areas, east of 90°E, and thus makes the SCS summer monsoon (SCSSM) burst out earliest in Asia. In the IP to the AS areas, west of 90°E, the surface sensible heat flux almost does not experience obvious change during April and May, which makes the tropical Indian summer monsoon (TISM) onset later than the SCSSM by about a month. Therefore, it is concluded that the meridian of 90°E is the demarcation line between the South Asian summer monsoon (SASM, i.e., the TISM) and the East Asian summer monsoon (EASM, including the SCSSM). Besides, the temporal relations between the TASM onset and the seasonal variation of the South Asian high (SAH) are discussed, too, and it is found that there are good relations between the monsoon onset time and the SAH center positions. When the SAH center advances to north of 20°N, the SCSSM onsets, and to north of 25°N, the TISM onsets at its south end. Comparison between the onset time such determined and that with other methodologies shows fair consistency in the SCS area and some differences in the IP area.  相似文献   

12.
A review of recent advances in research on Asian monsoon in China   总被引:6,自引:0,他引:6  
This paper reviews briefly advances in recent research on monsoon by Chinese scholars, including primarily: (1) the establishment of various monsoon indices. In particular, the standardized dynamic seasonal variability index of the monsoon can delimit the geographical distribution of global monsoon systems and determine quantitatively the date of abrupt change in circulation. (2) The provision of three driving forces for the generation of monsoon. (3) The revelation of the heating-pump action of the Tibetan Plateau, which strengthens southerlies in the southern and southeastern periphery of the Plateau and results in a strong rainfall center from the northern Bay of Bengal (BOB) to the Plateau itself. (4) Clarification of the initial onset of the Asian Summer Monsoon (ASM) in the BOB east of 90°E, Indochina Peninsula (ICP) and the South China Sea, of which the rapid northward progression of tropical convection in the Sumatra and the rapid westward movement of the South Asia High to the Indochina Peninsula are the earliest signs. (5) The provision of an integrated mechanism for the onset of the East Asian Summer Monsoon (EASM), which emphasizes the integrated impact of sensible heat over Indian Peninsula, the warm advection of the Tibetan Plateau and the sensible heat and latent heat over the Indochina Peninsula on the one hand, and the seasonal phase-lock effect of the northward propagation of low frequency oscillation on the other. (6) The revelation of the "planetary-scale moisture transport large-value band" from the Southern Hemisphere through to the Asian monsoon region and into the North Pacific, which is converged by several large-scale moisture transport belts in the Asian-Australian monsoon regions and whose variation influences directly the temporal and spatial distribution of summer rainfall in China. (7) Presenting the features of the seasonal advance of the EASM, the propagation of intraseasonal oscillation, and their relationship with rainfall in Ch  相似文献   

13.
亚洲夏季风爆发始于孟加拉湾,然后向中国南海和印度次大陆扩展,其过程约持续1个月。各地区夏季风爆发时间呈明显的年际变化。利用热带气旋资料和气象再分析资料,统计了1951-2010年孟加拉湾和中国南海夏季风爆发前后西北太平洋热带气旋、孟加拉湾气旋风暴活动和夏季风爆发的关系。结果表明,在孟加拉湾夏季风爆发过程中,共有36 a出现孟加拉湾气旋风暴,并且夏季风爆发偏早年出现风暴的几率最高,为80%。在孟加拉湾夏季风爆发偏早、正常和偏晚3种类型中,孟加拉湾风暴活动频率高峰期多出现在夏季风爆发前后几天内。并且在孟加拉湾风暴活动频率高峰出现前期,西北太平洋热带气旋最先出现活动频率高峰。孟加拉湾夏季风爆发前有40%-50%的年份西北太平洋出现热带气旋活动,其中,夏季风爆发偏早年,爆发前西北太平洋热带气旋活跃的时间偏早(4月第2候),且多活动在中国南海和菲律宾附近;爆发正常年,西北太平洋热带气旋活跃的时间为4月第4候,多活动在略偏东的海域;爆发偏晚年,西北太平洋热带气旋活跃的时间为5月初,活动区域最偏东。中国南海夏季风爆发过程中,60 a中共有29 a西北太平出现热带气旋,其中爆发偏早和正常年出现热带气旋的频率较高,并且热带气旋多出现在爆发当日和爆发后一段时间。整体来看,亚洲夏季风爆发前,西北太平洋热带气旋活动频率最先开始增强,然后孟加拉湾风暴开始活跃并伴随着孟加拉湾夏季风爆发,夏季风爆发偏早和正常年,孟加拉湾夏季风爆发后,西北太平洋热带气旋再次增强,中国南海夏季风爆发。   相似文献   

14.
孟加拉湾季风爆发对南海季风爆发的影响Ⅰ:个例分析   总被引:11,自引:4,他引:11       下载免费PDF全文
利用南海季风试验分析场和NCAR向外长波辐射通量(OLR)资料研究了1998年孟加拉湾季风和南海季风爆发期间副热带环流的大尺度和天气尺度特征,探讨了孟加拉湾季风爆发与南海季风爆发之间的物理联系及孟加拉湾季风气旋的对流凝结潜热释放对副热带高压“撤出”南海的影响。结果表明,1998年5月爆发的东亚季风展现出典型的从孟加拉湾地区东传发展到南海地区的过程。随着孟加拉湾季风爆发和对流活动增强、北移,南海北部出现了低层西风和对流活动,领先于副热带高压在南海地区减弱和撤退。结果还显示南海北部地区的对流凝结加热有助于该地区经向温度梯度的反转,在热成风关系的制约下南海上空副热带高压脊面的垂直倾斜由冬季型转向夏季型,季风爆发。  相似文献   

15.
亚洲季风季节进程的若干认识   总被引:4,自引:0,他引:4       下载免费PDF全文
简要归纳了不同时期随着观测资料的更新对亚洲季风季节进程的若干认识。南海季风试验前,研究认识了东亚季风系统与南亚季风系统的区别。南海季风试验后,对季风进程有了更多的认识,江南副热带雨季开始于4月初,中印半岛热带雨季开始于4月底,南海热带雨季突然建立于5月中旬,都具有半年际的干湿转换。南海中部季风爆发后,亚洲季风在南亚、青藏高原东侧和东亚-太平洋地区全面爆发并由南向北推进。利用近年来高分辨率资料并考虑热带地区半岛陆海地形与热力的影响,认识到亚洲存在5个夏季季风槽与降水相联系的系统,它们分别是西南亚(阿拉伯海)夏季热带季风、南亚(孟加拉湾)夏季热带季风、东南亚(南海)夏季热带季风、西北太平洋夏季热带季风和东亚夏季副热带季风。  相似文献   

16.
Based on summarizing previous achievements and using data as long and new as possible, the onset characteristics of Asian summer monsoon and the role of Asian-Australian “land bridge” in the onset of summer monsoon are further discussed. In particular, the earliest onset area of Asian summer monsoon is comparatively analyzed, and the sudden and progressive characteristics of the onset of summer monsoon in different regions are discussed. Furthermore, the relationships among such critical events during the onset of Asian summer monsoon as the splitting of subtropical high belt over the Bay of Bengal (BOB), the initiation of convection over Indo-China Peninsula, the westward advance, reestablishment of South Asian High, and the rapid northward progression of convection originated from Sumatra in early summer are studied. The important impact of the proper collocation of the latent heating over Indo-China Peninsula and the sensible heating over Indian Peninsula on the splitting of the subtropical high belt, the deepening of BOB trough, the activating of Sri Lanka vortex (twin vortexes in the Northern and Southern Hemispheres), and the subsequent onset of South China Sea summer monsoon are emphasized.  相似文献   

17.
The influence of the biweekly sea surface temperature (SST) in the South China Sea (SCS) on the SCS summer monsoon, especially during the Indian Ocean Dipole (IOD) is presented using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) SST and rainfall data for April to June from 1999 to 2013. During positive IOD (PIOD) years the biweekly SST anomalies over the SCS lead the rain anomalies by three days, with a significant correlation (r?=?0.8, at the 99% confidence level), whereas during negative IOD (NIOD) years, the correlation is only 0.2. The biweekly SST is observed to influence the westward and northward propagating rainfall anomalies over the SCS and, hence, affect the SCS summer monsoon, especially during PIOD years. No such propagation was seen during NIOD years. The biweekly intraseasonal oscillation of SST in the SCS results in enhanced sea level pressure and surface shortwave radiation, especially during PIOD years. The potential findings here indicate that the biweekly SST in the SCS is strongly (weakly) influenced during PIOD (NIOD) years. Further, it is observed that SST in the SCS has a strong (weak) effect on the SCS summer monsoon by westward and northward propagation of rainfall, especially during PIOD (NIOD) years. When a PIOD or NIOD exists over the tropical Indian Ocean, the SCS SST will be strongly (r?=?0.6, at the 99% confidence level) or weakly correlated with the residual index, respectively.  相似文献   

18.
Summary In this study, the authors analyse the observational features of the onset of the South China Sea (SCS) monsoon in 1998 shown in reanalysis data and use a numerical model to understand the mechanisms responsible for these features.The onset of SCS summer monsoon in 1998 occurred around 21 May. Prior to this period, monsoon depression activity was strong over the Bay of Bengal (BOB) and warm temperature anomalies appeared at the mid-upper troposphere over the northern BOB. In the meantime, warm horizontal thermal advection occurred over the northern Indo-China peninsula and South China. This warm advection seemed to play an important role in the winter-to-summer transition of the patterns of mean meridional temperature gradient in the 500–200-mb layer over South Asia.The PSU/NCAR Mesoscale Model Version 5 (MM5) is used to understand the physical link between the latent heating associated with the monsoon depression over BOB and the establishment of SCS monsoon. Full-physics simulations, for a 6-day period coinciding with the onset of the observed monsoon, reproduce realistically the evolution of the monsoon depression and monsoon onset process. It is found that the condensational heating over BOB is important for the formation of large-scale circulation pattern that favors the establishment of SCS monsoon. In an experiment without latent heating, the winter-to-summer reversal of meridional temperature gradient over South Asia was delayed and the onset of SCS summer monsoon did not occur during the simulation period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号