首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
李汀  琚建华 《气象学报》2013,71(1):38-49
通过对1979—2008年热带太平洋30—60 d振荡(Madden-Julian Oscillation,MJO)指数、美国国家环境预报中心再分析资料和日本气象厅降水资料的分析,发现热带东印度洋MJO强度和传播状况影响孟加拉湾西南夏季风季节内振荡及相关低频环流、对流和降水分布。当热带东印度洋MJO在春末夏初较活跃时,孟加拉湾西南季风季节内振荡活动在4—8月比其不活跃时提前约20 d(约1/2个周期),其对于孟加拉湾西南季风季节内振荡的影响可持续整个季风期,使西南季风的季节内振荡不仅酝酿期和活跃期提前发生,季风期有所延长,季节内振荡也更强。西南季风季节内振荡具有明显的北传和东传特征,北传沿孟加拉湾通道从赤道向副热带推进,而东传则沿10°—20°N从孟加拉湾向东传至南海地区。春末夏初时热带东印度洋MJO的异常状况,正是通过对西南季风季节内振荡东传和北传的影响,进而对孟加拉湾西南季风季节内振荡在季风期的酝酿、维持和活跃产生作用,这种作用同时体现在强度和时间上。孟加拉湾西南夏季风季节内振荡强度与热带东印度洋MJO在4月21日—5月5日的活动呈现显著负相关,当热带东印度洋MJO在春末夏初较活跃时,孟加拉湾西南夏季风季节内振荡的强度较大,在5—8月经历3次季节内振荡波动,低频对流场和环流场在1—3位相(孟加拉湾西南夏季风季节内振荡为正位相)和4—6位相(负位相)时呈反位相特征,这是由MJO低频对流的东传及在孟加拉湾和南海这两个通道上的北传引起的。从印度半岛到菲律宾群岛的降水在1—3位相和4—6位相上分别为正异常和负异常,其中,在第2位相(孟加拉湾西南季风季节内振荡波峰)和第5位相(孟加拉湾西南季风季节内振荡波谷)时分别为降水最大正异常和最大负异常。反之,在热带印度洋MJO在春末夏初不活跃年时,孟加拉湾西南夏季风季节内振荡活动较弱,强度偏弱且振荡也不规律。  相似文献   

2.
李汀  琚建华 《高原气象》2013,32(3):617-625
利用云南省124个气象观测站降水资料和NCEP OLR再分析资料,分析了云南主汛期(6-8月)季节内振荡(ISO)的活动特征及其传播的年际差异,并着重分析了云南主汛期ISO活跃年热带印度洋ISO向云南传播的两条路径和两个亚洲季风系统ISO分别对云南主汛期ISO的影响。云南主汛期平均降水量与区域平均OLR呈显著负相关,用低频(30~60天)OLR表征云南夏季风ISO,其强度具有明显的年际差异。在云南主汛期ISO活跃年,ISO主要来自于两条传播路径:一条是从副热带西太平洋或中国东南部的三次西传,强度较大,分别造成云南主汛期内3次低频对流显著活跃期;另一条是从热带印度洋沿孟加拉湾西岸的西南-东北向传播,到达云南时加剧了云南主汛期的低频对流。在云南主汛期ISO不活跃年,主汛期仅有两次弱的低频对流,主要来自于副热带两次弱的纬向低频OLR传播,第一次是从副热带西太平洋的西传,第二次是从阿拉伯海北部的东传。在云南主汛期ISO活跃年,热带印度洋低频对流一方面沿孟加拉湾西岸向西南-东北方向传播,激发了孟加拉湾西南季风ISO继续向云南传播;另一方面东传到南海以南的热带洋面并向南海北传,激发了南海夏季风ISO北传到副热带中国东部地区,再向云南西传,越过云南后与从东北方向传来的低频对流在孟加拉湾以北地区交汇,完成了一个经纬向接力传播的周期。因此,正是热带印度洋ISO通过两条路径对南海夏季风ISO和孟加拉湾西南季风ISO的激发,使得东亚夏季风和南亚夏季风这两个亚洲季风系统共同作用于云南主汛期ISO。  相似文献   

3.
利用NCEP OLR、风场再分析资料和日本APHRO_MA_V1003R1降水资料,针对云南主汛期季节内振荡(ISO)活跃年分析了对应低频对流场、环流场和降水的异常特征,以及热带印度洋大尺度振荡MJO分别激发孟加拉湾西南季风ISO和南海热带季风ISO,从而对云南主汛期ISO和降水产生的影响.在云南主汛期ISO活跃年,低频对流场和环流场在云南ISO波动的1~3位相和4~6位相呈反位相特征,这主要由热带印度洋低频对流东传、北传和副热带西太平洋低频对流西传造成的.热带印度洋的低频对流在发展过程中,一方面沿孟加拉湾西岸向西南-东北方向传播,激发了孟加拉湾西南季风ISO活跃并继续向云南传播;另一方面沿孟加拉湾以南继续东传到南海,激发了南海热带季风ISO活跃并北传到副热带中国东部地区,再沿副热带西传至云南,越过云南后与沿孟加拉湾西岸从东北方向传来的低频对流在孟加拉湾以北地区交汇,完成了一个经纬向接力传播的周期.云南主汛期降水在1~3位相由于副热带低频对流西传和孟加拉湾低频对流东北向传播而处于正距平(第2位相降水最多);在4~6位相,由于副热带低频对流抑制区西传和孟加拉湾低频对流抑制区东北向传播而降水减少(第5位相降水最少),云南主汛期降水与当地低频对流有较好的对应关系.当热带印度洋MJO较强时,4-7月以两条路径向云南的三次传播增强和提前,使得云南主汛期ISO活动也加强,对应产生三次低频对流活跃期,这种MJO由热带印度洋向云南的传播需要30~40天的时间.因此,正是热带印度洋MJO分别对孟加拉湾西南季风ISO和南海热带季风ISO的激发,使得东亚夏季风和南亚夏季风这两个亚洲夏季风系统共同作用于云南主汛期ISO,影响当地降水.  相似文献   

4.
利用四川省132个气象观测站降水资料和NOAA的逐日向外长波辐射(OLR)资料,分析了主汛期热带东印度洋MJO活动异常年低频对流传播的显著差异,及其影响四川盆地主汛期降水的物理过程。探讨了热带东印度洋MJO活跃年低频振荡向四川盆地传播的路径和源头,以及孟加拉湾西南季风系统、东亚副热带季风系统的低频振荡分别对四川盆地主汛期低频对流活动的影响。结果表明:热带印度洋的低频对流激发了孟加拉湾西南季风ISO进入活跃期,并在西南气流的引导下继续向四川盆地传播;低频对流先从热带印度洋东传至菲律宾群岛南部的热带洋面,并向东亚副热带地区北传,激发了东亚副热带季风ISO的活跃加强,进而向四川盆地西传。热带印度洋MJO活动异常对四川盆地降水的调制,正是通过两支季风系统(孟加拉湾夏季风和东亚副热带夏季风)的共同作用,影响了四川盆地主汛期异常的对流活动以及降水的多寡。   相似文献   

5.
基于1979—2020年逐日的NOAA向外长波辐射资料、NCEP/NCAR再分析风场资料,以及全球CMAP再分析降水资料,探讨了气候态亚洲热带夏季风涌的传播过程及与我国夏季相应的降水联系。分析结果表明,主汛期亚洲热带气候态夏季风季节内振荡(CISO)活动是亚洲夏季风活动的主要特征,随时间北传的亚洲热带夏季风CISO称为亚洲热带夏季风涌,主要有南亚夏季风涌和南海夏季风涌。亚洲热带夏季风涌的传播可分为四个阶段。在亚洲热带夏季风涌的发展阶段,印度洋区域低频气旋与对流活跃,孟加拉湾和南海热带区域被低频东风控制,我国大部分地区无降水发生,降水中心位于两广地区。当进入亚洲热带夏季风涌活跃阶段,孟加拉湾和南海热带地区低频气旋和对流活跃,东亚低频“PJ”波列显著,我国降水中心北移到长江以南的附近区域。亚洲热带夏季风涌减弱阶段,孟加拉湾与南海低频气旋消亡,对流减弱,低频西风加强,日本南部附近为低频反气旋控制,我国长江中下游低频南风活跃,降水中心也北移到长江中下游地区,而华南地区已基本无降水,此阶段的大气低频环流场与亚洲热带夏季风涌发展阶段基本相反。进入亚洲热带夏季风涌间歇阶段时,孟加拉湾和南海热带地区低频反气旋活跃,对流不显著,日本南部附近的低频反气旋北移减弱,我国东部基本在低频南风的控制下,降水中心也逐步北移到华北-朝鲜半岛一带,此时的大气低频环流场与亚洲季风涌活跃阶段基本相反。   相似文献   

6.
采用OLR和风场再分析资料及降水资料,发现一个与云南雨季5月降水显著相关的关键区(77.5~82.5 °E,5~10 °N),关键区内OLR低频振荡(Ikey)在4月2—3候的平均值(Ikey-Apr)与云南5月降水具有显著负相关,云南5月多雨年时为负值(低频对流活跃),少雨年时为正值(低频对流受抑制)。多雨年时,关键区在4月2—3候出现的强低频对流标志着亚洲热带季风开始在关键区建立并进入ISO(季节内振荡)活跃期,约20 d后的4月末—5月初关键区低频振荡再次进入活跃位相,激发西南季风沿西南-东北方向传播并向云南输送水汽,当低频对流传到云南后,西南季风在云南建立,云南较早进入雨季,5月降水迅速增多。而当关键区低频信号于4月末—5月初较晚出现时,第二次低频对流和西南季风ISO的东北向传播也随之推迟,夏季风在云南建立和云南雨季开始偏晚,5月降水偏少。把Ikey-Apr作为云南雨季开始早晚和降水多寡的前兆信号。云南5月多雨年从4月第4候—5月第5候,低频对流在云南形成了一个完整波型,5月第1候前孟加拉湾和云南处于低频对流抑制区控制下,西南向水汽输送未形成。5月第1候后关键区低频对流开始向西北-东北向传播,孟加拉湾低频西南风加强,暖湿气流逐渐传向云南,西南季风在云南建立,雨季提前开始,降水迅速增多。   相似文献   

7.
2003年我国夏季西南季风活动概况   总被引:15,自引:1,他引:14  
梁建茵  李春晖  吴尚森 《气象》2004,30(8):8-12
利用NCEP再分析资料、OLR和TRMM资料 ,分析了 2 0 0 3年影响我国的夏季西南季风活动的一些基本特征。主要包括南海夏季风的建立日期的确定、夏季风的推进过程、强度变化和南海地区夏季风季节内振荡特征。结果表明 2 0 0 3年南海夏季季风爆发日期正常偏晚 ( 5月 2 4日 ) ,强度偏弱 ,其季节内振荡过程对淮河流域洪涝有重要影响。  相似文献   

8.
南海西南季风爆发日期及其影响因子   总被引:40,自引:6,他引:34  
梁建茵  吴尚森 《大气科学》2002,26(6):829-844
利用1950~1999年NCEP全球格点日平均资料,在总结南海西南季风爆发前后850 hPa大气环流特征的基础上,提出了一个较为客观的确定南海西南季风爆发日期的大气环流方法.在与1980~1991年其他多种指标确定的爆发日期比较后,作者认为该大气环流方法所确定的爆发日期基本合理,并给出了1950~1999年各年南海西南季风爆发的日期.通过合成对比分析和相关分析发现,前期热带太平洋地区海温异常分布是影响南海西南季风爆发早晚的重要因素.菲律宾以东洋面海温偏高,赤道太平洋中部偏东地区海温偏低,可以使低层西太平洋副高减弱、高层中东太平洋洋中槽加深,印度洋热带地区偏西风偏强,印度洋-太平洋热带地区Walker环流偏强,为热带对流在孟加拉湾-南海地区发展提供了有利的环境.在孟加拉湾南部偏西气流的作用下,南海地区对流活动较为容易发展起来,低层较弱的西太平洋副热带高压也容易较早地撤出南海上空,使得南海西南季风较早爆发.反之亦然.  相似文献   

9.
张永生  吴国雄 《气象学报》1998,56(5):513-528
该工作将亚洲季风区作为一个复杂的海-陆-气耦合系统,来深入考察季风区海-气、陆-气相互作用的基本事实和物理过程,探讨它们在决定亚洲季风爆发及北半球行星尺度大气环流的季节突变的物理机理。本文是系列文章的第一篇,着重研究亚洲夏季风爆发的区域性和阶段性特征,以及过渡季节热带、副热带地区海-气、陆-气相互作用的基本事实,初步分析了它们之间的联系。研究表明,热带季风对流于4月底到5月初越过赤道进入北半球,首先出现在孟加拉湾东部-中南半岛西南部地区,然后于5月中旬和6月上旬末分别出现在南海和印度半岛地区,呈阶段性爆发的特征。季风对流在孟加拉湾东部-中南半岛西南部地区爆发阶段,在大气环流变化和对流活动中心位置出现区别于南海季风和印度季风爆发的特征。通过对地表感热通量和海表潜热通量的分析,表明热带海洋上海表感热通量甚小于海表潜热通量,南海季风爆发时期印度洋上海表潜热通量显著增大,印度季风爆发后海表潜热通量的高值中心在孟加拉湾和阿拉伯海上建立起来。印度洋上低层增强的过赤道气流引起的强烈的海-气相互作用导致海表水汽的大量蒸发,并通过其输送作用,为季风对流的爆发提供了充足的水汽来源。过渡季节在副热带地区(沿27.5~37.5°N纬带上), 青藏高原和西太平洋上地(海)表感热通量和潜热通量均有迅速的季节变化性, 但趋势相反。当青藏高原上地表感热通量和潜热通量呈阶段性的显著加大, 西太平洋上海表感热通量和潜热通量迅速减小。这种大陆和海洋对大气加热的显著的季节化的差异, 影响着大气环流的季节转变。  相似文献   

10.
东亚夏季风的季节内振荡研究   总被引:44,自引:10,他引:34  
琚建华  钱诚  曹杰 《大气科学》2005,29(2):187-194
利用动力学因子和热力学因子结合的方法,将东亚夏季风区的西南风与OLR进行了综合处理,构造成东亚季风指数(IM).研究结果表明,该指数既可很好地反映东亚季风区的风场、高度场的环流特征,又能较好地描述我国长江中下游地区夏季降水和气温的变化.通过功率谱和带通滤波结合的方法研究东亚夏季风中的季节内振荡,东亚夏季风区内低频振荡在夏季主要是以30~60天周期的振荡为主;东亚夏季风的季节内振荡在东亚沿海呈波列的形式,并表现为随时间向北传播的季风涌;由于该季节内振荡的波动,造成了东亚热带夏季风在东亚热带和副热带地区活动的反位相关系.  相似文献   

11.
MJO活动对云南5月降水的影响   总被引:5,自引:3,他引:2  
李汀  严欣  琚建华 《大气科学》2012,36(6):1101-1111
本文分析了1979~2008年5月MJO(Madden and Julian Oscillation)不同位相上大尺度环流对流和水汽输送的异常情况及其对云南5月降水的影响。按MJO活动中心位置从西向东分为8个位相, 在不同位相上, 云南5月降水呈现出明显的差异:第4~6位相(MJO对流中心位于赤道印度洋中部至西太平洋)降水偏多, 而第7~8位相(赤道太平洋中部以东)和第1~3位相(赤道印度洋中西部)降水偏少, 其中以第6位相的降水正异常和第2位相的负异常最为显著。在MJO 1~8位相中, 对流主体从热带印度洋东移。在第1~3位相, 孟加拉湾还未形成西南向水汽输送, 而云南又处于水汽辐散区, 降水较少;第4位相时对流主体到达90°N附近, 部分对流云系向孟加拉湾北传, 并在孟加拉湾生成气旋性环流, 向云南输送水汽, 云南降水增多;第5位相时对流主体传到南海, 部分对流云系在南海北传, 同时在南海形成北传的气旋性环流;第6位相时赤道MJO对流主体虽然东移出孟加拉湾, 但孟加拉湾和南海的两个气旋性环流依然继续北传, 孟加拉湾气旋东部的西南风和南海气旋西部的东北风在云南交汇, 云南被强烈的水汽辐合区控制, 降水最充沛。第7~8位相时, 对流主体减弱, 东移到南海和西太平洋一带, 孟加拉湾转向为偏北风, 停止向云南输送水汽, 且云南处于水汽辐散区控制, 降水偏少。因此, MJO主体在东传过程中, 激发了热带对流在孟加拉湾和南海两条通道上的北传, 强盛的水汽输送和两个海区气旋环流的有利配置是造成云南5月降水的重要原因。  相似文献   

12.
关于亚洲夏季风爆发的动力学研究的若干近期进展   总被引:6,自引:1,他引:5       下载免费PDF全文
资料分析显示,与850 hPa风场相比,地面风的变化能更好地表征亚洲各季风系统的特征。基于地面风的季节性反转和降水的显著变化所构建的亚洲夏季风(ASM)爆发指数和等时线图表明:亚洲热带夏季风(TASM)在5月初首先在孟加拉湾(BOB)东南部爆发后不是向西传播,而是向东经中印半岛向东推进,于5月中到达中国南海(SCS),6月初到达热带西北太平洋。印度夏季风的表面低压系统源于近赤道阿拉伯海地区,于6月初到达印度西南部喀拉拉邦,印度夏季风随之爆发。亚洲副热带夏季风(STASM)5月初在西北太平洋日本本州东南的海区发生后向西南伸展,于6月初与南海季风降水区连接,形成东北—西南向雨带,夏季风在中国东南沿海登陆,日本的“梅雨”(Baiu)开始。6月中该雨带向北到达长江流域和韩国,江淮梅雨和韩国的“梅雨”(Changma) 开始。本文还回顾了亚洲热带夏季风爆发的动力学研究的若干近期进展。春季青藏高原和南亚海陆分布的联合强迫作用使海表温度(SST)在BOB中东部形成短暂但强盛的暖池,在高层南亚高压的抽吸作用下,常伴有季风爆发涡旋(MOV)发展,使冬季连续带状的副高脊线在孟加拉湾东部断裂,导致亚洲热带季风首先在BOB爆发。BOB东/西部有东/西风型垂直切变,利于激发/抑制对流活动,并增加/减少海洋向大气的表面感热加热,从而使得亚洲夏季风爆发的向西传播在BOB西海岸遇到屏障。季风爆发逐渐向东伸展引发南海和热带西太平洋夏季风相继爆发。季风降水释放的强大潜热使南亚高压发展西伸,纬向非对称位涡强迫显著增强;在阿拉伯半岛强烈的表面感热加热所诱发的中层阿拉伯反气旋的共同作用下,位于阿拉伯海近赤道的低压系统北移发展成为季风爆发涡旋,导致印度季风爆发。由此可见,历时约一个月的亚洲热带夏季风爆发的三个阶段(孟加拉湾、南海和印度季风爆发)是发生在特定的地理环境下受特定的动力—热力学规律驱动的接续过程。  相似文献   

13.
南海夏季风爆发前后深对流传播的多向性   总被引:1,自引:0,他引:1  
高辉 《大气科学》2009,33(1):29-37
根据1979~2004年NCEP/NCAR的逐日OLR资料, 对南海夏季风爆发前后南海地区热带深对流的纬向和经向传播特征进行分析, 结果表明, 在南海夏季风爆发前后, 热带深对流的传播方向无论是纬向还是经向在各年都不尽相同, 亦即具有多向性。在纬向上, 南海季风区深对流既可以由孟加拉湾向东传播到南海, 也可以由西太平洋向西传播到南海, 也可在南海地区直接生成。但在此时期, 印度季风区纬向传播相对单一, 主要为向西传播。在经向上, 南海地区的对流活动可以受到来自南半球热带地区和北半球中纬度的共同影响, 但印度季风区主要受热带地区对流的影响。上述结果表明, 南海夏季风爆发期季风区对流活动远比印度季风区复杂, 南海夏季风爆发的深对流云系既可来源于其东西侧, 也可来源于其南北侧, 或是局地发展。作者进一步分析了造成不同深对流来源的机制, 发现低空副高不同的移动路径是造成这一多样性的可能原因, 这可能也是目前对部分年份南海夏季风爆发日期确定存在争议的原因。  相似文献   

14.
The Earliest Onset Areas and Mechanism of the Tropical Asian Summer Monsoon   总被引:1,自引:0,他引:1  
The multi-yearly averaged pentad meteorological fields at 850 hPa of the NCEP/NCAR reanalysis dada and the TBB fields of the Japan Meteorological Agency during 1980-1994 are analyzed. It is found that if the pentad is taken as the time unit of the monsoon onset, then the tropical Asian summer monsoon (TASM) onsets earliest, simultaneously and abruptly over the whole area in the Bay of Bengal (BOB), the Indo-China Peninsula (ICP), and the South China Sea (SCS), east of 90°E, in the 27th to 28th pentads of a year (Pentads 3 to 4 in May), while it onsets later in the India Peninsula (IP) and the Arabian Sea (AS), west of 90°E. The TASM bursts first at the south end of the IP in the 30th to 31st pentads near 10°N, and advances gradually northward to the whole area, by the end of June. Analysis of the possible mechanism depicts that the rapid changes of the surface sensible heat flux, air temperature, and pressure in spring and early summer in the middle to high latitudes of the East Asian continent between 100°E and 120癊are crucially responsible for the earliest onset of the TASM in the BOB to the SCS areas. It is their rapid changes that induce a continental depression to form and break through the high system of pressure originally located in the above continental areas. The low depression in turn introduces the southwesterly to come into the BOB to the SCS areas, east of 90°E, and thus makes the SCS summer monsoon (SCSSM) burst out earliest in Asia. In the IP to the AS areas, west of 90°E, the surface sensible heat flux almost does not experience obvious change during April and May, which makes the tropical Indian summer monsoon (TISM) onset later than the SCSSM by about a month. Therefore, it is concluded that the meridian of 90°E is the demarcation line between the South Asian summer monsoon (SASM, i.e., the TISM) and the East Asian summer monsoon (EASM, including the SCSSM). Besides, the temporal relations between the TASM onset and the seasonal variation of the South Asian high (SAH) are discussed, too, and it is found that there are good relations between the monsoon onset time and the SAH center positions. When the SAH center advances to north of 20°N, the SCSSM onsets, and to north of 25°N, the TISM onsets at its south end. Comparison between the onset time such determined and that with other methodologies shows fair consistency in the SCS area and some differences in the IP area.  相似文献   

15.
South China Sea summer monsoon onset in relation to the off-equatorial ITCZ   总被引:3,自引:0,他引:3  
Observations of the South China Sea summer monsoon (SCSSM) demonstrate the different features between the early and late onsets of the monsoon. The determining factor related to the onset and the resultant monsoon rainfall might be the off-equatorial ITCZ besides the land-sea thermal contrast. The northward-propagating cumulus convection over the northern Indian Ocean could enhance the monsoon trough so that the effect of the horizontal advection of moisture and heat is substantially increased, thus westerlies can eventually penetrate and prevail over the South China Sea (SCS) region.  相似文献   

16.
利用多变量经验正交分解(MV-EOF)等方法,研究了在季节内振荡尺度上南海季风系统的时空分布特征。结果表明:南海夏季风的爆发时间在1993/1994年前后存在显著的年代际转型,由爆发偏晚转变成爆发偏早。第一模态反映了南海夏季风爆发时季风系统的时空特征,转型前后特征类似,降水场自赤道向北依次呈现干-湿-干交替分布的特征,南海中心为异常气旋。相应的大范围环流场主要反映了转型前的偏晚年,南海夏季风槽位置偏南,转型后的偏早年,南海夏季风槽位置偏北。第二模态体现了南海季风系统夏季的时空特征,转型前后共同特征表现为南海地区夏季北湿南干的南北偶极子降水分布及南海中心区的异常西风。相应的大范围环流场主要反映了南海季风活动与东亚季风呈现反位相的特点,且对流信号向北传播。转型前的偏晚年,季风活动受准双周振荡控制,对流信号由西北方向传入南海;转型后的偏早年,季风活动以30~60天振荡为主,对流信号由东南方向传播至南海。  相似文献   

17.
High-resolution satellite-derived data and NCEP-NCAR reanalysis data are used to investigate intraseasonal oscillations (ISO) over the tropical Indian Ocean.A composite evolution of the ISO life cycle is constructed,including the initiation,development,and propagation of rainfall anomalies over the tropical Indian Ocean.The characteristics of ISO over the tropical Indian Ocean are profoundly different before and after the onset of the Indian summer monsoon.Positive precipitation anomalies before monsoon onset appear one phase earlier than those after monsoon onset.Before monsoon onset,precipitation anomalies associated with ISO first initiate in the western tropical Indian Ocean and then propagate eastward along the equator.After monsoon onset,convective anomalies propagate northward over the Indian summer monsoon region after an initial eastward propagation over the equatorial Indian Ocean.Surface wind convergence and air-sea interaction play critical roles in initiating each new cycle of ISO convection.  相似文献   

18.
使用1998年南海季风试验期问高质量资料和NCEP/NCAR40年再分析资料分析了南海季风建立前后的大尺度环流特征和要素的突变及爆发过程。发现南亚高压迅速从菲律宾以东移到中南半岛北部,孟加拉湾槽加深加强,赤道印度洋西风加强并向东向北迅速扩展和传播,以及伴随的中低纬相互作用和西太平洋副高连续东撤是南海夏季风建立的大尺度特征。与此同时,亚洲低纬地区的南北温差和纬向风切变也发生相应的突变。数值试验结果表明,印度半岛地形的陆面加热作用在其东侧激发的气旋性环流对于孟加拉湾槽的加强有重要作用,并进而有利于南海夏季风先于印度夏季风爆发。  相似文献   

19.
孟加拉湾季风爆发对南海季风爆发的影响Ⅰ:个例分析   总被引:11,自引:4,他引:11       下载免费PDF全文
利用南海季风试验分析场和NCAR向外长波辐射通量(OLR)资料研究了1998年孟加拉湾季风和南海季风爆发期间副热带环流的大尺度和天气尺度特征,探讨了孟加拉湾季风爆发与南海季风爆发之间的物理联系及孟加拉湾季风气旋的对流凝结潜热释放对副热带高压“撤出”南海的影响。结果表明,1998年5月爆发的东亚季风展现出典型的从孟加拉湾地区东传发展到南海地区的过程。随着孟加拉湾季风爆发和对流活动增强、北移,南海北部出现了低层西风和对流活动,领先于副热带高压在南海地区减弱和撤退。结果还显示南海北部地区的对流凝结加热有助于该地区经向温度梯度的反转,在热成风关系的制约下南海上空副热带高压脊面的垂直倾斜由冬季型转向夏季型,季风爆发。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号