首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Seawater temperatures throughout Earth's history have been suggested to illustrate a long-term cooling trend from nearly 70 °C at ~3500 Ma to around 20 °C at ~800 Ma. The terminal Neoproterozoic prior to the “Cambrian Explosion” is a key interval in evolutionary history, as complex multicellularity appeared with the advent of the Ediacara fauna. These organisms were likely the first that required higher levels of atmospheric and dissolved marine oxygen for their sustainability. It is known that most modern macroinvertebrates are intolerant of temperatures in excess of 45 °C. Perhaps more importantly, these high seawater temperatures limit the potential of dissolved oxygen, and therefore become an integral part of this evolutionary story. Previously, our understanding of seawater temperature during the terminal Neoproterozoic comes only from 18O/16O and 30Si/28Si ratios ascertained from a limited number of cherts. Isotopic ratio methods for assessing seawater temperatures are inherently indirect and have a wide range of oscillation. However, maximum homogenization temperatures (Thmax) of primary fluid inclusions in halite provide a direct means of assessing brine temperature, and have been shown to correlate well with average maximum air temperatures. The oldest halites date to the Neoproterozoic–lower Paleozoic (~700–500 Ma), and Ediacaran representatives can be found in Sichuan Province, China, which do preserve primary fluid inclusions for analysis via cooling nucleation methods. We utilized halite samples from the Changning-2 well, correlative to the Dengying Formation (551–542 Ma), to provide a direct assessment of terminal Neoproterozoic seawater temperature. Our measurements indicate that seawater temperatures where these halites formed are highly similar to tropical Phanerozoic seawater temperature estimates. From compiled paleotemperature data, the decline in seawater temperatures over the course of the Proterozoic, accompanied by the reduction of seawater salinity with the sequestration of salt in massive halite deposits in the Neoproterozoic, allowed the ocean system to accumulate more dissolved oxygen, and potentially paved the way for the evolutionary innovation of complex multicellularity.  相似文献   

2.
It has been proposed that brines in Phanerozoic sedimentary basins inherited their chemistries and salinities from evaporated paleoseawaters during times when the world oceans were Ca-rich and SO4-poor, such as the Silurian and Devonian. However, the compositions of typical Silurian and Devonian-hosted brines in the Illinois and Michigan basins show significant deviations from calculated Silurian seawater evaporation trends, reflecting instead, diagenetic control of compositions. In addition, brines in many basins show evidence for the dissolution of halite being an important source of salinity in addition to, or instead of, evaporated seawater. As long as there is halite present, generation of salinity could continue to occur long after the deposition of evaporites and the influx of evaporated seawater. Thus, even the concept of assigning an age to a basinal brine is problematic given the dynamics of fluid flow, mixing, and solute transport which can occur in sedimentary sequences.  相似文献   

3.
Numerous magnetite–apatite deposits occur in the Ningwu and Luzong sedimentary basins along the Middle and Lower Yangtze River, China. These deposits are located in the contact zone of (gabbro)-dioritic porphyries with surrounding volcanic or sedimentary rocks and are characterized by massive, vein and disseminated magnetite–apatite ± anhydrite mineralization associated with voluminous sodic–calcic alteration. Petrologic and microthermometric studies on multiphase inclusions in pre- to syn-mineralization pyroxene and garnet from the deposits at Meishan (Ningwu basin), Luohe and Nihe (both in Luzong basin) demonstrate that they represent extremely saline brines (~ 90 wt.% NaClequiv) that were trapped at temperatures of about 780 °C. Laser ablation ICP-MS analyses and Raman spectroscopic studies on the natural fluid inclusions and synthetic fluid inclusions manufactured at similar P–T conditions reveal that the brines are composed mainly of Na (13–24 wt.%), K (7–11 wt.%), Ca (~ 7 wt.%), Fe (~ 2 wt.%), Cl (19–47 wt.%) and variable amounts of SO4 (3–39 wt.%). Their Cl/Br, Na/K and Na/B ratios are markedly different from those of seawater evaporation brines and lie between those of magmatic fluids and sedimentary halite, suggesting a significant contribution from halite-bearing evaporites. High S/B and Ca/Na ratios in the fluid inclusions and heavy sulfur isotopic signatures of syn- to post-mineralization anhydrite (δ34SAnh = + 15.2 to + 16.9‰) and pyrite (δ34SPy = + 4.6‰ to + 12.1‰) further suggest a significant contribution from sedimentary anhydrite. These interpretations are in line with the presence of evaporite sequences in the lower parts of the sedimentary basins.The combined evidence thus suggests that the magnetite–apatite deposits along the Middle and Lower Yangtze River formed by fluids that exsolved from magmas that assimilated substantial amounts of Triassic evaporites during their ascent. Due to their Fe-oxide dominated mineralogy, their association with large-scale sodic–calcic alteration and their spatial and temporal associations with subvolcanic intrusions we interpret them as a special type of IOCG deposits that is characterized by unusually high contents of Na, Ca, Cl and SO4 in the ore-forming fluids. Evaporite assimilation apparently led to the production of large amounts of high-salinity brine and thus to an enhanced capacity to extract iron from the (gabbro)-dioritic intrusions and to concentrate it in the form of ore bodies. Hence, we believe that evaporite-bearing sedimentary basins are more prospective for magnetite–apatite deposits than evaporite-free basins.  相似文献   

4.
The chemical evolution of seawater during the Phanerozoic is still a matter of debate. We have assembled and critically analyzed the available data for the composition of fluid inclusions in marine halite and for the mineralogy of marine evaporites. The composition of fluid inclusions in primary marine halite reveals two major long-term cycles in the chemistry of seawater during the past 600 myr. The concentration of Mg2+, Ca2+, and SO42− has varied quite dramatically. The Mg2+ concentration in seawater during most of the early Paleozoic and Jurassic to Cretaceous was as low as 30 to 40 mmol/kg H2O; it reached maximum values ≥50 mmol/kg H2O during the Late Neoproterozoic and Permian. The Ca2+ concentration in seawater during the Phanerozoic has reached maximum values two to three times greater than the concentration in seawater today (10.6 mmol/kg H2O), whereas SO42− concentrations may have been as low as 5 to 10 mmol/kg H2O (a third to a fifth of the modern value) during the Jurassic and Early Paleozoic. The Mg2+/Ca2+ ratio in seawater ranged from 1 to 1.5 during the early to middle Paleozoic and Jurassic-Cretaceous to a near-modern value of 5.2 during the Late Neoproterozoic and Permian. This change in seawater Mg2+/Ca2+ ratio is consistent with the notion of alternating “calcite-aragonite seas” recorded in oölites and marine carbonate cements.Several models have been proposed to explain the chemical evolution of seawater. These have invoked significant changes in one or more of the major geochemical processes that control the composition of seawater. The pattern and magnitude of the variations in the composition of seawater proposed in this study are similar to those proposed elsewhere that suggest that seawater fluxes through midocean ridges have played a major role in the evolution of seawater during the past 600 myr. Two Phanerozoic supercycles of the Earth’s exogenic processes were recognized in the literature that are caused by mantle convection and plate activity. The composition of seawater has apparently undergone dramatic secular changes in phase with these supercycles and as a consequence of biological evolution. Analyses of fluid inclusions containing unevaporated seawater and a better understanding of the processes that affect the composition of seawater are needed to refine our understanding of the history of Phanerozoic seawater.  相似文献   

5.
Ag-ores occur in a specific zone of the Bou Azzer Co–As deposit in the Precambrian basement of the Anti-Atlas belt (Morocco), especially in highly microfractured quartz-depleted diorite. They formed after the main Co–As stage of mineralization, but both ore stages (Co–As and Ag-ore) appear linked to similar immiscible fluids: an hyper-saline Na–Ca brine (5.5–22 wt.%. eq. NaCl and 13.5–18.5 wt.% eq. CaCl2, with Na/Ca ranging from 0.4 to 1.2 during Ag-mineralization) occurring as L + V ± halite fluid inclusions and CH4–(N2) gas dominated fluids. Pressure–temperature estimates for the Ag-stage range from 40 to 80 MPa and 150 to 200 °C e.g. at a temperature slightly lower than that of the preceding Co–As stage (200–220 °C).Chlorinity, cation (Na/Ca ca. 2.2) and halogen ratios (Cl/Br from 300 to 360) are typical of deep basinal brines, especially of surface-evaporated brines that have exceeded halite saturation. The primary brines were modified by fluid–rock interaction during burial and migration through the basement. Ag-deposition was probably favoured by dilution and cooling due to the mixing of brines with less saline fluids. Similarities between the Ag-brines from Bou Azzer, Zgounder and Imiter suggest a regional scale circulation of basinal brines during extension probably later than the Triassic, during the early stages of rifting of the Atlantic.  相似文献   

6.
The Evate deposit represents the largest resource of apatite in south-east Africa (155 Mt. ore grading 9.3 wt.% P2O5) accumulated in up to 100 m thick magnetite-carbonate-apatite horizons conformable to the granulitic gneiss of the Monapo Klippe. Baddeleyite and zircon from early iron-oxide (magnetite, geikielite, spinel), apatite- and forsterite-bearing rocks have been dated to 590 ± 6 Ma using the LA-ICPMS U-Pb method, whereas monazites from anhydrite-apatite-carbonate rocks show a concordant U-Pb-Th age corresponding to 449 ± 2 Ma. Temperatures inferred from calcite-dolomite solvus data and graphite structural ordering span the interval from ≥ 815 to 276 °C. Primary and secondary fluid inclusions in apatite document calciocarbonatite melts associated with early apatite, and CO2-bearing sulfate-chloride brines progressively diluted with low-salinity, probably metoric waters, towards ultimate stages of the deposit formation. The calciocarbonatite melts have initially coexisted with liquid nitrogen and later with sulfate-chloride brines mixed with N2 ± CO2 gas.Crystallization of spinel around baddeleyite by the mechanism of Ostwald ripening, nucleation of graphite spherules along pyrrhotite-carbonate boundaries, the occurrence of molybdenite, baddeleyite-to-zircon transformation, and high crystallization temperatures inferred from graphite structural ordering and calcite-dolomite thermometry suggest a magmatic origin of the early mineral assemblages. In contrast, microthermometric characteristics of primary aqueous inclusions in the late apatite and the presence of zeolites (thomsonite-Ca, mezolite) is diagnostic of a low-temperature hydrothermal crystallization.Formation of the early magnetite-apatite-forsterite assemblage is thought to be coeval with mafic alkalic intrusions of the Mazerapane Suite superimposed on the granulite facies metamorphism of the Monapo Klippe. The low-temperature, anhydrite-bearing mineralization was associated with the massive circulation of sulfate-rich brines along fractures activated during the Late Cambrian-Ordovician extension. Origin of the sulfate-rich brines may be genetically related either with the magmatic-hydrothermal differentiation, or with the remobilization of crustal evaporites.  相似文献   

7.
In the San Marcos ranges of Cuatrociénegas, NE Mexico, several sediment-hosted copper deposits occur within the boundary between the Coahuila Block, a basement high mostly granitic in composition and Late Paleozoic to Triassic in age, and the Mesozoic Sabinas rift basin. This boundary is outlined by the regional-scale synsedimentary San Marcos Fault. At the basin scale, the copper mineralization occurs at the top of a ~1000 m thick red-bed succession (San Marcos Formation, Berrisian), a few meters below a conformable, transitional contact with micritic limestones (Cupido Formation, Hauterivian to Aptian). It consists of successive decimeter-thick roughly stratiform copper-rich horizons placed just above the red-beds, in a transitional unit of carbonaceous grey-beds grading to micritic limestones. The host rocks are fine- to medium-grained arkoses, with poorly sorted and subangular to subrounded grains. The detrital grains are cemented by quartz and minor calcite; besides, late iron oxide grain-coating cement occurs at the footwall unmineralized red-beds. The source area of the sediments, indicated by their modal composition, is an uplifted basement. The contents of SiO2 (40.70–87.50 wt.%), Al2O3 (5.91–22.00 wt.%), K2O (3.68–12.50 wt.%), Na2O (0.03–2.03 wt.%) and CaO (0.09–3.78 wt.%) are within the ranges expected for arkoses. Major oxide ratios indicate that the sedimentary-tectonic setting was a passive margin.The outcropping copper mineralization essentially consists in a supergene assemblage of chrysocolla, malachite and azurite. All that remains of the primary mineralization are micron-sized chalcocite grains shielded by quartz cement. In addition, pyrite subhedral grains occur scattered throughout the copper-mineralized horizons. In these weathered orebodies copper contents range between 4.24 and 7.72 wt.%, silver between 5 and 92 ppm, and cobalt from 8 to 91 ppm. Microthermometric measurements of fluid inclusions in quartz and calcite crystals from footwall barren veinlets gave temperatures of homogenization between 98 °C and 165 °C, and ice-melting temperatures between ?42.5 °C and ?26.1 °C.The primary copper mineralization formed during the early diagenesis, contemporary with the active life of the Sabinas Basin. The mineralizing fluids were dense, near neutral, moderately oxidized brines that originally formed from seawater that, driven by gravity, infiltrated to the deepest parts of the basin and dissolved evaporites. As a result, they became hydrothermal fluids of moderate temperature capable of leaching high amounts of copper. The source of this metal could be mafic detrital grains and iron oxides of the underlying Jurassic and Lower Cretaceous red-beds. Copper precipitation took place when the brines passed through the redox boundary marked by the transition from red- to grey-beds. The upward movement of the brines was promoted by a high heat flow that allowed their convective circulation and their ascent along the synsedimentary San Marcos Fault.  相似文献   

8.
U–Pb detrital zircon ages are reported from Puncoviscana Formation (late Neoproterozoic–Early Cambrian) and Mesón Group (Late Cambrian) greywackes of northwest Argentina, to constrain provenance and depositional environment.The new data are combined with previously-published detrital zircon ages, to show that Puncoviscana Formation age patterns contain two broad groups: late Mesoproterozoic–early Neoproterozoic (1150–850 Ma) and late Neoproterozoic–Early Cambrian (650–520 Ma); with their relative proportions varying inversely with youngest component age. The 1150–850 Ma age components are dominant in greywackes with oldest late Neoproterozoic components > 600 Ma. The former diminish considerably when late Neoproteozoic components become dominant and younger, to 520 Ma. A northernmost greywacke sample from Purmamarca, Jujuy, is distinctive: whilst its zircon age pattern partly resembles other Puncoviscana Formation samples, it contains no Cambrian–late Neoproterozoic ages, the youngest ages being early Neoproterozoic. This may reflect an early, Neoproterozoic, passive-margin depocentre for the Formation, or an older (early Neoproterozoic) succession within it, which may predate the Brasiliano orogeny in Brazil. The youngest age components, c. 520 Ma, in a greywacke from Rancagua (Cachi, Salta province), dominate an almost unimodal pattern suggestive of contemporary volcanic sources at a late Early Cambrian depocentre. Detrital zircon age patterns of the Mesón Group (Lizoite Formation) have major Cambrian–latest Neoproterozoic components resembling those of the Puncoviscana Formation, but its Mesoproterozoic component is diminished, and there are no significant age components of this age. Small youngest components at c. 500 Ma suggest a maximum Late Cambrian stratigraphic age. The Puncoviscana Formation detrital zircon patterns suggest a provenance in a continental hinterland having a stabilised, extensive late Mesoproterozoic orogen (with minor Paleoproterozoic and Archean precursors), and a more variable late Neoproterozoic orogen containing an evolving sequence of less extensive subcomponents. A direct relationship with the Brazilian Shield is suggested; with sediment supplies originating within active-margin orogens of the interior and collisional orogens at the suture between African and South American cratons, but ultimate deposition in passive-margin environments of western Gondwanaland.  相似文献   

9.
Pegmatitic and other felsic rock pockets and dike-like intrusions are abundant in the South Kawishiwi Intrusion of the Duluth Complex, including the basal, Cu–Ni–PGE mineralized units. These occurrences are found as pockets, pods or as veins and contain abundant accessory apatite and quartz. Quartz hosts primary fluid inclusions as well as silicate melt inclusions. Combined microthermometry and Raman spectroscopy helped to determine the bulk composition of primary fluid inclusions that are CO2-rich (95 mol%) and contain small amounts of H2O (4.5 mol%), CH4 (0.4 mol%) and trace N2, respectively. This combined technique also made it possible to measure total homogenization temperatures of the inclusions (Thtot = ~ 225 ± 10 °C), otherwise not detectable during microthermometry. Silicate melt inclusions have been quenched to produce homogeneous glasses corresponding to the original melt. Composition of the entrapped melt is granitoid, peraluminous and is very poor in mafic components. We interpret the melt as a product of partial melting of the footwall rocks due to the contact effect of the South Kawishiwi Intrusion. The presence of CO2 in the vapor bubbles of the quenched melt inclusions and petrographic evidence suggest that the fluid and melt inclusion assemblages are coeval. The composition of the fluid and melt phase implies that the fluid originates from the mafic magma of the South Kawishiwi Intrusion and the fluid and melt phases coexisted as a heterogeneous melt–fluid system until entrapment of the inclusions.Coexistence of primary fluid and melt inclusions makes it possible to calculate a minimum entrapment pressure (~ 1.7 kbar) and thus estimate formation depth (~ 5.8 km) for the inclusions. Chlorine is suggested to behave compatibly in the silicate melt phase in the fluid–melt system represented by the inclusions, indicated by the high (up to 0.3%) Cl-concentrations of the silicate melt and CO2-rich nature of the fluid.Apatite halogen-contents provide further details on the behavior of Cl. Apatite in pegmatitic pockets often has elevated Cl-concentrations compared to troctolitic rocks, suggesting enrichment of Cl with progressive crystallization. Systematic trends of Cl-loss at some differentiated melt pockets suggest that in some places Cl exsolved into a fluid phase and migrated away from its source. The segregation of Cl from the melt is probably inhibited by the presence of CO2-rich fluids until the last stages of crystallization, increasing the potential for the development of late-stage saline brines.Platinum-group minerals are often present in microcracks in silicate minerals, in late-stage differentiated sulfide veinlets and in association with chlorapatite, indicating the potential role of Cl-bearing fluids in the final distribution of PGEs.  相似文献   

10.
U–Pb dating and Hf isotopic analyses of zircons from various granitoids, combined with major and trace element analyses, were undertaken to determine the petrogenesis and geodynamic setting of Neoproterozoic and Late Paleozoic magmatism in the Manzhouli–Erguna area of Inner Mongolia, China. The Neoproterozoic granitoids are mainly biotite monzogranites with zircon U–Pb ages of 894 ± 13 Ma and 880 ± 10 Ma, and they are characterised by enrichment in large ion lithophile elements (LILEs; e.g., Rb, Ba, K) and light rare earth elements (LREEs), depletion in high field strength elements (HFSEs; e.g., Nb, Ta, Ti) and heavy rare earth elements (HREEs). The Late Devonian granitoids are dominantly syenogranites and mylonitised syenogranites with zircon U–Pb ages of 360 ± 4 Ma, and they form a bimodal magmatic association with subordinate gabbroic rocks of the same age. The Late Devonian syenogranites have A-type characteristics including high total alkalis, Zr, Nb, Ce and Y contents, and high FeOt/MgO, Ga/Al and Rb/Sr ratios. The Carboniferous granitoids are mainly tonalites, granodiorites and monzogranites with U–Pb ages varying from 319 to 306 Ma, and they show very strong adakitic characteristics such as high La/Yb and Sr/Y ratios but low Y and Yb contents. The Late Permian granitoids are dominated by monzogranites and syenogranites with zircon U–Pb ages ranging between 257 and 251 Ma. Isotopically, the εHf(t) values of the Neoproterozoic granitoids range from +4.3 to +8.3, and the two-stage model ages (TDM2) from 1.2 to 1.5 Ga. The Late Devonian granitoids are less radiogenic [εHf(t) from +12.0 to +12.8 and TDM2 from 545 to 598 Ma] than the Carboniferous [εHf(t) from +6.8 to +9.5 and TDM2 from 722 to 894 Ma] and Late Permian granitoids [εHf(t) from +6.1 to +9.4 and TDM2 in the range of 680–895 Ma]. These data indicate (1) the Neoproterozoic granitoids may have been generated by melting of a juvenile crust extracted from the mantle during the Mesoproterozoic, probably during or following the final stages of assembly of Rodinia as a result of the collision and amalgamation of Australia and the Tarim Craton; (2) the Late Devonian granitoids may have formed by partial melting of a new mantle-derived juvenile crust in a post-orogenic extensional setting; (3) the Carboniferous granitoids appear to have been produced by melting of garnet-bearing amphibolites within a thickened continental crust during and following the collision of the Songnen and Erguna–Xing’an terranes; and (4) the Late Permian granitoids may have been generated by melting of garnet-free amphibolites within the Neoproterozoic juvenile continental crust, probably in the post-collisional tectonic setting that followed the collision of the North China and Siberian cratons.  相似文献   

11.
The Ediacaran BISF at Hormuz Island is a newly identified glaciogenic iron-salt deposit in the Tethyan margin of Gondwana. The BISF was formed by synchronous riftogenic A-type submarine felsic volcanism and evaporate deposition. The mineralization occurs in a proximal felsic tuff cone and jaspilitic distal zones and contains 1 million tonne of hematite-rich ore with an average grade of 58% Fe. The ore structure shows cyclicity of macrobandings, mesobandings and microbandings of anhydrite, halite, hematite and chert, which marks a new record in BIFs geohistory. The alteration minerals in the proximal and distal zones are actinolite, ripidolite, epidote, sericite, tourmaline, clinochlore, anhydrite and clay minerals. The occurrence of metamorphosed polygenetic bullet-shape dropstones in BISF attests that there was probably a continuous process of ice melting, episodic submarine volcanism and exhalative hydrothermal banded iron salt formation during the Late Ediacaran time. The non-metamorphosed Neoproterozoic stratigraphy, the presence of genus Collenia, U-Pb dating (558 ± 7 Ma) and the marked negative δ13C excursion in cap carbonates are representative of Late Ediacaran glaciation, which has been identified worldwide. The REE+Y display light REE enrichment, unusually strong Tb-Tm anomaly, a weak positive Y anomaly, but no distinguished Eu and Ce anomalies, reflecting the glaciogenic nature of the BISF. The contents of Zr, Hf, Nb, Ta, Th, La, Ce and Y in BISF, dropstones, halite and cap carbonates are similar to those of the Neoproterozoic glaciogenic BIFs. Also, the Ni/Fe, P/Fe ratios and Fe/Ti – Al/Al + Fe + Mn + Ca + Na + K diagram suggest an exhalative hydrothermal Ediacaran-type BISF. The absence of brecciated magnetite in the ore association and the low contents of copper (9–493 ppm) and gold (<5–8 ppb) are not in favor of the IOCG – Kiruna-type iron oxide ores. The co-paragenesis of hematite with several alteration minerals, in particular actinolite, tourmaline and anhydrite, indicates that the exhalative hydrothermal fluids were generated by the interaction of seawater with the felsic rocks and sediments at about 200–500 °C. The interaction of seawater with felsic magma and sediments led to the formation of Mg-rich alteration minerals, leaching Si, Fe, Mn and other elements and forming the potential ore fluids. It is highlighted that the A-type alkaline submarine felsic volcanism could be considered as an exploration target for BISF.  相似文献   

12.
The Damara Orogen is composed of the Damara, Kaoko and Gariep belts developed during the Neoproterozoic Pan-African Orogeny. The Damara Belt contains Neoproterozoic siliciclastic and carbonate successions of the Damara Supergroup that record rift to proto-ocean depositional phases during the Rodinia supercontinent break up. There are two conflicting interpretations of the geotectonic framework of the Damara Supergroup basin: i) as one major basin, composed of the Outjo and Khomas basins, related to rifting in the Angola-Congo-Kalahari paleocontinent or, ii) as two independent passive margin basins, one related to the Angola-Congo and the other to the Kalahari proto-cratons. Detrital zircon provenance studies linked to field geology were used to solve this controversy. U-Pb zircon age data were analyzed in order to characterize depositional ages and provenance of the sediments and evolution of the succession in the northern part of the Outjo Basin. The basal Nabis Formation (Nosib Group) and the base of the Chuos Formation were deposited between ca. 870 Ma and 760 Ma. The upper Chuos, Berg Aukas, Gauss, Auros and lower Brak River formations formed between ca. 760 Ma and 635 Ma. It also includes the time span recorded by the unconformity between the Auros and lower Brak River formations. The Ghaub, upper Brak River, Karibib and Kuiseb formations were deposited between 663 Ma and 590 Ma. The geochronological data indicate that the main source areas are related to: i) the Angola-Congo Craton, ii) rift-related intrabasinal igneous rocks of the Naauwpoort Formation, iii) an intrabasinal basement structural high (Abbabis High), and iv) the Coastal Terrane of the Kaoko Belt. The Kalahari Craton units apparently did not constitute a main source area for the studied succession. This is possibly due to the position of the succession in the northern part of the Outjo Basin, at the southern margin of the Congo Craton. Comparison of the obtained geochronological data with those from the literature shows that the Abbabis High forms part of the Kalahari proto-craton and that Angola-Congo and Kalahari cratons were part of the same paleocontinent in Rodinia times.  相似文献   

13.
The junction of the southeastern Guizhou, the southwestern Hunan, and the northern Guangxi regions is located within the southwestern Jiangnan orogen and forms a NE-trending ∼250 km gold belt containing more than 100 gold deposits and occurrences. The Pingqiu gold deposit is one of the numerous lode gold deposits in the southeastern Guizhou district. Gold mineralization is hosted in Neoproterozoic lower greenschist facies metamorphic rocks and controlled by fold-related structures. Vein types present at Pingqiu include bedding-parallel and discordant types, with saddle-reefs and their down limb extensions dominating but with lesser discordant types. The major sulfide minerals are arsenopyrite and pyrite, with minor sphalerite, galena, chalcopyrite, and rare pyrrhotite, marcasite, and tetrahedrite. Much of the gold is μm- to mm-sized grains, and occurs as fracture-controlled isolated grains or filaments in quartz, galena, sphalerite, pyrite, and wallrock.Three types of fluid inclusions are distinguished in hydrothermal minerals. Type 1 aqueous inclusions have homogenization temperatures of 171–396 °C and salinities of 1.4–9.8 wt% NaCl equiv. Type 2 aqueous-carbonic inclusions yield final homogenization temperatures of 187–350 °C, with salinities of 0.2–7.7 wt% NaCl equiv. Type 3 inclusions are carbonic inclusions with variable relative content of CO2 and CH4, and minor amounts of N2 and H2O. The close association of CO2-rich inclusions and H2O-rich inclusions in groups and along the same trail suggests the presence of fluid immiscibility. The calculated δ18OH2O values range from 4.3‰ to 8.3‰ and δDH2O values of fluid inclusions vary from −55.8‰ to −46.9‰. A metamorphic origin is preferred on the basis of geological background and analogies with other similar deposit types.Two ore-related sericite samples yield well-defined 40Ar/39Ar plateau ages of 425.7 ± 1.7 Ma and 425.2 ± 1.3 Ma, respectively. These data overlap the duration of the Caledonian gold mineralization along the Jiangnan orogen, and suggest that gold mineralization was post-peak regional metamorphism and occurred during the later stages of the Caledonian orogeny.Overall, the Pingqiu gold deposit displays many of the principal characteristics of the Bendigo gold mines in the western Lachlan Orogen (SE Australia) and the Dufferin gold deposit in the Meguma Terrane (Nova Scotia, Canada) but also some important differences, which may lead to the disparity in gold endowment. However, the structural make-up at deposit scale, and the shallow mining depth at present indicate that the Pingqiu gold deposit may have considerable gold potential at depth.  相似文献   

14.
The Eastern Qinling, Central China, containing more than 20 Mesozoic porphyry ± skarn systems, is the most important Mo province in the world. The Shangfanggou giant Mo deposit, Luanchuan County, Henan Province, is a porphyry-skarn system hosted in a lithologic association comprising carbonaceous sandstone, shale, carbonate and chert within the Neoproterozoic Luanchuan Group. Mo ores are mainly altered porphyry, skarn and hornfels, with minor altered gabbro. The mineralization process includes four stages, potassic alteration of the porphyry and skarnization of dolomite marble in stage 1, stockworks of quartz + molybdenite ± sulfide (stage 2), pyrite + quartz ± sulfides (stage 3), and carbonate ± quartz ± fluorite (stage 4), respectively. Mo mineralization was generally associated with strong silicification and/or phyllic alteration. The fluid inclusions in minerals include three compositional types, i.e., CO2-bearing (C-type), aqueous (W-type) and daughter mineral-bearing (S-type). Minerals formed in stages 1 to 3 contain all the three types of FIs, but the stage 4 minerals only contain the W-type FIs. Oxides and Cu-phosphate are recognized as daughter minerals in S-type inclusions in minerals of stage 1, whereas the daughter sulfide and reducing gases such as CO, CH4, H2S and C2H6 can be observed in quartz of stages 2 and 3, suggesting that the ore-forming fluids were initially oxidizing and then evolved to reducing. Boiling fluid inclusion assemblages can be observed in minerals formed in stage 2 or earlier, but not in stage 3 or later. Fluid boiling caused CO2 escape, oxygen fugacity decrease and rapid precipitation of ore minerals, and was a key factor causing Mo-mineralization at Shangfanggou. Data and interpretations presented in this contribution show that the fluids forming the Shangfanggou Mo deposit evolved from CO2-rich, high-salinity hypothermal, to CO2-poor, low-salinity epithermal (low-T). The Mo mineralization at the Shangfanggou deposit mainly occurred at depth of 6.6–7.0 km, deeper than the majority of porphyry systems in volcanic arcs, which resulted from a CO2-rich magma–fluid system originating from partial melting of thickened lower crust. The Shangfanggou mineral system developed during 158–134 Ma when the Yangtze–North China continental collision began to evolve from compression to extension. Magmatic hydrothermal deposits developed in a continental collision regime are generally formed by CO2-rich, high-salinity fluids.  相似文献   

15.
《Applied Geochemistry》1998,13(5):651-671
Highly saline fluids were encountered during the German Continental Deep Drilling Project (KTB) from depths ranging between 2 and 3 km to about 9 km. The most reliable data were obtained from samples extracted during a long-term pumping test in the 4000-m deep KTB pilot hole. Some 460 m3 Ca–Na–Cl brines with about 68 g l−1 total dissolved solids (TDS) and some 270 m3 associated gases, mainly N2 and CH4 were pumped to the surface from the main fracture system situated near the bottom of the pilot hole. Geochemical and isotopic data support the hydraulic tests which suggest the presence of an open and large fluid reservoir at depth. The pumped fluids from this main fracture system were released from a deep reservoir situated at more than 5500 m depth which is hydraulically connected with the 9101 m deep KTB main hole, drilled some 250 m to the northeast of the pilot hole.While Ca and Sr contents of the extracted brines may be the result of water–rock interaction, Cl is most likely of external origin. The Cl is hypothesized to derive from geotectonic processes rather than to descending infiltration of paleo-seawater (evaporitic brines). The sampled fluids have probably migrated from a deeper reservoir to their present position since the Cretaceous–Tertiary period due to tectonic activity. However, several isotopic studies have identified an admixture of descending paleowaters down to more than 4000 m depth. The high 36Cl/Cl ratio of the fluids sampled during the long-term pumping test point to a host rock highly enriched in U–Th, unlike the sampled KTB country rocks. The fluid reservoir is believed to be in contact with the Falkenberg granite massif situated about 2 km to the E of the KTB holes, capable of supplying sufficient neutron flux for considerable subsurface production of 36Cl. The Na–Cl–(K-, SO4) precursor fluids of the Ca–Na–Cl brines were produced in the course of extensive tectonic processes since the Late Caledonian within the Bohemian Massif.  相似文献   

16.
Neoproterozoic magmatic rocks in the South Qinling Belt of China provide important clues for understanding the mechanism and timing of the amalgamation and breakup of the Rodinia supercontinent. Here we report new geochemical and high-precision LA-ICP-MS zircon U–Pb–Hf isotopic analyses on magmatic suites from the Liuba and Zhashui areas in the South Qinling Belt. Our data show that the crystallization ages of the granitic intrusions from Tiefodian and Tangjiagou in the Liuba area are 863 ± 22 Ma and 794 ± 11 Ma, respectively, whereas those of the dioritic and gabbroic intrusions at Chishuigou in the Zhashui area are 925 ± 28 Ma and 832.6 ± 4.0 Ma, respectively. The diorites at Chishuigou display arc-related geochemical affinity, characterized by strong depletion in Nb, Ta, P and Ti, and enrichment in large-ion lithophile elements (i.e., Rb, Ba, Th and U), indicating a subduction-related arc setting at ca. 925 Ma. The Tiefodian granitic rocks have high SiO2 (68.46–70.98 wt.%), Na2O (3.87–4.51 wt.%), and low K2O (1.34–2.61 wt.%) contents with TTG affinity. However, their Cr, and Ni contents and Cr/Ni, Nb/Ta ratios are similar to those of continental crust, and together with high negative εHf(t) values (− 4.87 to − 14.84), suggesting a continental margin arc at ca. 863 Ma. The gabbros at Chishuigou have high TiO2 content (2.74–3.14 wt.%), Zr/Y (3.93–4.24), Ta/Yb (0.19–0.25) ratios and low Zr/Nb ratios (11.37–13.17), similar to the features of within-plate basalts, indicating an intra-continental rift setting at ca. 833 Ma. The granitoids at Tangjiagou exhibit enrichment of LREE, K and Pb, and depletion of Nb, Ta, P and Ti, suggesting an extensional tectonic environment at ca. 794 Ma.The results indicate that Neoproterozoic magmatic rocks in the South Qinling Belt formed before ca. 833 Ma and might represent the amalgamation of the Rodinia supercontinent in an arc-related subduction environment, whereas the magmatic events with the peak ages at ~ 740 Ma during ca. 833–680 Ma represent the breakup of Rodinia. Integrating our new data with those from previous works, we propose a new tectonic model for the evolutionary history of the South Qinling Belt in the Neoproterozoic, including four key stages: 1) an ocean that separated the South Qinling Belt and the Yangtze Block in the Early Neoproterozoic (ca.1000–956 Ma); 2) bidirectional subduction of the oceanic lithosphere during ca. 956–870 Ma; 3) subduction and collision between the South Qinling Belt and the Yangtze Block during ca. 870–833 Ma, thus suggesting that the South Qinling Belt was as a part of the Yangtze Block from this period; and 4) intra-continental rifting during ca. 833–680 Ma, although the blocks were not entirely rifted apart.  相似文献   

17.
A new high sulfidation epithermal Cu–Au occurrence (Nadun) has been discovered adjacent to the Cretaceous Duolong porphyry Cu–Au deposit within the Bangong–Nujiang metallogenic belt, central Tibet. The Nadun Cu–Au mineralization is hosted in a tectonic–hydrothermal breccia with advanced argillic alteration, which occurs above sandstone, associated with quartz–pyrite veins. The granodiorite porphyry with strong argillic alteration yields a zircon U–Pb age of 119.1 ± 1.3 Ma, whereas the weakly argillic granodiorite porphyry intruded into the breccia has a younger age of 116.1 ± 1.3 Ma. This indicates that Cu–Au epithermal mineralization likely occurred between ~ 116 Ma and ~ 119 Ma, consistent with the duration of magmatic–hydrothermal activity at Duolong (~ 115–118 Ma), and providing evidence that Nadun and Duolong were formed during the same event. Moreover, the Nadun and Duolong porphyries have similar Hf isotopic compositions (εHf(t) values ranging from − 8.8 to 8.1; mean = 5.0 ± 1.1, n = 32), likely indicating that the deposits are comagmatic. In addition, boiling assemblages in vapor-rich inclusions coexisting with brines occur in early stage quartz–pyrite veins, and likely record phase separation at a temperature of > 550–300 °C and pressure of 700–110 bars. Most liquid-rich fluid inclusions formed at the breccia stage show similar salinity (1.7–19.3 wt.% NaCl equiv) to vapor-rich inclusions from the underlying quartz–pyrite veins, likely indicating vapor contraction during cooling at elevated presssure. This suggests that quartz–pyrite veins may act as conduits for ore-forming fluid traveling from the porphyry to the epithermal hydrothermal system. O and H isotopic compositions (δ18Ofluid = 0.42–9.71‰ and δD =  102 to − 66‰) suggest that ore-forming fluids are dominantly from a magmatic source with a minor addition of meteoric water at a later stage. The S and Fe isotope compositions of sulfides (δ34S =  5.9 to 0.5‰ and δ57Fe =  2.15 to 0.17‰) decrease from the quartz–pyrite vein to breccia ore, indicating that ore-forming fluids gradually become SO42-enriched and relatively oxidized. This body of evidence suggests that the Nadun Cu–Au mineralization may represent the root of a high sulfidation epithermal deposit.  相似文献   

18.
Oxygenation of the Earth's atmosphere occurred in two major steps, near the beginning and near the end of the Proterozoic Eon (2500 to 542 Ma ago), but the details of this history are unclear. Chromium isotopes in iron-rich chemical sediments offer a potential to highlight fine-scale fluctuations in the oxygenation of the oceans and atmosphere and to add a further dimension in the use of redox-sensitive tracers to solve the question regarding fluctuations of atmospheric oxygen levels and their consequences for Earth's climate. We observe strong positive fractionations in Cr isotopes (δ53Cr up to + 5.0‰) in iron-rich cherts and banded iron formation horizons within the Arroyo del Soldado Group (Ediacaran; Uruguay) that can be explained by rapid, effective oxidation of Fe(II)-rich surface waters. These fluctuations are correlated with variations in ratios of highly reactive iron (FeHR) to total iron (Fetot) which indicate a predominance of anoxic water columns (FeHR/Fetot > 0.38) during the onset of oxidation pulses. We favor the scenario by which isotopically heavy Cr(VI) entered the basin after pulses of oxidative weathering on land and in which Fe(II) accumulated in the water column. Neodymium isotopes reveal that these oxygenation pulses were followed by increased influxes to the basin of continental crust-derived detrital components of Paleoproterozoic (Nd TDM model ages = 2.1–2.2 Ga) provenance typical of the Rio de la Plata Craton. The association of positive δ53Cr–ferruginous (FeHR/Fetot > 0.38) stratigraphic intervals with low-diversity acritarch assemblages dominated by Bavlinella faveolata strongly support models postulating a stratified, eutrophic Neoproterozoic ocean. Thus, even within a few million years of the Precambrian–Cambrian boundary, paleoceanographic conditions resembled more those of Paleoproterozoic oceans than Phanerozoic and present oceans. This highlights the sheer magnitude of ecological changes at the Precambrian–Cambrian transition, changes which ultimately led to the demise of the Precambrian world and the birth of the metazoan-dominated Phanerozoic.  相似文献   

19.
The polymetallic Mykonos vein system in the Cyclades, Greece, consists of 15 tension-gashes filled with barite, quartz, pyrite, sphalerite, chalcopyrite and galena in ca. 13.5 Ma, I-type, Mykonos monzogranite. Zones of silica and chlorite–muscovite alteration are associated with the veins and overprint pervasive silicification, phyllic and argillic alteration that affected large parts of the monzogranite. The mineralization cements breccias and consists of an early barite–silica–pyrite–sphalerite–chalcopyrite assemblage followed by later argentiferous galena. A combination of fluid inclusion and stable isotope data suggests that the barite and associated mineralization were deposited from fluids containing 2 to 17 wt.% NaCl equivalent, at temperatures of ~ 225° to 370 °C, under a hydrostatic pressure of ≤ 100 bars. The mineralizing fluids boiled and were saturated in H2S and SO2.Calculated δ18OH2O and δDH2O, initial 87Sr/86Sr isotope compositions and the trace and REEs elements contents are consistent with a model in which the mineralizing fluids were derived during alteration of the Mykonos intrusion and subsequently mixed with Miocene seawater. Heterogeneities in the calculated δ34SSO4 2 and δ34SH2S compositions of the ore fluids indicate two distinct sources for sulfur, namely of magmatic and seawater origin, and precipitation due to reduction of the SO4 2 during fluid mixing. The physicochemical conditions of the fluids were pH = 5.0 to 6.2, logfS2 =  13.8 to − 12.5, logfO2 =  31.9 to − 30.9, logfH2S(g) =  1.9 to − 1.7, logfTe2 =  7.9 and logα(SO4 2(aq)/H2S(aq)) = + 2.6 to + 5.5. We propose that retrograde mesothermal hydrothermal alteration of the Mykonos monzogranite released barium and silica from the alkali feldspars. Barite was precipitated due to mixing of SO4 2-rich Miocene seawater with the ascending Ba-rich magmatic fluid venting upwards in the pluton.  相似文献   

20.
The Permian Solonker–Xar Moron River Suture in South Mongolia and Inner Mongolia of China represents a major tectonic boundary in Asia. The position of its eastward continuation in northeastern China has been debated for many years. In order to resolve this debate, we measured detrital zircons of the Cisuralian (Early Permian) plant fossil-bearing Hesheng Formation in the Yanbian area, Jilin Province. The detrital zircons have ages of ca. 2541–2535 Ma, 1897–1832 Ma, 458–452 Ma, and 390–280 Ma. We therefore conclude that the depositional age of the Hesheng Formation is younger than ca. 280 Ma; this is consistent with paleontologic data that indicates an Artinskian–Early Kungurian age. The presence of Neoarchean and Paleoproterozoic zircons suggests that the Hesheng Formation may have a North-China affinity; the absence of Neoproterozoic and Pan-African zircons preclude detrital sources from the Jiamusi–Mongolia Block during the Cisuralian. This, combined with the Permian floristic and stratigraphic data, provides a clue that the Solonker–Xar Moron River Suture likely extends to the Wangqing–Hunchun region, in eastern Jilin Province.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号