首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We utilized 234Th, a naturally occurring radionuclide, to quantify the particulate organic carbon (POC) export rates in the northern South China Sea (SCS) based on data collected in July 2000 (summer), May 2001 (spring) and November 2002 (autumn). Th-234 deficit was enhanced with depth in the euphotic zone, reaching a subsurface maximum at the Chl-a maximum in most cases, as commonly observed in many oceanic regimes. Th-234 was in general in equilibrium with 238U at a depth of ∼100 m, the bottom of the euphotic zone. In this study the 234Th deficit appeared to be less significant in November than in July and May. A surface excess of 234Th relative to 238U was found in the summer over the shelf of the northern SCS, most likely due to the accumulation of suspended particles entrapped by a salinity front. Comparison of the 234Th fluxes from the upper 10 m water column between 2-D and traditional 1-D models revealed agreement within the errors of estimation, suggesting the applicability of the 1-D model to this particular shelf region. 1-D model-based 234Th fluxes were converted to POC export rates using the ratios of bottle POC to 234Th. The values ranged from 5.3 to 26.6 mmol C m−2d−1 and were slightly higher than those in the southern SCS and other oligotrophic areas. POC export overall showed larger values in spring and summer than in autumn, the seasonality of which was, however, not significant. The highest POC export rate (26.6 mmol C m−2d−1) appeared at the shelf break in spring (May), when Chl-a increased and the community structure changed from pico-phytoplankton (<2 μm) dominated to nano-phytoplankton (2–20 μm) and micro-phytoplankton (20–200 μm) dominated.  相似文献   

2.
Observations of primary productivity, 234Th, and particulate organic carbon (POC) were made from west to east across the northern North Pacific Ocean (from station K2 to Ocean Station Papa) during September–October 2005. Primary productivities in this region varied longitudinally from approximately 236 to 444 mgC m−2d−1 and clearly indicate the West High East Low (WHEL) trend. We estimated east-west variations in the POC flux from the surface layer (0–100 m) by using 234Th as a tracer. POC fluxes in the western region (44–53 mgC m−2d−1) were higher than those in the eastern region (21–34 mgC m−2d−1). However, the export ratios (e-ratios) ranged from approximately 8% to 16% and did not show the WHEL trend. Contrary to our expectation, no relation between POC flux (or e-ratio) and diatom biomass (or dominance) was apparent in autumn in the northern North Pacific.  相似文献   

3.
Dissolved and particulate 234Th activities in surface seawater were determined at 27 stations along the coastline of western Taiwan during 19–23 November 2004. Contrasting scavenging settings were observed between the northern and southern regimes of the nearshore water off western Taiwan, separated by the Cho-Shui River. The northern regime is characterized by a large quantity of suspended load contributed by northward transport of a suspension plume from the Cho-Shui River, while the southern regime, low in suspended load and high in chlorophyll concentration, is a system controlled by biological activity. A scavenging model that takes account of the physical transport was used to estimate the 234Th budget in order to estimate the scavenging and removal rates from the nearshore water. The scavenging and removal rates ranged from 21 to 127 dpm m−3d−1 and from 36 to 525 dpm m−3d−1, for dissolved and particulate 234Th, respectively. The removal fluxes of particulate organic carbon (POC) and particulate organic nitrogen (PON) were estimated by multiplying the particulate 234Th removal flux to the organic carbon/234Th and nitrogen/234Th ratios in suspended particles, which ranged from 4.5 to 275.2 mmol-C m−2d−1 and from 1.3 to 50.1 mmol-N m−2d−1, respectively. These fluxes resulted in residence times of 1∼20 days for the POC in the surface water of nearshore water off western Taiwan.  相似文献   

4.
The egg production rate (EPR) of Calanus sinicus was measured from March 2007 to April 2010 at three stations along the Korean coast of the Yellow Sea (in coastal waters off Saemangum, Yeongheungdo, and Asan Bay) to estimate in situ maximum egg production rate (MEPR) and to understand whether the females were limited in their growth or fecundity in the field. The mean EPR of C. sinicus at each sampling date ranged from 10.3–34.9 eggs female−1 d−1 (mean 23.4 eggs female−1 d−1), and the EPR of individual copepods ranged from 0–81 eggs female−1 d−1. The mean EPR was positively correlated with the body weight of female copepods. The MEPR at each sampling date ranged from 40–81 eggs female−1 d−1 (mean 50.4 eggs female−1 d−1). Over 84% of eggs spawned hatched successfully. The weight-specific growth rate (WSGR) ranged from 0.038–0.111 d−1 (mean 0.082 d−1), indicating that 3.8–11.1% of the carbon in an adult female was produced daily as female growth. The WSGR was negatively correlated with water temperature. The ratio of mean EPR to observed mean MEPR ranged from 20–70% (mean 46%), indicating that ∼54% of a female’s growth might be limited in the field. We suggest that the ratio of observed EPR to mean MEPR of copepod can be applied to understand how the copepod responds to environmental changes, as well as EPR and hatching success.  相似文献   

5.
The seasonal abundance of the dominant dinoflagellate, Ceratium fusus, was investigated from January 2000 to December 2003 in a coastal region of Sagami Bay, Japan. The growth of this species was also examined under laboratory conditions. In Sagami Bay, C. fusus increased significantly from April to September, and decreased from November to February, though it was found at all times through out the observation period. C. fusus increased markedly in September 2001 and August 2003 after heavy rainfalls that produced pycnoclines. Rapid growth was observed over a salinity range of 24 to 30, with the highest specific rate of 0.59 d−1 measured under the following conditions: salinity 27, temperature 24°C, photon irradiance 600 μmol m−2s−1. The growth rate of C. fusus increased with increasing irradiance from 58 to 216 μmol m−2s−1, plateauing between 216 and 796 μmol m−2s−1 under all temperature and salinity treatments (except at a temperature of 12°C). Both field and laboratory experiments indicated that C. fusus has the ability to grow under wide ranges of water temperatures (14–28°C), salinities (20–34), and photon irradiance (50–800 μmol m−2s−1); it is also able to grow at low nutrient concentrations. This physiological flexibility ensures that populations persist when bloom conditions come to an end.  相似文献   

6.
A total of 21 surface water samples were collected on the east side of the East China Sea (ECS) (3 sites) and at the Tsushima Strait (1 site), and 226Ra and 228Ra activities were measured using low-background γ-spectrometry. The 228Ra/226Ra ratios among the samples exhibited notable seasonal variation (228Ra/226Ra = 0.2–2.6) accompanying changes of salinity (31.7–34.7). Seasonal water circulation within the ECS is hypothesized to cause the change by altering the mixing ratio of 228Ra-rich continental shelf water and 228Ra-poor Kuroshio water.  相似文献   

7.
We measured the ammonium excretion, phosphate excretion and respiration rates of the scyphomedusa Aurelia aurita from Ondo Strait, in the central part of the Inland Sea of Japan, at 28 and 20°C. The rates measured at 28°C were converted to those at 20°C using the Q10 values, i.e. 1.56, 1.57 and 2.80, for ammonium excretion, phosphate excretion and respiration rates, respectively. The composite relationships between metabolic rates and wet weight of a medusa (WW, g, range 11–1330 g) at 20°C were expressed by the following allometric equations. For ammonium excretion rate (N, μmoles N medusa−1d−1): N = 0.497WW 1.09, phosphate excretion rate (P, μmoles P medusa−1d−1): P = 0.453WW 0.84, and respiration rate (R, μmoles O2 medusa−1d−1): R = 96.9WW 1.06. Mean O:N ratios (i.e. atomic ratios of 16.9 and 11.0 at 28 and 20°C, respectively) indicated that the metabolism of A. aurita medusae was protein-dominated. These metabolic parameters enabled us to estimate the nitrogen and phosphorus regeneration rates of an A. aurita medusa population typical of early summer in the Ondo Strait (means of water temperature, medusa individual weight and population biomass: 20°C, 200 g WW and 50.8 g WW m−3, respectively). Regenerated nitrogen and phosphorus were equivalent to 10.0 and 21.6% of phytoplankton uptake rates, respectively, nearly twice that estimated for mesozooplankton, demonstrating that A. aurita medusae are key components of the plankton community, influencing the trophic and nutrient dynamics in the Ondo Strait during early summer.  相似文献   

8.
Concentration and stable isotopic compositions (δ 18O) of dissolved O2 were measured in seawater samples collected from the Philippine Sea in June 2006. The in-situ O2 consumption rate and the isotopic fractionation factor (α r ) during dissolved O2 consumption were obtained from field observations by applying a vertical one-dimensional advection diffusion model to the deep water mass of about 1000–4000 m. The average O2 consumption rate and α r were, respectively, 0.11 ± 0.07 μmol kg−1yr−1 and 0.990 ± 0.001. These estimated values agree well with values from earlier estimations of Pacific deep water. The in-situ O2 consumption rates are two or more times higher north of 20°N, although the value of α r was not significantly different between the north and south. Its levels varied rapidly in the water mass of less about 2000 m depth. These results suggest that organic matter from the continent imparts a meaningful contribution to the upper water in the northern part of the area; it might produce the strong O2 minimum that is evident in the water mass from about 1000–2000 m in the northern part of the Philippine Sea.  相似文献   

9.
In the present study, we have investigated the conditions influencing encystment and excystment in the dinoflagellate Gyrodinium instriatum under laboratory conditions. We incubated G. instriatum in modified whole SWM-3 culture medium and in versions of modified SWM-3 from which NO3 , PO4 3−, NO3 + PO4 3−, or Si had been omitted and observed encystment. Percentage encystment was high in the media without N and without P, while the percentage encystment in the medium lacking both N and P was highest. Moreover, to investigate N or P concentration which induced the encystment, Gyrodinium instriatum was also incubated in media with different concentrations of inorganic N and P; the concentrations of NO2 + NO3 and PO4 3− were measured over time. The precursors of cysts appeared within 2 or 3 days of a decrease in NO2 + NO3 or PO4 3− concentration to values lower than 1 μM or 0.2 μM, respectively. When cysts produced in the laboratory were incubated, we observed excystment after 8–37 days, without a mandatory period of darkness or low temperature. We incubated cysts collected from nature at different temperatures or in the dark or light and observed excystments. Natural cysts excysted at temperatures from 10 to 30°C, in both light and dark, but excystment was delayed at low temperatures. These studies indicate that G. instriatum encysts in low N or P concentration and excysts over a wide temperature range, regardless of light conditions, after short dormancy periods.  相似文献   

10.
The petrophysical properties of sediment drill core samples recovered from the Sardinian margin and the abyssal plain of the Southern Tyrrhenian Basin were used to estimate the downhole change in porosity and rates of deposition and mass accumulation. We calculated how the deposited material has changed its thickness as a function of depth, and corrected the thickness for the compaction. The corresponding porosity variation with depth for terrigenous and pelagic sediments and evaporites was modelled according to an exponential law. The mass accumulation rate for the Plio-Quaternary is on average 4.8×104 kg m−2 my−1 on the Sardinian margin and for the Pliocene in the abyssal plain. In the latter area, the Quaternary attains its greatest thickness and a mass accumulation rate of 11–40×104 kg m−2 my−1. The basement response to sediment loading was calculated with Airy-type backstripping. On the lower part of the Sardinian margin, the basement subsidence rate due to sediment loading has decreased from a value of 300 m my−1 in the Tortonian and during the Messinian salinity crisis (7.0–5.33 Ma) to about 5 m my−1 in the Plio-Quaternary. In contrast, on the abyssal plain this rate has changed from 8–50 m my−1 during the period 3.6–0.46 Ma, to 95–130 m my−1 since 0.46 Ma, with the largest values in the Marsili Basin. The correlation between age and the depth to the basement corrected for the loading of the sediment in the ocean domain of the Tyrrhenian Basin argues for a young age of basin formation.  相似文献   

11.
Export fluxes of particulate organic carbon (POC) were estimated from the 234Th/238U disequilibrium in the Ulleung Basin1 (UB) of the East/Japan Sea1 (EJS) over four seasons. The fluxes were calculated by multiplying the average POC/234Th ratio of sinking particles larger than 0.7 μm at 100- and 200-m water depths to 234Th fluxes by the integrated 234Th/238U disequilibrium from the surface to 100-m water depth. In spring, the 234Th profiles changed dramatically with sampling time, and hence a non-steady-state 234Th model was used to estimate the 234Th fluxes. The 234Th flux estimated from the non-steady-state model was an order of magnitude higher than that estimated from the steady-state model. The 234Th fluxes estimated using the steady-state model showed distinct seasonal variation, with high values in summer and winter and low values in autumn. In spring, the phytoplankton biomass had the highest value, and primary production was higher than in summer and autumn, but the 234Th fluxes were moderate. However, these values might have been significantly underestimated, as the 234Th fluxes were estimated using the steady-state model. The POC export fluxes estimated in autumn were about four times lower than those in other seasons when they were rather similar. The annually averaged POC flux was estimated to be 161 ± 76 mgC m−2 day−1, which was somewhat lower than that in highly productive coastal areas, and higher than that in oligotrophic regions. The export/primary production (ThE) ratios ranged from 7.0 to 56.1%, with higher values in spring and summer and lower values in autumn and winter. In summer, a high ThE ratio of 48.4 ± 7.0% was measured. This may be attributed to the mass diatom sinking event following nitrate depletion. In the UB1, the annually averaged ThE ratio was estimated to be 34.4 ± 12.9%, much higher than that in oligotrophic oceans. The high ThE ratio may have contributed to the high organic carbon accumulation in the UB1.  相似文献   

12.
In our attempt to characterize the interaction of trophic coupling between Synechococcus and pigmented nanoflagellates (PNFs), successive size-fraction experiments were performed at a coastal station on the northeast coast of Taiwan from June, 2005 to January, 2006. By estimating the growth rate and grazing rate of Synechococcus in the presence of nanoflagellates of different sizes, we truncated the food web by removing organisms with different body sizes (<2 μm, <5 μm, <10 μm, and <20 μm). The growth rates of Synechococcus ranged from −0.016 to 0.051 h−1 during the experimental period, suggesting that temperature was a primary mechanism controlling Synechococcus growth. In addition to size and relative biomass of pigmented nanoflagellates and Synechococcus, it is suggested that community structures played an important role in trophic link. Furthermore, we conclude that the trophic cascading effect in the northeast coast of Taiwan includes: 1) high grazing rates at night in the warm season; 2) the Synechococcus biomass generally exceeds the grazing threshold (6 × 104 cells mL−1); and 3) the biomass ratio of <5 μm PNFs to >5 μm PNFs should be 1:1 to 2:1.  相似文献   

13.
The optimum conditions were selected for the chromatographic separation of model mixtures of C12–C40 n-alkanes. For one of the samples of hydrothermal deposits, the extraction conditions of the hydrocarbons were studied and a sample preparation procedure was selected. A procedure is proposed to determine the n-alkanes in samples of hydrothermal deposits by means of gas chromatography-mass spectrometry (GC-MS). The detection limit for the n-alkanes amounted to 3 × 10−9 to 10−8% depending on the components. On the basis of the procedure proposed, the composition of the n-alkanes was studied in the samples of hydrothermal deposits collected at the Mid-Atlantic Ridge (the Broken Spur, Lost City, and Rainbow fields). The analysis performed showed that the samples treated contained C14-C35 n-alkanes. The concentrations of the n-alkanes considered were rather low and varied from 0.002 to 0.038 μg/g. Hypotheses concerning the genesis of the n-alkanes identified were formed.  相似文献   

14.
《Marine Geology》2005,216(4):249-263
Bottom sediments collected in the Northwest (NW) Pacific Ocean in 1997 were analysed for 90Sr, 137Cs, 239,240Pu and 241Am contents to determine their distribution patterns, inventories and sources. Enhanced inventories of 239,240Pu and 241Am were observed in the latitudinal belts of 10–20°N and 30–40°N, which correspond to major areas of local (tropospheric) and global (stratospheric) fallout (with a contribution from local fallout), respectively. The sediment inventory of 239,240Pu near the Bikini Atoll exceeded its overlying water inventory, however, in the mid-latitudes, more than 70% of 239,240Pu still remains in the water column. 241Am inventories in sediments exceeded that of the water column for the entire NW Pacific Ocean. Higher 137Cs and 90Sr sediment inventories in the latitudinal belt of 30–40°N are due to global fallout, and they account for about 10% and less than 5% of the water column inventories, respectively. The observed activity ratios of 137Cs/90Sr, 238Pu/239,240Pu and 241Am/239,240Pu in sediment were at some stations higher than the global fallout ratios due to contributions from local fallout and due to specific processes in the water column. Two end-member mixing model based on the 240Pu/239Pu atom ratios observed in global and local fallout yielded ∼60% contribution of the local fallout in the bottom sediments near the Bikini Atoll. The upward decrease in the 240Pu/239Pu atom ratios in the sediment column indicates a decrease in the contribution of local fallout to the Pu inventory with time. 241Am and 241Pu dating of sediment layers was utilized to explain a hiatus in sediment accumulation in the deep seafloor.  相似文献   

15.
Ocean acidification damages calcareous organisms, such as calcifying algae, foraminifera, corals, and shells. In this study, we made a device equipped with a Clark-type oxygen electrode and a pH-stat to examine how the most abundant calcifying phytoplankton, the coccolithophorid Emiliania huxleyi, responded to acidification and alkalization of the seawater medium. When E. huxleyi was incubated at pH 8.2, close to oceanic pH, the medium was alkalized during photosynthesis, and the alkalization rate [determined as μmol HCl added (mg Chl)−1 h−1] was identical to the activity of photosynthesis [determined as μmol O2 evolved (mg Chl)−1 h−1]. When pH was maintained at 7.2 by the pH-stat, alkalization activity was stimulated and exceeded photosynthetic activity, resulting in an increase in the ratio of alkalization to photosynthesis (Alk/PS). On the other hand, no alkalization and photosynthesis were observed at pH 9.2. In contrast, acidification of seawater was observed in the dark because of the release of respiratory CO2 from cells at pH 8.2–9.2, but not at pH 7.2. When orthophosphate was rapidly depleted within a day in the batch culture, intracellular calcification gradually increased, and both photosynthesis and alkalization decreased gradually. During the period the Alk/PS ratio also decreased gradually. These results indicate that E. huxleyi possesses an ability to compensate for the acidification of seawater when photosynthesis is more actively driven than respiration. These results suggest that the E. huxleyi cells may not be severely damaged by oceanic acidification during photosynthesis because of their homeostatic function to avoid negative effects on cellular activity. Finally, we concluded that E. huxleyi cells possess a buffering ability to reduce acidification effects when photosynthesis is actively driven.  相似文献   

16.
Fugacity of CO2 (fCO2), temperature, salinity, nutrients, and chlorophyll-a were measured in the surface waters of southwestern East Sea/Japan Sea in July 2005. Surface waters were divided into three waters based on hydrographic characteristics: the water with moderate sea surface temperature (SST) and high sea surface salinity (SSS) located east of the front (East water); the water with high SST and moderate SSS located west of the front (West water); and the water with low SST and SSS located in the middle part of the study area (Middle water). High fCO2 larger than 420 μatm were found in the West water. In the Middle water, CO2 was undersaturated with respect to the atmosphere, with values between 246 and 380 μatm. Moderate fCO2 values ranging from 370 to 420 μatm were observed in the East water. For the East and West waters, estimates of temperature dependency of fCO2 (12.6 and 15.1 μatm °C−1, respectively) were rather similar to a theoretical value, indicating that SST is likely to be a major factor controlling the surface fCO2 distribution in these two regions. In the Middle water, however, the estimated temperature dependence was somewhat lower than the theoretical value, and relatively high concentrations of surface chlorophyll-a coincided with the low surface fCO2, implying that biological uptake may considerably affect the fCO2 distribution. The net sea-to-air CO2 flux of the study area was estimated to be 0.30±4.81 mmol m−2 day−1 in summer, 2005.  相似文献   

17.
The distribution and inventory of artificial radionuclides,239,240Pu and137Cs were determined in the East China and the Yellow Seas in 1987. Almost all of239,240Pu and 50 to 80% of137Cs in the continental shelf area are retained in the sediment column.239,240Pu sediment inventory in the sea area is larger than the fallout input and tends to increase southwardly. This excess239,240Pu and the lateral distribution are attributable to the supply of239,240Pu by the Yangtze River discharge. On the contrary,137Cs sediment inventory shows a decrease to the south, and the fact can be accounted for by the southward dispersion of fine silt particles discharged from the Yellow River. Total137Cs inventory is smaller than the estimated fallout input, and the fact seems to indicate dispersion of137Cs out of the shelf region. Vertical profiles of239,240Pu and137Cs contents in sediments differ from that of natural210Pb, implying the effect of varied accumulation rates of the artificial radionuclides over the sediment particle mixing by benthic organisms. Apparent maximum sediment particle mixing coefficient (D B ) calculated from the excess210Pb profiles in stations located between the inner and outer shelves ranged from 1.4 to 8.3 cm2y–1. ThisD B value is higher than that in the Okinawa Trough (1.0 cm2y–1), but lower than previously estimatedD B value (26 cm2y–1) in the outer shelf mud.  相似文献   

18.
Vibrio parahaemolyticus is a common pathogenic bacterium in marine and estuarine waters. To investigate interactions between V. parahaemolyticus and co-occurring redtide dinoflagellates, we monitored the daily abundance of 5 common red tide dinoflagellates in laboratory culture; Amphidinium carterae, Cochlodinium ploykrikoides, Gymnodinium impudicum, Prorocentrum micans, and P. minimum. Additionally, we measured the ingestion rate of each dinoflagellate on V. parahaemolyticus as a function of prey concentration. Each of the dinoflagellates responded differently to the abundance of V. parahaemolyticus. The abundances of A. carterae and P. micans were not lowered by V. parahaemolyticus, whereas that of C. polykrikodes was lowered considerably. The harmful effect depended on bacterial concentration and incubation time. Most C. polykrikoides cells died after 1 hour incubation when the V. parahaemolyticus concentration was 1.4×107 cells ml−1, while cells died within 2 days of incubation when the bacterial concentration was 1.5×106 cells ml−1. With increasing V. parahaemolyticus concentration, ingestion rates of P. micans, P. minimum, and A. carterae on the prey increased, whereas that on C. polykrikoides decreased. The maximum or highest ingestion rates of P. micans, P. minimum, and A. carterae on V. parahaemolyticus were 55, 5, and 2 cells alga−1 h−1, respectively. The results of the present study suggest that V. parahaemolyticus can be both the killer and prey for some red tide dinoflagellates.  相似文献   

19.
Nutrient regeneration and oxygen consumption after a spring bloom in Funka Bay were studied on monthly survey cruises from February to November 1998 and from March to December 1999. A high concentration of ammonium (more than 4 μmol l−1) was observed near the bottom (80–90 m) after April. Phosphate and silicate gradually accumulated and dissolved oxygen decreased in the same layer. Salinity near the bottom did not change until summer, leading to the presumption that the system in this layer is semi-closed, so regenerated nutrients were preserved until September. Nitrification due to the oxidation of ammonium to nitrate was observed after June. Nitrite, an intermediate product, was detected at 4–7 μmol L−1 in June and July 1999. Assuming that decomposition is a first order reaction, the rate constant for decomposition of organic nitrogen was determined to be 0.014 and 0.008 d−1 in 1998 and 1999, respectively. The ammonium oxidation rate increased rapidly when the ambient ammonium concentration exceeded 5 μmol L−1. We also performed a budget calculation for the regeneration process. The total amount of N regenerated in the whole water column was 287.4 mmol N m−2 in 4 months, which is equal to 22.8 gC m−2, assuming the Redfield C to N ratio. This is 34% of the primary production during the spring bloom and is comparable to the export production of 25 gC m−2 measured by a sediment trap at 60 m (Miyake et al., 1998).  相似文献   

20.
The habitat quality of Chub mackerel (Scomber japonicus) in the East China Sea has been a subject of concern in the last 10 years due to large fluctuations in annual catches of this stock. For example, the Chinese light-purse seine fishery recorded 84000 tons in 1999 compared to 17000 tons in 2006. The fluctuations have been attributed to variability in habitat quality. The habitat suitability Index (HSI) has been widely used to describe fish habitat quality and in fishing ground forecasting. In this paper we use catch data and satellite derived environmental variables to determine habitat suitability indices for Chub mackerel during July to September in the East China Sea. More than 90% of the total catch was found to come from the areas with sea surface temperature of 28.0°–29.4°C, sea surface salinity of 33.6–34.2 psu, chlorophyll-a concentration of 0.15–0.50 mg/m3 and sea surface height anomaly of −0.1–1.1 m. Of the four conventional models of HSI, the Arithmetic Mean Model (AMM) was found to be most suitable according to Akaike Information Criterion analysis. Based on the estimation of AMM in 2004, the monthly HSIs in the waters of 123°–125°E and 27°30′–28°00′ N were more than 0.6 during July to September, which coincides with the catch distribution in the same time period. This implies that AMM can yield a reliable prediction of the Chub mackerel’s habitat in the East China Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号