首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Satellite image data and thematic map data were used to provide comprehensive views of surface-bound conditions such as soil and vegetation degradation. The current work applies a computerized parametric methodology, developed by FAO, UNEP and UNESCO to assess and evaluate soil degradation at 1 : 250 000 mapping scale. The study area is located in the arid and semi-arid zone of the northern part of Shaanxi Province in China, a region with considerable agricultural potential; Landsat TM images were utilized to provide recent data on land cover and use of the area. ARC/INFO and Arc-View softwares were used to manage and manipulate thematic data, to process satellite images, and tabular data source. ER mapper software is utilized to derive the normalized difference vegetation index (ND VI) values while field data to estimate soil erodibility (SE) factor. A system is established for rating soil parameters, slope, climate factor and human factor activity. The rating values serve as inputs into a modified universal soil loss equation (USLE) to calculate the present state and risk for soil degradation processes, namely soil wind erosion. The produced maps and tabular data show the risk and the present status of different soil degradation processes. The study area, in general, is exposed to high risk of wind erosion and high hazards of water erosion. Several desertification maps were produced, which reflect the desertification types persisting in the study area. Wind erosion, water erosion, vegetation degradation,physical degradation and salinization are the basic desertification maps, and others are combinations of these basic maps. In terms of statistic analysis, 33.75 % of the total land area (120. 330 0 ha) is considered as sand or sand dune, and not included in our analysis of desertification. About 29. 41% of the total land area has slight or moderate desertification and 37. 465 % is facing severe desertification.  相似文献   

2.
Geographical information systems (GIS)-based soil erosion risk assessment models continue to play an important role in soil conservation planning. In the present study, soil erosion risk of Istanbul–Elmalı dam watershed was determined within GIS-based COoRdination of INformation on the Environment (CORINE) soil erosion risk assessment method. Initially soil texture, soil depth, and surface stoniness maps were created and were intersected in GIS environment in order to generating erodibility map. Then, Fournier precipitation and Bagnouls–Gaussen drought indices determined based on meteorological data and erosivity were calculated. The composed erodibility map was co-evaluated within erosivity value and slope map of the site for composing potential erosion risk map. At the final step, the previous yearly land use maps which belong to years 1984, 1992, and 2003 intersected with potential erosion risk maps and temporal actual erosion risk alteration were assessed. In conclusion, according to our results in Elmalı watershed dam in 1984 there have been low, medium, and high erosion risks at rates 29.67, 52.49, and 17.84%, respectively, whereas in 2003 the erosion risk values have changed from low to high as 26.43, 46.57, and 27.00%, respectively. Inter-year comparison alteration to the advantage of the high erosion risk could have resulted from over degradation and high exposure to anthropogenic activities.  相似文献   

3.
The coastal zone of the Sagar island has been studied. The island has been subjected to erosion by natural processes and to a little extent by anthropogenic activities over a long period. Major landforms identified in the coastal area of the Sagar island are the mud flats/salt marshes, sandy beaches/dunes and mangroves. The foreshore sediments are characterized by silty, slightly sandy mud, slightly silty sand and silty sand. Samples 500 m inland from high waterline are silty slightly sandy mud, and by clayey slightly sandy mud. The extent of coastline changes are made by comparing the topographic maps of 1967 and satellite imageries of 1996, 1998 and 1999. Between 1967 and 1999 about 29.8 km2 of the island has been eroded and the accreted area is only 6.03 km2. Between 1996 and 1998 the area underwent erosion of 13.64 km2 while accretion was 0.48 km2. From 1998 to 1999, 3.26 km2 additional area was eroded with meager accretion. Erosion from 1997 to 1999 was estimated at 0.74 km2 /year; however, from 1996 to 1999, the erosion rate was calculated as 5.47 km2/year. The areas severely affected by erosion are the northeastern, southwestern and southeastern faces of the island. As a consequence of coastal erosion, the mud flats/salt marshes, sandy beaches/dunes and mangroves have been eroded considerably. Deposition is experienced mainly on the western and southern part of the island. The island is built primarily by silt and clay, which can more easily be eroded by the waves, tides and cyclonic activities than a sandy coast. Historic sea level rises accompanied by land subsidence lead to differing rates of erosion at several pockets, thus periodically establishing new erosion planes.  相似文献   

4.
This research selected water soil erosion indicators (land cover, vegetation cover, slope) to assess the risk of soil erosion, ARCMAP GIS ver.9.0 environments and ERDAS ver.9.0 were used to manage and process satellite images and thematic tabular data. Landsat TM images in 2003 were used to produce land/cover maps of the study area based on visual interpreting method and derived vegetation cover maps, and the relief map at the scale of 1:50,000 to calculate the slope gradient maps. The area of water soil erosion was classified into six grades by an integration of slope gradients, land cover types, and vegetation cover fraction. All the data were integrated into a cross-tabular format to carry out the grid-based analysis of soil erosion risk. Results showed that the upper basin of Miyun Reservoir, in general, is exposed to a moderate risk of soil erosion, there is 715,848 ha of land suffered from water soil erosion in 2003, occupied 46.62% of total area, and most of the soil erosion area is on the slight and moderate risk, occupied 45.60 and 47.58% of soil erosion area, respectively.  相似文献   

5.
http://www.sciencedirect.com/science/article/pii/S1674987111000211   总被引:1,自引:0,他引:1  
Arid and semi-arid regions are susceptible to high levels of erosion.A rapid and cost effective methodological erosion assessment for these regions is required to describe and monitor the processes that control erosion.This study uses remote sensing to describe the contribution of several factors that control erosion.Topography,land use,vegetation density,soil properties and climatic proxies are used to determine erosion risk and to provide basic maps of water and soil conservation practices. A hierarchi...  相似文献   

6.
Wind-erosion risk is a challenge that threatens land development in dry-land regions. Soil analysis, remote sensing, climatic, vegetal cover and topographic data were used in a geographic information system (GIS), using multi-criteria analysis (MCA) to map wind-erosion risk (Rwe) in Laghouat, Algeria. The approach was based on modelling the risk and incorporating topographic and climatic effects. The maps were coded according to their sensitivity to wind erosion and to their socio-economic potential, from low to very high. By overlapping the effects of these layers, qualitative maps were drawn to reflect the potential sensitivity to wind erosion per unit area. The results indicated that severe wind erosion affects mainly all the southern parts and some parts in the north of Laghouat, where wind-erosion hazard (Hwe) is very high in 43% of the total area, and which was affected mainly by natural parameters such as soil, topography and wind. The results also identified features vulnerable to Rwe. The product of the hazard and the stake maps indicated the potential risk areas that need preventive measures; this was more than half of the study area, making it essential to undertake environmental management and land-use planning.  相似文献   

7.
Two case studies of the application of geoscientific maps for planning in semi-arid regions are presented, one for the Mediterranean province of Valencia and another for the island of Gran Canaria (Canaries). Both regions are very dynamic from the point of view of population growth and urban-touristic-industrial development, and they suffer from a serious degree of environmental degradation. The provincial/ island governments have undertaken programmes of geoscientific mapping and assessment to serve as a basis for the establishment of guidelines for future planning.

Two map sets have been made (1:200,000 in Valencia and 1:50,000 in Gran Canaria), based on initial maps of homogeneous integrated units. These represent a series of hierarchical land subdivisions, progressively smaller and more detailed (morphodynamic environments, systems, units, elements), defined on the basis of morphostructure, climate, lithology, surficial deposits, landforms, topography, active processes, soils, vegetation and human influence.

Each individual map unit is described by means of a form which includes 114 items, summarising its environmental features.

Morphodynamic units have been evaluated in terms of qualities significant for planning, and a series of derivative maps has been developed (geologic hazards, soil capability, present degree of erosion, potential erodibility, quality for conservation).

A final map shows the most advisable types of uses and the main limitations for human activities, mainly due to engineering geological factors. This is a synthesis document which can be used directly by planners.  相似文献   


8.
Some recent land use changes in Albania, such as deforestation, cropland abandonment, and urban sprawl, have caused serious increase of erosion risk. The main objective of this study was to map erosion risk in Korçe region and assess the degree at which every land use is concerned. The G2 erosion model was applied, which can provide erosion maps and statistical figures at month-time intervals using input from free European and global geodatabases. The mapping results in Korçe region were derived at a 30-m cell size, which is an innovation for G2. Autumn-winter months were found to be the most erosive, with average erosion rates reaching the maximum in November and December, i.e. 2.62 and 2.36 t/ha, respectively, while the annual rate was estimated at 10.25 t/ha/yr. Natural grasslands, shurblands, mixed forests, and vineyards showed to exhibit the highest mean erosion rates, while shrublands, broad-leaved forests and natural grasslands were found to be the most extended land covers risky for non-sustainable erosion rates (i.e. >10 t/ha/yr). A detailed examination of the detected hot spots is now necessary by the competent authorities, in order to apply appropriate, site-specific conservation measures. Notably, use of SPOT VGT data did not prevent the maps from having extended gaps due to cloudiness. Sentinel-2 time series, freely available by the European Space Agency (ESA), have the potential to improve spatiotemporal coverage of V-factor, thus further empowering the G2 model, in the near future.  相似文献   

9.
双核素稳态侵蚀岛投影是原地生成宇宙成因核素测年技术中判断样品是否具有复杂暴露历史和估计侵蚀速率的常用方法。暴露、侵蚀、埋藏和再暴露的投影图可依据传统核素浓度计算等式利用计算机编程绘出。利用新推出的地表持续抬升与下降过程中样品的核素浓度与生成速率(及加速率)、侵蚀速率及暴露时间的计算等式,对其26Al/10Be浓度比值相对于10Be浓度/10Be生成速率比值投影分别进行了计算机模拟,发现下降样品的投影可高于或右偏于稳态侵蚀岛,而抬升样品的投影仍然在稳态侵蚀岛内。利用持续地表下降,可以解释已往文献数据中一次性暴露样品投影高于或右偏于稳态侵蚀岛的"不合理"现象,而持续抬升对投影结果的影响类似于侵蚀,因此如果忽略抬升,计算的暴露年龄结果将偏小。  相似文献   

10.
Soil erosion by water is recognised as a worldwide land degradation issue, particularly in arid and semi-arid regions. The aim of this study is to apply the powerful capabilities of advanced remote sensing and geographic information system techniques to identify the areas at risk to water erosion. This study presents the assessment of water erosion in mountainous areas (eastern Aures, Algeria) based on three main factors: the friability of the bedrock, degree of slope and density of vegetation cover. Alsat1 image was used to produce land use and vegetation (NDVI) maps. Digital elevation model was used in constructing the slope gradient map. The erosion risk map was obtained by the combination of indices assigned to thematic layers following multicriteria decision rules. Water erosion was generally not concerning in the eastern Aures (slight risk = 33 %, moderate risk = 44 % of the area). This simple–qualitative approach gave good results for assessing soil erosion equally to quantitative methods since 89.55 % of field verifications were accurate. The non-alarming state and the low rate of severe and extremely severe risk to erosion are due to (1) the low steep slopes, (2) the good quality of vegetation (forests with thick undergrowth), and which are occurring on (3) resistant materials of the substratum, and (4) the low human pressure. Results of this study, which may be conducted with reasonable costs and accuracy over large areas, are of significant help in prioritising areas in decision making and sustainable planning.  相似文献   

11.
Soil erosion is a growing problem in southern Greece and particularly in the island of Crete, the biggest Greek island with great agricultural activity. Soil erosion not only decreases agricultural productivity, but also reduces the water availability. In the current study, an effort to predict potential annual soil loss has been conducted. For the prediction, the Revised Universal Soil Loss Equation (RUSLE) has been adopted in a Geographical Information System framework. The RUSLE factors were calculated (in the form of raster layers) for the nine major watersheds which cover the northern part of the Chania Prefecture. The R-factor was calculated from monthly and annual precipitation data. The K-factor was estimated using soil maps available from the Soil Geographical Data Base of Europe at a scale of 1:1,000,000. The LS-factor was calculated from a 30-m digital elevation model. The C-factor was calculated using Remote Sensing techniques. The P-factor in absence of data was set to 1. The results show that an extended part of the area is undergoing severe erosion. The mean annual soil loss is predicted up to ∼200 (t/ha year−1) for some watersheds showing extended erosion and demanding the attention of local administrators.  相似文献   

12.
The spatial pattern of soil erosion can provide valuable insights into the soil erosion processes that require a rapid assessment in practical applications. Generally, quantitative technique is expensive and time-consuming. The objective of this paper is to reveal the spatial pattern of erosion with a rapid assessment method. The affecting factors such as land cover, vegetation fraction and slope gradient are integrated into this method using a qualitative means. Beijing-1 images in 2006 were used to produce land-cover and vegetation fraction, and 1:50,000 topographic maps were used to calculate slope gradient. The study area was classified into six grades. Results show that the upstream area of Guanting Reservoir, in general, is exposed to a moderate risk; there are 17,740.33 km2 of land that suffered from water soil erosion in 2006, occupied 40.69% of the total area, and most of the soil erosion area is on the light and moderate risk, which occupied 25.05 and 62.83% of the eroded area, respectively. Eight elevation zones and six slope gradient zones were overlaid with the assessed risk. The analyzed results show that: (1) the areas above 2,000 m have the lowest erosion risk, which is only 0.75% of the eroded area; 1,250–1,500 m elevation zone has the highest erosion risk, which is 34.72% of the eroded area. (2) The slope gradient zone less than 5 degrees and greater than 35 degrees have the lowest erosion risk, which is 0.02 and 0.75% of the eroded area, respectively; the slope gradient zone with 8–15 degrees has the highest erosion risk, which is 36.40% of the eroded area. These results will be useful for water and soil conservation management and the planning of mitigation measures.  相似文献   

13.
Soil erosion by water is a serious environmental problem which affects particularly the agriculture of developing countries. Due to specific factors, such as high rainfall intensity, steep slopes and vegetation scarcity, Tunisia is prone to soil erosion. Taking this into account, the main objective of this study was to estimate the soil erosion risk in the Batta watershed in Tunisia using qualitative and quantitative erosion model with remote sensing data and geographic information system (GIS). Moreover, a developed method that deals with evaluating the impact of vegetation on soil erosion by water is also applied. This method used multi-temporal satellite images with seasonal variability and the transformed soil adjusted vegetation index (TSAVI) which is appropriate in arid and semi-arid areas. For both erosion models, the results show that a large area of the Batta watershed is seriously affected by erosion. This potentially high risk is due especially to severe slopes, poor vegetation coverage and high soil erodibility in this watershed. Furthermore, the use of multi-temporal satellite images and vegetation index show that the effect of vegetation is a significant factor to protect the soil against erosion. The risk is especially serious in the summer season, but it decreases with the growth of vegetation cover in spring. Erosion model, combined with a GIS and remote sensing, is an adequate method to evaluate the soil erosion risk by water. The findings can be used by decision makers as a guideline to plan appropriate strategies for soil and water conservation practices.  相似文献   

14.
This study was aimed at predicting soil erosion risk in the Buyukcekmece Lake watershed located in the western part of Istanbul, Turkey, by using Revised Universal Soil Loss Equation (RUSLE) model in a GIS framework. The factors used in RUSLE were computed by using different data obtained or produced from meteorological station, soil surveys, topographic maps, and satellite images. The RUSLE factors were represented by raster layers in a GIS environment and then multiplied together to estimate the soil erosion rate in the study area using spatial analyst tool of ArcGIS 9.3. In the study, soil loss rate below 1 t/ha/year was defined as low erosion, while those >10 t/ha/year were defined as severe erosion. The values between low and severe erosion were further classified as slight, moderate, and high erosion areas. The study provided a reliable prediction of soil erosion rates and delineation of erosion-prone areas within the watershed. As the study revealed, soil erosion risk is low in more than half of the study area (54%) with soil loss <1 t/ha/year. Around one-fifth of the study area (19%) has slight erosion risk with values between 1 and 3 t/ha/year. Only 11% of the study area was found to be under high erosion risk with soil loss between 5 and 10 t/ha/year. The severe erosion risk is seen only in 5% of the study area with soil loss more than 10 t/ha/year. As the study revealed, nearly half of the Buyukcekmece Lake watershed requires implementation of effective soil conservation measures to reduce soil erosion risk.  相似文献   

15.
Maps showing the potential for soil erosion at 1:100,000 scale are produced in a study area within Lebanon that can be used for evaluating erosion of Mediterranean karstic terrain with two different sets of impact factors built into an erosion model. The first set of factors is: soil erodibility, morphology, land cover/use and rainfall erosivity. The second is obtained by the first adding a fifth factor, rock infiltration. High infiltration can reflect high recharge, therefore decreasing the potential of surface runoff and hence the quantity of transported materials. Infiltration is derived as a function of lithology, lineament density, karstification and drainage density, all of which can be easily extracted from satellite imagery. The influence of these factors is assessed by a weight/rate approach sharing similarities between quantitative and qualitative methods and depending on pair-wise comparison matrix.The main outcome was the production of factorial maps and erosion susceptibility maps (scale 1:100,000). Spatial and attribute comparison of erosion maps indicates that the model that includes a measure of rock infiltration better represents erosion potential. Field investigation of rills and gullies shows 87.5% precision of the model with rock infiltration. This is 17.5% greater than the precision of the model without rock infiltration. These results indicate the necessity and importance of integrating information on infiltration of rock outcrops to assess soil erosion in Mediterranean karst landscapes.  相似文献   

16.
Bago River is an important river in Myanmar. Although shorter than other rivers, it has its own river system, and people along the river rely heavily on it for their daily lives. The upper part of the watershed has changed rapidly from closed forest to open forest land in the 1990s. Since the recent degradation of the forest environment, annual flooding has become worse during the rainy season in Bago City. This paper aims at determining soil conservation prioritization of watershed based on soil loss due to erosion and morphometric analysis in the Bago Watershed by integrating remote sensing and geographic information system (GIS) techniques. In this study, soil erosion of the Bago watershed was determined using the Universal Soil Loss Equation. Such factormaps as rainfall, soil erodibility, slope length gradient, and crop management were compiled as input parameters for the modeling; and the soil loss from 26 sub-watersheds were estimated. Then, the soil erosion maps of the Bago watershed for 2005 were developed. The resulting Soil Loss Tolerance Map could be utilized in developing watershed management planning, forestry management planning, etc.  相似文献   

17.
海水入侵是影响海岛地下水封油库施工及运营安全的重要因素。海岛环境下建设地下水封油库,大规模的地下开挖将显著改变海岛天然地下水渗流场,海水入侵地下洞室一方面引发突水风险,另一方面海水中的氯离子将会对地下洞库结构设施造成侵蚀,影响地下油库的使用寿命。因此在海岛环境下建造地下水封油库,除了需要考虑水封可靠性与岩体稳定性外,还需要关注海水入侵等现象。科学设置水幕系统可以有效地减弱海水入侵风险,论文基于污染质运移相关理论,采用有限元数值模拟方法,以拟建浙江省舟山市某海岛大型地下水封油库为例,模拟了地下油库建造及运营期的海水入侵现象,研究表明:若不设置淡水水幕系统,开挖地下洞室会直接导致海水入侵;设置水平水幕后在确保水封可靠性的前提下,能在一定程度上减弱海水入侵;而设置垂直水幕系统则能较为明显地抑制海水入侵的发生。该成果为海岛环境下建造地下水封油库可能遇到的海水入侵问题研究提供了理论依据。  相似文献   

18.
A catastrophic volcanic explosion took place in Thera/Santorini island around 1613 BC, known as the ‘Minoan’ eruption. Many papers have dealt with the shape of the shoreline of the island before the eruption, but none with the shape of the shoreline exactly after it, assuming that it would be the same with the contemporary one. However, this is not correct due to the wave erosion. In this paper, a new DEM was constructed, covering both land and submarine morphology, then topographic sections were drawn around the island. Using these sections, the ‘missing parts’ (sea-wave erosion) were calculated, the shoreline was reconstructed as it was one day after the eruption and finally the erosion rate was calculated.  相似文献   

19.
Soil erosion is a serious environmental problem in Indravati catchment. It carries the highest amount of sediments compared with other catchments in India. This catchment spreading an area of 41,285 km2 is drained by river Indravati, which is one of the northern tributaries of the river Godavari in its lower reach. In the present study, USLE is used to estimate potential soil erosion from river Indravati catchment. Both magnitude and spatial distribution of potential soil erosion in the catchment is determined. The derived soil loss map from USLE model is classified into six categories ranging from slight to very severe risk depending on the calculated soil erosion amount. The soil erosion map is linked to elevation and slope maps to identify the area for conservation practice in order to reduce the soil loss. From the model output predictions, it is found that average erosion rate predicted is 18.00 tons/ha/year and sediment yield at the out let of the catchment is 22.30 Million tons per annum. The predicted sediment yield verified with the observed data.  相似文献   

20.
Felpeto  A.  Araña  V.  Ortiz  R.  Astiz  M.  García  A. 《Natural Hazards》2001,23(2-3):247-257
This paper presents an evaluation of the lava flowhazard on Lanzarote (Canary Islands) by means of aprobabilistic maximum slope model. This model assumesthat the topography plays the major role indetermining the path that a lava flow will follow. Thearea selected for containing future emission centreshas been chosen taking into account thecharacteristics of the recent eruptive activity andthe present activity of the island. The results of thesimulations constitute hazard maps whose values ateach point represent the probability of being coveredby lava. These results are qualitatively analysed toprovide some indication of the risk to the lifelines(electricity, drinking water etc.) of the island.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号