首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 328 毫秒
1.
HU Xiao  GAO Ye  SHI Xiao-tao 《海洋工程》2017,31(1):123-129
A control scheme named the variable-lateral-force cavitator, which is focused on the control of lift force, drag force and lateral forces for underwater supercavity vehicles was proposed, and the supercavitating flow around the cavitator was investigated numerically using the mixture multiphase flow model. It is verified that the forces of pitching, yawing, drag and lift, as well as the supercavity size of the underwater vehicle can be effectively regulated through the movements of the control element of the variable-lateral-force cavitator in the radial and circumferential directions. In addition, if the control element on either side protrudes to a height of 5% of the diameter of the front cavitator, an amount of forces of pitching and yawing equivalent to 30% of the drag force will be produced, and the supercavity section appears concave inwards simultaneously. It is also found that both the drag force and lift force of the variable-lateral-force cavitator decline as the angle of attack increases.  相似文献   

2.
- In this paper, an engineering method is employed to calculate the horizontal and vertical wave forces on the mat of the submersible platform under Froude-Krylov hypothesis. According to some model tests, appropriate diffraction coefficients are selected. And the results of the formulae given in the paper agree satisfactorily with those experimental data now available. The proposed computational method is effective and convenient to use in evaluating the horizontal and vertical wave forces on the mat. An exmaple is also given in this paper. Finally, the effects of the vertical wave force on the platorm's sit-on-bottom stability are analyzed.  相似文献   

3.
HAISHEN is a long-ranged and highly maneuverable AUV which has two operating modes: glider mode and flapping-foil propulsion mode. As part of the vehicle development, a three-dimensional mathematical model of the conceptual vehicle was developed on the assumption that HAISHEN has a rigid body with two independently controlled oscillating hydrofoils. A flapping-foil model was developed based on the work done by Georgiades et al. (2009). Effect of controllable hydrofoils on the vehicle stable motion performance was studied theoretically. Finally, a dynamics simulation of the vehicle in both operating modes is created in this paper. The simulation demonstrates that: (1) in the glider mode, owing to the independent control of the pitch angle of each hydrofoil, HAISHEN travels faster and more efficiently and has a smaller turning radius than conventional fix-winged gliders; (2) in the flapping-foil propulsion mode, HAISHEN has a high maneuverability with a turning radius smaller than 15 m and a forward motion velocity about 1.8 m/s; (3) the vehicle is stable under all expected operating conditions.  相似文献   

4.
Drag anchor is one of the most commonly used anchorage foundation types. The prediction of embedded trajectory in the process of drag anchor installation is of great importance to the safety design of mooring system. In this paper, the ultimate anchor holding capacity in the seabed soil is calculated through the established finite element model, and then the embedded motion trajectory is predicted applying the incremental calculation method. Firstly, the drag anchor initial embedded depth and inclination angle are assumed, which are regarded as the start embedded point. Secondly, in each incremental step, the incremental displacement of drag anchor is added along the parallel direction of anchor plate, so the displacement increment of drag anchor in the horizontal and vertical directions can be calculated. Thirdly, the finite element model of anchor is established considering the seabed soil and anchor interaction, and the ultimate drag anchor holding capacity at new position can be obtained. Fourthly, the angle between inverse catenary mooring line and horizontal plane at the attachment point at this increment step can be calculated through the inverse catenary equation. Finally, the incremental step is ended until the angle of drag anchor and seabed soil is zero as the ultimate embedded state condition, thus, the whole embedded trajectory of drag anchor is obtained. Meanwhile, the influences of initial parameter changes on the embedded trajectory are considered. Based on the proposed method, the prediction of drag anchor trajectory and the holding capacity of mooring position system can be provided.  相似文献   

5.
Large-scale interceptors constitute the main structure of offshore self-driven floating marine litter collection devices,and the structural stability of such interceptors under the action of waves directly influences the overall safety of the device.When the ratio of the diameter of a horizontal cylinder in such interceptors to the incident wavelength is larger than 0.25,the wave force can be calculated by using the diffraction theory,by considering the problem as that of the interaction between the waves and a partially immersed large-scale horizontal cylinder.In this study,an analytical approach to calculate the wave force on a partially immersed large-scale horizontal cylinder was formulated by using the stepwise approximation method.Physical model tests were conducted to investigate the effects of different factors(wave height,period,and immersion depth)on the wave force on a large-scale horizontal cylinder under conditions involving short-period waves.The results show that both horizontal and vertical wave forces on the cylinder increase as the wave height(immersion depth)increases in most cases.The vertical wave force decreases with the decrease of the period.For the horizontal wave force,it increases with the decrease of the period when the wavelength is larger than the diameter of the cylinder and decreases with the decrease of the period when the wavelength is smaller than the diameter of the cylinder.  相似文献   

6.
Based on rigid kinematics theory and lumped mass method,a mathematical model of the two net cages of grid mooring system under waves is developed.In order to verify the numerical model,a series of physical model tests have been carried out.According to the comparisons between the simulated and the experimental results,it can be found that the simulated and the experimental results agree well in each wave condition.Then,the forces on the mooring lines and the floating collar movement are calculated under different wave conditions.Numerical results show that under the same condition,the forces on the bridle ropes are the largest,followed by forces on the main ropes and the grid ropes.The horizontal and the vertical float collar motion amplitudes increase with the increase of wave height,while the relationship of the horizontal motion amplitude and the wave period is indistinct.The vertical motion amplitude of the two cages is almost the same,while on the respect of horizontal motion amplitude,cage B(behind cage A,as shown in Fig.4) moves much farther than cage A under the same wave condition.The inclination angle of the floating system both in clockwise along y axis and the counter one enlarges a little with the increase of wave height.  相似文献   

7.
Vibrating-Rocking Motion of Caisson Breakwater Under Breaking Wave Impact   总被引:2,自引:0,他引:2  
The possible motions of a caisson breakwater under dynamic load excitation include vibrating, vibrating-sliding and vibrating-rocking motions. The models of vibrating motion and vibrating-sliding motion have been proposed in an early paper. In this paper, a model of vibrating-rocking motion of caisson breakwaters under breaking wave impact is presented, which can be used to simulate the histories of vibrating-rocking motion of caisson breakwaters. The effect of rocking motion on the displacement, rotation, sliding force and overturning moment of breakwaters is investigated. In case the overturning moment exceeds the stability moment of a caisson, the caisson may only rock. The caisson overturns only in case the rocking angle exceeds the critical angle. It is shown that the sliding force and overturning moment of breakwaters can be reduced effectively due to the rocking motion. It is proposed that some rocking motion should be allowed in breakwater design.  相似文献   

8.
Depth-trim mapping control of underwater vehicle with fins   总被引:1,自引:1,他引:0  
Underwater vehicle plays an important role in ocean engineering.Depth control by fin is one of the difficulties for underwater vehicle in motion control.Depth control is indirect due to the freedom coupling between trim and axial motion.It includes the method of dynamic analysis and lift-resistance-coefficient experiment and theory algorithm.By considering the current speed and depth deviation,comprehensive interpretation is used in object-planning instruction.Expected depth is transformed into expected trim.Dynamic output fluctuation can be avoided,which is caused by linear mapping of deviation.It is steady and accurate for the motion of controlled underwater vehicles.The feasibility and efficiency of the control method are testified in the pool and natural area for experiments.  相似文献   

9.
Rapid changes in the near-bottom water temperature are important environmental factors that can significantly affect the growth and development of species in the bottom culture. The object of this research is to investigate the mechanism causing these rapid changes within a bottom culture area near the Zhangzi Island. The hydrographic transects observations in the North Yellow Sea(NYS) suggest that our mooring station is very close to the tidal mixing front. The horizontal advection of the tidal front has induced the observed tidal change of bottom temperature at the mooring station. Analysis of the mooring near-bottom temperature and current measurements show that the angle between the tidal current horizontal advection and the swing of the tidal front is crucial in determining the variation trend of temperature. When the angle equals 90°, the horizontal tidal current advects along the isotherms so the temperature remains the same. When the angle is between 0° and 90°, the seawater moves from deep water to the warmer coastal zone and the temperature decreases. In contrast, the horizontal tidal advection moves the coastal warm water to the mooring station and the water temperature increases when the angle is between 90° and 180°. The amplitude of the temperature change is proportional to the magnitude of the horizontal temperature gradient and the tidal excursion in the direction of the temperature gradient. This study may facilitate the choice of culture area in order to have a good aquaculture production.  相似文献   

10.
A dynamic response analysis in the frequency domain is presented for risers subjected to combined wave and current loading. Considering the effects of current, a modified wave spectrum is adopted to compute the linearized drag force. An additional drag force convolution term is added to the linearized drag force spectrum, therefore the error is reduced which arises from the truncation of higher order terms in the drag force auto-correlation function. An expression of linearized drag force spectrum is given taking the relative velocity into account. It is found that the additional term is a fold convolution integral. In this paper dynamic responses of risers are investigated, while the influence of floater motion on risers is considered. The results demonstrate that the accuracy of the present method reaches the degree required in time domain analysis.  相似文献   

11.
To make a curvilinear motion in the horizontal plane is one of the most contents for realizing the maneuverability of the supercavitating vehicle. It is significant to achieve the controllability and maneuverability of the vehicle in three dimensions both theoretically and practically on research. Models of angle of attack, gravity and inertial force effects on the supercavity in the horizontal curvilinear motion are established, respectively. The supercavity is simulated based on these models in combination with Logvinovich model and the unsteady gas-leakage rate model at the given ventilation rate, and the effect of the inertial force on it is analyzed numerically. Results show that the maximum deviation of the center line of the cross section of supercavity towards the outward normal direction of its trajectory increases as the cavitation number or curvature radius decrease and always occur in the tail because of the increase of inertial effects along the axis of supercavity from the cavitator when other models and flow parameters are constant for the given trajectory curvature. For the variable curvature, the supercavity sheds due to its instability caused by the time-varying angle of attack. The deviation increases along the length of supercavity if the curvature remains the same sign.  相似文献   

12.
Biologically inspired maneuvering of autonomous undersea vehicles (AUVs) in the dive plane using pectoral-like oscillating fins is considered. Computational fluid dynamics are used to parameterize the forces generated by a mechanical flapping foil, which attempts to mimic the pectoral fin of a fish. Since the oscillating fins produce periodic force and moment of a variety of wave shapes, the essential characteristics of these signals are captured in their Fourier expansions. Maneuvering of the biorobotic AUV in the dive plane is accomplished by periodically altering the bias angle of the oscillating fin. Based on a discrete-time AUV model, an inverse control system for the dive-plane control is derived. It is shown that, in the closed-loop system, the inverse control system accomplishes accurate tracking of the prescribed time-varying depth trajectories and the segments of the intersample depth trajectory remain close to the discrete-time reference trajectory. The results show that the fins located away from the center of mass toward the nose of the vehicle provide better maneuverability.  相似文献   

13.
针对现有拖曳式水下潜器控制机构复杂、航向与姿态不容易稳定的缺陷,提出和设计了一种具有航向与姿态稳定的多自由度可控制拖曳式水下潜器样机。该样机主要由鱼雷状浮体、固定水平主翼、转角可控制襟翼、立式翼型主体等部分组成,潜器的深度控制通过控制襟翼的偏转来诱导固定水平主翼攻角的改变来实现;潜器的横荡运动操纵以通过控制两个作为转艏控制器的导管螺旋桨的转向与转速、诱导立式翼型主体产生诱导力矩使其产生横向偏转来进行。文中所提出和设计的样机具有运动过程中自我稳定能力强、航向稳定性好、控制机构简单并具有较高实用价值的特点。  相似文献   

14.
This paper addresses the combined problem of trajectory planning and tracking control for underactuated autonomous underwater vehicles (AUVs) on the horizontal plane. Given a smooth, inertial, 2D reference trajectory, the planning algorithm uses vehicle dynamics to compute the reference orientation and body-fixed velocities. Using these, the error dynamics are obtained. These are stabilized using backstepping techniques, forcing the tracking error to an arbitrarily small neighborhood of zero. Simulation results for a constant velocity trajectory, i.e. a circle, and a time-varying velocity one, i.e. a sinusoidal path, are presented. The parametric robustness is considered and it is shown that tracking remains satisfactory.  相似文献   

15.
水下潜器通常采用捷联惯性导航和多普勒计程仪组合导航系统。为提高惯性导航系统的导航精度,保障水下潜器顺利作业,文章以高性能惯导系统PHINS为例,介绍其安装和初始对准技术。PHINS在安装时须计算其与船体的偏差以及与船体和外部传感器的力臂,尤其与多普勒计程仪组合时应执行传感器自动对准程序;PHINS的初始对准是其精确导航的前提,可在海上或静态时进行;惯导系统的安装误差和初始对准精度对于其导航精度具有决定性的影响。  相似文献   

16.
基于二元LSTM神经网络的船舶运动预测算法研究   总被引:1,自引:1,他引:0  
在海况环境下,进行船舶运动预测时。由于惯性传感器采集系统本身的电学特性,会产生误差偏移,影响预测的准确性。针对这一问题,在常规长短期记忆网络(LSTM)的基础上,设计改良了一种二元的LSTM网络架构。在船舶运动仿真平台上进行模拟船舶升沉运动实验,并通过惯性传感系统测量仿真平台实时积分位移进行计算验证。验证统计该网络预测结果峰差值均方差0.64%,均值均方差0.42%,峰值均方差0.57%,证实该网络较常规LSTM在船舶运动预测领域具有更好的针对性和适应性,更准确的对船舶运动进行预测。  相似文献   

17.
18.
抛弃式探头由无人机装载,能够在较远目标区域和危险海域开展海洋水文环境剖面参数的测量。通过安装不同传感器,可以实现对温度、盐度的剖面测量,其深度的测量采用数学方法计算得到。针对双摄像机水箱实验获得的5个不同攻角实验结果,分析了常用的运动目标的检测方法,最终选择基于连续帧间差分法,确定探头的三维坐标位置,进而得到探头下沉运动的三维运动轨迹和速度曲线等信息。探头从水面释放后攻角在下沉过程中不断调整,改变运动姿态,同时伴随自身的旋转,抵消水平方向阻力作用,初始攻角产生的深度测量误差主要体现在加速过程,探头达到匀速运动后测量误差不变,在不考虑横流的情况下,探头最后以匀速垂直下落运动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号