首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 578 毫秒
1.
Magnetite, as a genetic indicator of ores, has been studied in various deposits in the world. In this paper, we present textural and compositional data of magnetite from the Qimantag metallogenic belt of the Kunlun Orogenic Belt in China, to provide a better understanding of the formation mechanism and genesis of the metallogenic belt and to shed light on analytical protocols for the in situ chemical analysis of magnetite. Magnetite samples from various occurrences, including the ore–related granitoid pluton, mineralised endoskarn and vein–type iron ores hosted in marine carbonate intruded by the pluton, were examined using scanning electron microscopy and analysed for major and trace elements using electron microprobe and laser ablation–inductively coupled plasma–mass spectrometry. The field and microscope observation reveals that early–stage magnetite from the Hutouya and Kendekeke deposits occurs as massive or banded assemblages, whereas late–stage magnetite is disseminated or scattered in the ores. Early–stage magnetite contains high contents of Ti, V, Ga, Al and low in Mg and Mn. In contrast, late–stage magnetite is high in Mg, Mn and low in Ti, V, Ga, Al. Most magnetite grains from the Qimantag metallogenic belt deposits except the Kendekeke deposit plot in the " Skarn " field in the Ca+Al+Mn vs Ti+V diagram, far from typical magmatic Fe deposits such as the Damiao and Panzhihua deposits. According to the(Mg O+Mn O)–Ti O2–Al2O3 diagram, magnetite grains from the Kaerqueka and Galingge deposits and the No.7 ore body of the Hutouya deposit show typical characteristics of skarn magnetite, whereas magnetite grains from the Kendekeke deposit and the No.2 ore body of the Hutouya deposit show continuous elemental variation from magmatic type to skarn type. This compositional contrast indicates that chemical composition of magnetite is largely controlled by the compositions of magmatic fluids and host rocks of the ores that have reacted with the fluids. Moreover, a combination of petrography and magnetite geochemistry indicates that the formation of those ore deposits in the Qimantag metallogenic belt involved a magmatic–hydrothermal process.  相似文献   

2.
The Tongling ore district is one of the most economically important ore areas in the Middle–Lower Yangtze River Metallogenic Belt, eastern China. It contains hundreds of polymetallic copper–gold deposits and occurrences. Those deposits are mainly clustered(from west to east) within the Tongguanshan, Shizishan, Xinqiao, Fenghuangshan, and Shatanjiao orefields. Until recently, the majority of these deposits were thought to be skarn-or porphyry–skarn-type deposits; however there have been recent discoveries of numerous vein-type Au, Ag, and Pb-Zn deposits that do not fall into either of these categories. This indicates that there is some uncertainty over this classification. Here, we present the results of several systematic geological studies of representative deposits in the Tongling ore district. From investigation of the ore-controlling structures, lithology of the host rock, mineral assemblages, and the characteristics of the mineralization and alteration within these deposits, three genetic types of deposits(skarn-, porphyry-, and vein-type deposits) have been identified. The spatial and temporal relationships between the orebodies and Yanshanian intrusions combined with the sources of the ore-forming fluids and metals, as well as the geodynamic setting of this ore district, indicate that all three deposit types are genetically related each other and constitute a magmatic–hydrothermal system. This study outlines a model that relates the polymetallic copper–gold porphyry-, skarn-, and vein-type deposits within the Tongling ore district. This model provides a theoretical basis to guide exploration for deep-seated and concealed porphyry-type Cu(–Mo, –Au) deposits as well as shallow vein-type Au, Ag, and Pb–Zn deposits in this area and elsewhere.  相似文献   

3.
Cu and Fe skarns are the world’s most abundant and largest skarn type deposits, especially in China, and Au-rich skarn deposits have received much attention in the past two decades and yet there are few papers focused on schematic mineral deposit models of Cu–Fe–Au skarn systems. Three types of Au-rich deposits are recognized in the Edongnan region, Middle–Lower Yangtze River metallogenic belt: ~140 Ma Cu–Au and Au–Cu skarn deposits and distal Au–Tl deposits; 137–148 Ma Cu–Fe; and 130–133 Ma Fe skarn deposits. The Cu–Fe skarn deposits have a greater contribution of mantle components than the Fe skarn deposits, and the hydrothermal fluids responsible for formation of the Fe skarn deposits involved a greater contribution from evaporitic sedimentary rocks compared to Cu–Fe skarn deposits. The carbonate-hosted Au–Tl deposits in the Edongnan region are interpreted as distal products of Cu–Au skarn mineralization. A new schematic mineral deposit model of the Cu–Fe–Au skarn system is proposed to illustrate the relationship between the Cu–Fe–Au skarn mineralization, the evaporitic sedimentary rocks, and distal Au–Tl deposits. This model has important implications for the exploration for carbonate–hosted Au–Tl deposits in the more distal parts of Cu–Au skarn systems, and Fe skarn deposits with the occurrence of gypsum-bearing host sedimentary rocks in the MLYRB, and possibly elsewhere.  相似文献   

4.
The Dongfengnanshan Cu polymetallic deposit is one representative deposit of the Tianbaoshan ore district in the Yanbian area, northeast(NE) China. There occur two types of ore bodies in this deposit, the stratiform ore bodies and veintype ones, controlled by the Early Permian strata and the Late Hercynian diorite intrusion, respectively. Due to the ambiguous genetic type of the stratiform ore bodies, there has been controversy on the relationship between them and veintype ore bodies. To determine the genetic type of stratiform ore bodies, laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS) in situ trace elements and S–Pb isotope analysis have been carried on the sulfides in the stratiform ore bodies. Compared with that in skarn, Mississippi Valley-type(MVT), and epithermal deposits, sphalerite samples in the stratiform ore bodies of the Dongfengnanshan deposit are significantly enriched in Fe, Mn, and In, while depleted in Ga, Ge, and Cd, which is similar to the sphalerite in volcanic-associated massive sulfide(VMS) deposits. Co/Ni ratio of pyrrhotites in the stratiform ore bodies is similar to that in VMS-type deposits. The concentrations of Zn and Cd of chalcopyrites are similar to those of recrystallized VMS-type deposits. These characteristics also reflect the intermediate ore-forming temperature of the stratiform ore bodies in this deposit. Sulfur isotope compositions of sulfides are similar to those of VMS-type deposits, reflecting that sulfur originated from the Permian Miaoling Formation. Lead isotope compositions indicate mixed-source for lead. Moreover, the comparison of the Dongfengnanshan stratiform ore bodies with some VMStype deposits in China and abroad, on the trace elements and S–Pb isotope characteristics of the sulfides reveals that the stratiform ore bodies of the Dongfengnanshan deposit belong to the VMS-type, and have closely genetic relationship with the early Permian marine volcanic sedimentary rocks.  相似文献   

5.
Lamprophyres typically appear in hydrothermal gold deposits. The relationship between lamprophyres and gold deposits is investigated widely. Some researchers suggest that the emplacement of lamprophyres triggers gold mineralization, whereas others hypothesize that the formation of lamprophyres increases the fertility of mantle sources and ore-forming fluids. K-feldspar veins, with ages between those of lamprophyres and gold deposits, appear in lamprophyres in Zhenyuan. Therefore, K-feldspar veins are ideal for investigating the relationship between lamprophyres and gold deposits. Phlogopite in K-feldspar veins has lower Mg#, Ni, and Cr contents and higher TiO2, Li, Ba, Sr, Sc, Zr, Nb, and Cs contents than phlogopite in lamprophyres. The in-situ Sr isotopic values of apatites (0.7063–0.7066) in K-feldspar veins are within the range for apatites (0.7064–0.7078) from lamprophyres. High large-ion lithophile element concentrations and low Nb and Ta concentrations in phlogopite from lamprophyres, in addition to high (87Sr/86Sr)i values of apatite (0.7064–0.7078), indicate that the magma parental to these phlogopite and apatite crystals is derived from an enriched mantle. K-feldspar veins are genetically correlated with lamprophyres, whereas sulfide mineral assemblage and trace element compositions of pyrite in K-feldspar veins suggest that K-feldspar veins in lamprophyres are not directly related to gold mineralization of the Zhenyuan deposit.  相似文献   

6.
The western Hunan–eastern Guizhou Zn-Pb metallogenic belt is one of the important Zn-Pb mineralization regions in China. The Dadongla deposit, located in the northeast of Guizhou Province, is one of the typical Zn-Pb deposits in the region and has estimated resources more than 12 million metric tons (Mt) with an average grade of 4.11 wt% Zn+Pb. Its orebodies are hosted in the lower Cambrian Aoxi Formation dolomite, occurring as bedded, para-bedded in shape, and in conformity with the wall rock. The ore mineral assemblage is simple, dominated by sphalerite with minor pyrite and galena, and the gangue minerals are composed of dolomite, calcite with minor bitumen and barite. In view of the lack of geological and geochemical researches, the genesis of Zn-Pb ore is still unclear. Laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) spot and mapping analyses were used to obtain sphalerite trace element chemistry in the Dadongla Zn-Pb deposit in Guizhou, China, aiming to constrain its ore genesis. The results show that sphalerite is characterized by the enrichment of Cd, Fe, Ge and Hg, corresponding with that of typical MVT deposits. Four zones were identified in the sphalerite crystal from Dadongla from the center to margin according to the color bands, in which the zone in the center, representing the early ore-stage sphalerite, is characterized by enrichment of Cd relatively, while the zone forming at late ore-stage is enriched in Ge and Hg relatively. The finding was controlled by differential leached metals content in ore-forming fluid from its source rock. Notably, critical element Ge trends to be enriched at the late ore-stage and follows a substitution of 2Zn2+? Ge4++□ (vacancy). Moreover, the calculated ore-forming temperature ranges from 79.9°C to 177.6°C by the empirical formula, which is similar to that of typical Mississippi Valley-type (MVT) deposits. Compared with the features of trace elements in sphalerite from different types of deposits, together with the geology, the Dadongla deposit belongs to an MVT Zn-Pb deposit.  相似文献   

7.
Abstract: The Fengshan porphyry-skarn copper–molybdenum (Cu–Mo) deposit is located in the south-eastern Hubei Province in east China. Cu–Mo mineralization is hosted in the Fengshan granodiorite porphyry stock that intruded the Triassic Daye Formation carbonate rocks in the early Cretaceous (~140 Ma), as well as the contact zone between granodiorite porphyry stock and carbonate rocks, forming the porphyry-type and skarn-type association. The Fengshan granodiorite stock and the immediate country rocks are strongly fractured and intensely altered by hydrothermal fluids. In addition to intense skarn alteration, the prominent alteration types are potassic, phyllic, and propylitic, whereas argillation is less common. Mineralization occurs as veins, stock works, and disseminations, and the main ore minerals are chalcopyrite, pyrite, molybdenite, bornite, and magnetite. The contents of palladium, platinum and gold (Pd, Pt and Au) are determined in nine samples from fresh and mineralized granodiorite and different types of altered rocks. The results show that the Pd content is systematically higher than Pt, which is typical for porphyry ore deposits worldwide. The Pt content ranges from 0.037 to1.765 ppb, and the Pd content ranges between 0.165 and 17.979 ppb. Pd and Pt are more concentrated in porphyry mineralization than skarn mineralization, and have negative correlations with Au. The reconnaissance study presented here confirms the existence of Pd and Pt in the Fengshan porphyry-skarn Cu–Mo deposit. When compared with intracontinent and island arc geotectonic settings, the Pd, Pt, and Au contents in the Fengshan porphyry Cu–Mo deposit in the intracontinent is lower than the continental margin types and island are types. A combination of available data indicates that Pd and Pt were derived from oxidized alkaline magmas generated by the partial melting of an enriched mantle source.  相似文献   

8.
The carbonate-hosted Pb–Zn deposits in the Sanjiang metallogenic belt on the Tibetan Plateau are typical of MVT Pb–Zn deposits that form in thrust-fold belts. The Jiamoshan Pb–Zn deposit is located in the Changdu area in the middle part of the Sanjiang belt, and it represents a new style of MVT deposit that was controlled by karst structures in a thrust–fold system. Such a karst-controlled MVT Pb–Zn deposit in thrust settings has not previously been described in detail, and we therefore mapped the geology of the deposit and undertook a detailed study of its genesis. The karst structures that host the Jiamoshan deposit were formed in Triassic limestones along secondary reverse faults, and the orebodies have irregular tubular shapes. The main sulfide minerals are galena, sphalerite, and pyrite that occur in massive and lamellar form. The ore-forming fluids belonged to a Mg2+–Na+–K+–SO2-4–Cl-–F-–NO-3–H2 O system at low temperatures(120–130°C) but with high salinities(19–22% NaCl eq.). We have recognized basinal brine as the source of the ore-forming fluids on the basis of their H–O isotopic compositions(-145‰ to-93‰ for δDV-SMOW and-2.22‰ to 13.00‰ for δ18 Ofluid), the ratios of Cl/Br(14–1196) and Na/Br(16–586) in the hydrothermal fluids, and the C–O isotopic compositions of calcite(-5.0‰ to 3.7‰ for δ13 CV-PDB and 15.1‰ to 22.3‰ for δ18 OV-SMOW). These fluids may have been derived from evaporated seawater trapped in marine strata at depth or from Paleogene–Neogene basins on the surface. The δ34 S values are low in the galena(-3.2‰ to 0.6‰) but high in the barite(27.1‰), indicating that the reduced sulfur came from gypsum in the regional Cenozoic basins and from sulfates in trapped paleo-seawater by bacterial sulfate reduction. The Pb isotopic compositions of the galena samples(18.3270–18.3482 for 206 Pb/204 Pb, 15.6345–15.6390 for 207 Pb/204 Pb, and 38.5503–38.5582 for 208 Pb/204 Pb) are similar to those of the regional Triassic volcanic-arc rocks that formed during the closure of the Paleo-Tethys, indicating these arc rocks were the source of the metals in the deposit. Taking into account our new observations and data, as well as regional Pb–Zn metallogenic processes, we present here a new model for MVT deposits controlled by karst structures in thrust–fold systems.  相似文献   

9.
Biogeochemical investigation of Tamarix aphylla,a plant species, of the Las-bela area has been made.This area mainly consists of ophiolites associated with sed-imentary rocks of Jurassic and Cretaceous age .Quantitative estimations of important biogenic trace elements such as Fe,Mn,Pb,Zn,Cu,Cr,Ni, and Co have been carried out .Anomalous concentrations of these elements in plant species of certain regions can be used to locate possible occurrences of ore deposits in the area.The comparative strdy also reveals appreciable variations in the composition of trace elements in plants.The possible causes of variation in the constitrents of Tamarix aphylla from different localities have been discussed in the light of bed rock nature, mo-bility of element and average abundance in the plant.  相似文献   

10.
Six sediment core samples collected from the innershelf of the east coast of India between Visakhapatnam and Kakinada were analyzed for major (Al & Fe) and trace metals (Cu, Co, Ni, Cd, Pb, Zn, Mn & Cr) to study the processes that regulate their concentrations in coastal sediments and to evaluate the metal contamination due to anthropogenic interference. High concentrations of Fe (5%-7%) are attributed mainly to the fine texture and its proximity to the source, maflc rocks. Positive correlation of Fe with Mn in all the cores indicates the influence of early diagenetic process. Positive correlations between Co, Ni, Zn and Cd among themselves and with Fe indicate their adsorption to ferromanganese oxides and involvement in geochemical processes. Further normalization of metals to Al indicates that the sediments are depleted in Mn & Zn and relatively enriched in Cd, Co, Ni, Pb & Cr, which also confirms that the origin of these sediments is of geological rather than biogenic importance. The Geo-accumulation (Igeo) values calculated for Ni, Pb, Co, Cd, Zn & Cr are more or less near to unity (Igeo≥1), indicating no industrial metal pollution. Pollution Load Index (PLI) values (1-2) calculated for the trace metals confirm the above findings.  相似文献   

11.
The Eastern Tianshan Orogenic Belt (ETOB) in NW China is composed of the Dananhu–Tousuquan arc belt, the Kanggurtag belt, the Aqishan–Yamansu belt and the Central Tianshan belt from north to south. These tectonic belts have formed through arc–continent or arc–arc collisions during the Paleozoic. A number of Fe(‐Cu) deposits in the Aqishan–Yamansu belt, including the Heifengshan, Shuangfengshan and Shaquanzi Fe(‐Cu) deposits, are associated with Carboniferous–Early Permian volcanic rocks and are composed of vein‐type magnetite ores. Metallic minerals are dominated by magnetite and pyrite, with minor chalcopyrite. Calcite, chlorite, and epidote are the dominant gangue minerals. Pyrite separates of ores from those three deposits have relatively high and variable Re contents ranging from 3.7 to 184 ppb. All pyrite separates have very low common Os, allowing us calculation of single mineral model ages for each sample. Pyrite separates from the Heifengshan Fe deposit have an 187Re–187Os isochron age of 310 ± 23 Ma (MSWD = 0.04) and a weighted mean model age of 302 ± 5 Ma (MSWD = 0.17). Those from the Shuangfengshan Fe deposit have an isochron age of 295 ± 7 Ma (MSWD = 0.28) and a weighted mean model age of 292 ± 5 Ma (MSWD = 0.33). The Shaquanzi Fe‐Cu deposit has pyrite with an isochron age of 295 ± 7 Ma (MSWD = 0.26) and a weighted mean model age of 295 ± 6 Ma (MSWD = 0.23). Pyrite separates from these Fe(‐Cu) deposits have δ34SCDT ranging from ?0.41‰ to 4.7‰ except for two outliers. Calcite from the Heifengshan Fe deposit and Shaquanzi Fe‐Cu deposit have similar C and O isotope compositions with δ13CPDB and δ18OSMOW ranging from ?5.5‰ to ?1.0‰ and from 10‰ to 12.7‰, respectively. These stable isotopic data suggest that S, C, and O are magmatic‐hydrothermal in origin. The association of low‐Ti magnetite and Fe/Cu‐sulfides resembles those of Iron–Oxide–Copper–Gold (IOCG) deposits elsewhere. Our reliable Re–Os ages of pyrite suggest that the Fe(‐Cu) deposits in the Aqishan–Yamansu belt formed at ~296 Ma, probably in a back‐arc extensional environment.  相似文献   

12.
Magnetite is a common mineral in many ore deposits and their host rocks, and contains a wide range of trace elements (e.g., Ti, V, Mg, Cr, Mn, Ca, Al, Ni, Ga, Sn) that can be used for deposit type fingerprinting. In this study, we present new magnetite geochemical data for the Longqiao Fe deposit (Luzong ore district) and Tieshan Fe–(Cu) deposit (Edong ore district), which are important magmatic-hydrothermal deposits in eastern China.Textural features, mineral assemblages and paragenesis of the Longqiao and Tieshan ore samples have suggested the presence of two main mineralization periods (sedimentary and hydrothermal) at Longqiao, among which the hydrothermal period comprises four stages (skarn, magnetite, sulfide and carbonate); whilst the Tieshan Fe–(Cu) deposit comprises four mineralization stages (skarn, magnetite, quartz-sulfide and carbonate).Magnetite from the Longqiao and Tieshan deposits has different geochemistry, and can be clearly discriminated by the Sn vs. Ga, Ni vs. Cr, Ga vs. Al, Ni vs. Al, V vs. Ti, and Al vs. Mg diagrams. Such difference may be applied to distinguish other typical skarn (Tieshan) and multi-origin hydrothermal (Longqiao) deposits in the MLYRB. The fluid–rock interactions, influence of the co-crystallizing minerals and other physicochemical parameters, such as temperature and fO2, may have altogether controlled the magnetite trace element contents of both deposits. The Tieshan deposit may have had higher degree of fO2, but lower fluid–rock interactions and ore-forming temperature than the Longqiao deposit. The TiO2–Al2O3–(MgO + MnO) and (Ca + Al + Mn) vs. (Ti + V) magnetite discrimination diagrams show that the Longqiao Fe deposit has both sedimentary and hydrothermal features, whereas the Tieshan Fe–(Cu) deposit is skarn-type and was likely formed via hydrothermal metasomatism, consistent with the ore characteristics observed.  相似文献   

13.
The Eastern Tianshan Orogenic Belt of the Central Asian Orogenic Belt and the Beishan terrane of the Tarim Block, NW China, host numerous Fe deposits. The Cihai Fe deposit (>90 Mt at 45.6 % Fe) in the Beishan terrane is diabase-hosted and consists of the Cihai, Cinan, and Cixi ore clusters. Ore minerals are dominantly magnetite, pyrite, and pyrrhotite, with minor chalcopyrite, galena, and sphalerite. Gangue minerals include pyroxene, garnet, hornblende and minor plagioclase, biotite, chlorite, epidotite, quartz, and calcite. Pyrite from the Cihai and Cixi ore clusters has similar Re–Os isotope compositions, with ~14 to 62 ppb Re and ≤10?ppt common Os. Pyrrhotite has ~5 to 39 ppb Re and ~0.6 ppb common Os. Pyrite has a mean Re–Os model age of 262.3?±?5.6 Ma (n?=?13), in agreement with the isochron regression of 187Os vs. 187Re. The Re–Os age (~262 Ma) for the Cihai Fe deposit is within uncertainty in agreement with a previously reported Rb–Sr age (268?±?25 Ma) of the hosting diabase, indicating a genetic relationship between magmatism and mineralization. Magnetite from the Cihai deposit has Mg, Al, Ti, V, Cr, Co, Ni, Mn, Zn, Ga, and Sn more elevated than that of typical skarn deposits, but both V and Ti contents lower than that of magmatic Fe–Ti–V deposits. Magnetite from these two ore clusters at Cihai has slightly different trace element concentrations. Magnetite from the Cihai ore cluster has relatively constant trace element compositions. Some magnetite grains from the Cixi ore cluster have higher V, Ti, and Cr than those from the Cihai ore cluster. The compositional variations of magnetite between the ore clusters are possibly due to different formation temperatures. Combined with regional tectonic evolution of the Beishan terrane, the Re–Os age of pyrite and the composition of magnetite indicate that the Cihai Fe deposit may have derived from magmatic–hydrothermal fluids related to mafic magmatism, probably in an extensional rift environment.  相似文献   

14.
徐文博  张铭杰  包亚文  满毅  李思奥  王鹏 《地质学报》2022,96(12):4257-4274
塔里木克拉通东北缘坡北、磁海等地二叠纪幔源岩浆活动形成了镍钴硫化物矿床和铁钴氧化物矿床,两者赋矿镁铁-超镁铁岩体的年龄相近(290~260 Ma),主、微量元素和Sr-Nd-Hf同位素组成相似,分配系数接近的微量元素比值分布于相同趋势线,揭示两者岩浆源区相同,可能为俯冲板片流体交代的亏损地幔或软流圈地幔。两类矿床镁铁-超镁铁质岩中Co与Ni含量正相关,Co主要富集在基性程度高的岩石中;块状硫化物与磁铁矿矿石中Co与Ni相关性差,Co和Ni具有不同的富集机制,Co热液富集作用明显。北山镁铁-超镁铁杂岩体是地幔柱相关软流圈上涌,诱发俯冲板片交代的亏损岩石圈地幔发生部分熔融,形成的高镁母岩浆演化过程中经历壳源混染、硫化物饱和富集镍钴形成铜镍钴硫化物矿床,富铁母岩浆氧逸度高、富水,岩浆分离结晶磁铁矿、叠加热液作用富集钴,形成铁钴氧化物矿床。  相似文献   

15.
Trace elements in magnetite as petrogenetic indicators   总被引:11,自引:0,他引:11  
We have characterized the distribution of 25 trace elements in magnetite (Mg, Al, Si, P, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, Mo, Sn, Hf, Ta, W, and Pb), using laser ablation ICP-MS and electron microprobe, from a variety of magmatic and hydrothermal ore-forming environments and compared them with data from the literature. We propose a new multielement diagram, normalized to bulk continental crust, designed to emphasize the partitioning behavior of trace elements between magnetite, the melt/fluid, and co-crystallizing phases. The normalized pattern of magnetite reflects the composition of the melt/fluid, which in both magmatic and hydrothermal systems varies with temperature. Thus, it is possible to distinguish magnetite formed at different degrees of crystal fractionation in both silicate and sulfide melts. The crystallization of ilmenite or sulfide before magnetite is recorded as a marked depletion in Ti or Cu, respectively. The chemical signature of hydrothermal magnetite is distinct being depleted in elements that are relatively immobile during alteration and commonly enriched in elements that are highly incompatible into magnetite (e.g., Si and Ca). Magnetite formed from low-temperature fluids has the lowest overall abundance of trace elements due to their lower solubility. Chemical zonation of magnetite is rare but occurs in some hydrothermal deposits where laser mapping reveals oscillatory zoning, which records the changing conditions and composition of the fluid during magnetite growth. This new way of plotting all 25 trace elements on 1 diagram, normalized to bulk continental crust and elements in order of compatibility into magnetite, provides a tool to help understand the processes that control partitioning of a full suit of trace elements in magnetite and aid discrimination of magnetite formed in different environments. It has applications in both petrogenetic and provenance studies, such as in the exploration of ore deposits and in sedimentology.  相似文献   

16.
Trace elements and rare earth elements (REE) of the sulfide minerals were determined by inductively-coupled plasma mass spectrometry. The results indicate that V, Cu, Sn, Ga, Cd, In, and Se are concentrated in sphalerite, Sb, As, Ge, and Tl are concentrated in galena, and almost all trace elements in pyrite are low. The Ga and Cd contents in the light-yellow sphalerites are higher than that in the brown and the black sphalerites. The contents of Ge, Tl, In, and Se in brown sphalerites are higher than that in light-yellow sphalerites and black sphalerites. It shows that REE concentrations are higher in pyrite than in sphalerite, and galena. In sphalerites, the REE concentration decreases from light-yellow sphalerites, brown sphalerites, to black sphalerites. The ratios of Ga/In are more than 10, and Co/Ni are less than 1 in the studied sphalerites and pyrites, respectively, indicating that the genesis of the Tianqiao Pb–Zn ore deposit might belong to sedimentary-reformed genesis associated with hydrothermal genesis. The relationship between LnGa and LnIn in sphalerite, and between LnBi and LnSb in galena, indicates that the Tianqiao Pb–Zn ore deposit might belong to sedimentary-reformed genesis. Based on the chondrite-normalized REE patterns, δEu is a negative anomaly (0.13–0.88), and δCe does not show obvious anomaly (0.88–1.31); all the samples have low total REE concentrations (<3 ppm) and a wide range of light rare earth element/high rare earth element ratios (1.12–12.35). These results indicate that the ore-forming fluids occur under a reducing environment. Comparison REE compositions and parameters of sphalerites, galenas, pyrites, ores, altered dolostone rocks, strata carbonates, and the pyrite from Lower Carboniferous Datang Formation showed that the ore-forming fluids might come from polycomponent systems, that is, different chronostratigraphic units could make an important contribution to the ore-forming fluids. Combined with the tectonic setting and previous isotopic geochemistry evidence, we conclude that the ore-deposit genesis is hydrothermal, sedimentary reformed, with multisources characteristics of ore-forming fluids.  相似文献   

17.
Banded iron formation (BIF) of the Gorumahisani–Sulaipat–Badampahar (GSB) belt in Singhbhum Craton, India, consists predominantly of magnetite. This BIF is intruded by a magnetite dyke. The magnetite dyke is massive and compact with minor sulphide minerals while the host banded magnetite ore, a component of the BIF, shows thin lamination. The magnetite ore of the dyke is fine to medium grained and exhibits interlocking texture with sharp grain boundaries, which is different from the banded magnetite that is medium to coarse grained and show irregular martitised and goethitised grain boundaries. Relics of Fe–Ca–Mn–Mg‐carbonate and iron silicates (grunerite and cummingtonite) are observed in the banded magnetite. The intrusive magnetite is distinctly different in minor, trace and REE geochemistry from the banded magnetite. The banded magnetite contains higher amounts of Si, Al, Mn, Ca, Mg, Sc, Ga, Nb, Zr, Hf, Co, Rb and Cu. In contrast, the massive magnetite is enriched in Cr, Zn, V, Ni, Sr, Pb, Y, Ta, Cs and U with higher abundance of HREE. In the chondrite normalized plot, the massive magnetite shows a slight positive Eu anomaly while the banded ore does not show any Eu anomaly. Field disposition, morphology, mineralogy and chemistry show that the intrusive magnetite dyke is of igneous origin, while magnetite in BIF formed from a carbonate protolith through the process of sedimentation.  相似文献   

18.
The Tieshan Fe–Cu deposit is located in the Edong district, which represents the westernmost and largest region within the Middle–Lower Yangtze River Metallogenic Belt (YRMB), Eastern China. Skarn Fe–Cu mineralization is spatially associated with the Tieshan pluton, which intruded carbonates of the Lower Triassic Daye Formation. Ore bodies are predominantly located along the contact between the diorite or quartz diorite and marbles/dolomitic marbles. This study investigates the mineral chemistry of magnetite in different skarn ore bodies. The contrasting composition of magnetite obtained are used to suggest different mechanisms of formation for magnetite in the western and eastern part of the Tieshan Fe–Cu deposit. A total of 178 grains of magnetite from four magnetite ore samples are analyzed by LA–ICP–MS, indicating a wide range of trace element contents, such as V (13.61–542.36 ppm), Cr (0.003–383.96 ppm), Co (11.12–187.55 ppm) and Ni (0.19–147.41 ppm), etc. The Ti/V ratio of magnetite from the Xiangbishan (western part of the Tieshan deposit) and Jianshan ore body (eastern part of the Tieshan deposit) ranges from 1.32 to 5.24, and 1.31 to 10.34, respectively, indicating a relatively reduced depositional environment in the Xiangbishan ore body. Incorporation of Ti and Al in magnetite are temperature dependent, which hence propose that the temperature of hydrothermal fluid from the Jianshan ore body (Al = 3747–9648 ppm, with 6381 ppm as an average; Ti = 381.7–952.0 ppm, with 628.2 ppm as an average) was higher than the Xiangbishan ore body (Al = 2011–11122 ppm, with 5997 ppm as an average, Ti = 302.5–734.8, with 530.8 ppm as an average), indicating a down–temperature precipitation trend from the Jianshan ore body to the Xiangbishan ore body. In addition, in the Ca + Al + Mn versus Ti + V diagram, magnetite is plotted in the skarn field, consideration with the ternary diagram of TiO2–Al2O3–MgO, proposing that the magnetite ores are formed by replacement, instead of directly crystallized from iron oxide melts, which provide a better understanding regarding the composition of ore fluids and processes responsible for Fe mineralization in the Tieshan Fe–Cu deposit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号