首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In any type of groundwater transport problem (contaminant solutes, heat, etc.), knowledge of the location and properties of pathways of increased hydraulic conductivity is essential. However, answering such questions in strongly heterogeneous media, such as fractured rock, can be very difficult and budget-intensive with standard geophysical or hydrogeological field investigations. We present a new testing concept and analysis procedure based on a time sequence of wellbore electric conductivity logs, which provides the exact location and the outflow parameters (transmissivity, formation fluid conductivity) of flowing features (fractures, faults, layers) intercepted by the borehole.Previously the quantitative analysis of this time sequence of electrical conductivity logs was based on a code, called BORE, used to simulate borehole fluid conductivity profiles given these parameters. The present report describes a new direct (not iterative) method for analyzing a short time series of electric conductivity logs which is based on moment quantities of the individual outflow peaks, and applies it to synthetic as well as to field data. The results of the method are promising and are discussed in terms of the method's advantages and limitations. In particular it is shown that the method is capable of reproducing hydraulic properties derived from packer tests well within a factor of three, which is below the range of what is recognized as the accuracy of packer tests themselves. Furthermore the new method is much quicker than the previously used iterative fitting procedure and is even capable of handling transient fracture outflow conditions.  相似文献   

2.
Considering heterogeneity in porous media pore size and connectivity is essential to predicting reactive solute transport across interfaces. However, exchange with less‐mobile porosity is rarely considered in surface water/groundwater recharge studies. Previous research indicates that a combination of pore‐fluid sampling and geoelectrical measurements can be used to quantify less‐mobile porosity exchange dynamics using the time‐varying relation between fluid and bulk electrical conductivity. For this study, we use macro‐scale (10 s of cm) advection–dispersion solute transport models linked with electrical conduction in COMSOL Multiphysics to explore less‐mobile porosity dynamics in two different types of observed sediment water interface porous media. Modeled sediment textures contrast from strongly layered streambed deposits to poorly sorted lakebed sands and cobbles. During simulated ionic tracer perturbations, a lag between fluid and bulk electrical conductivity, and the resultant hysteresis, is observed for all simulations indicating differential loading of pore spaces with tracer. Less‐mobile exchange parameters are determined graphically from these tracer time series data without the need for inverse numerical model simulation. In both sediment types, effective less‐mobile porosity exchange parameters are variable in response to changes in flow direction and fluid flux. These observed flow‐dependent effects directly impact local less‐mobile residence times and associated contact time for biogeochemical reaction. The simulations indicate that for the sediment textures explored here, less‐mobile porosity exchange is dominated by variable rates of advection through the domain, rather than diffusion of solute, for typical low‐to‐moderate rate (approximately 3–40 cm/day) hyporheic fluid fluxes. Overall, our model‐based results show that less‐mobile porosity may be expected in a range of natural hyporheic sediments and that changes in flowpath orientation and magnitude will impact less‐mobile exchange parameters. These temporal dynamics can be assessed with the geoelectrical experimental tracer method applied at laboratory and field scales.  相似文献   

3.
A field experiment consisting of geophysical logging and tracer testing was conducted in a single well that penetrated a sand-and-gravel aquifer at the U.S. Geological Survey Toxic Substances Hydrology research site on Cape Cod, Massachusetts. Geophysical logs and flowmeter/pumping measurements were obtained to estimate vertical profiles of porosity ϕ, hydraulic conductivity K, temperature, and bulk electrical conductivity under background, freshwater conditions. Saline-tracer fluid was then injected into the well for 2 h and its radial migration into the surrounding deposits was monitored by recording an electromagnetic-induction log every 10 min. The field data are analyzed and interpreted primarily through the use of Archie's (1942) law to investigate the role of topological factors such as pore geometry and connectivity, and grain size and packing configuration in regulating fluid flow through these coarse-grained materials. The logs reveal no significant correlation between K and ϕ, and imply that groundwater models that link these two properties may not be useful at this site. Rather, it is the distribution and connectivity of the fluid phase as defined by formation factor F, cementation index m, and tortuosity α that primarily control the hydraulic conductivity. Results show that F correlates well with K, thereby indicating that induction logs provide qualitative information on the distribution of hydraulic conductivity. A comparison of α, which incorporates porosity data, with K produces only a slightly better correlation and further emphasizes the weak influence of the bulk value of ϕ on K.  相似文献   

4.
A freeze core sampler was used to characterize hyporheic zone storage during a stream tracer test. The pore water from the frozen core showed tracer lingered in the hyporheic zone after the tracer had returned to background concentration in collocated well samples. These results confirmed evidence of lingering subsurface tracer seen in time‐lapse electrical resistivity tomographs. The pore water exhibited brine exclusion (ion concentrations in ice lower than source water) in a sediment matrix, despite the fast freezing time. Although freeze core sampling provided qualitative evidence of lingering tracer, it proved difficult to quantify tracer concentration because the amount of brine exclusion during freezing could not be accurately determined. Nonetheless, the additional evidence for lingering tracer supports using time‐lapse resistivity to detect regions of low fluid mobility within the hyporheic zone that can act as chemically reactive zones of importance in stream health.  相似文献   

5.
Evaluating contaminants impacting wells in fractured crystalline rock requires knowledge of the individual fractures contributing water. This typically involves using a sequence of tools including downhole geophysics, flow meters, and straddle packers. In conjunction with each other these methods are expensive, time consuming, and can be logistically difficult to implement. This study demonstrates an unsteady state tracer method as a cost‐effective alternative for gathering fracture information in wells. The method entails introducing tracer dye throughout the well, inducing fracture flow into the well by conducting a slug test and then profiling the tracer concentration in the well to locate water contributing fractures where the dye has been diluted. By monitoring the development of the dilution zones within the wellbore with time, the transmissivity and the hydraulic head of the water contributing fractures can be determined. Ambient flow conditions and the contaminant concentration within the fractures can also be determined from the tracer dilution. This method was tested on a large physical model well and a bedrock well. The model well was used to test the theory underlying the method and to refine method logistics. The approach located the fracture and generated transmissivity values that were in excellent agreement with those calculated by slug testing. For the bedrock well tested, two major active fractures were located. Fracture location and ambient well conditions matched results from conventional methods. Estimates of transmissivity values by the tracer method were within an order of magnitude of those calculated using heat‐pulse flow meter data.  相似文献   

6.
A 3D ERT study of solute transport in a large experimental tank   总被引:2,自引:0,他引:2  
A high resolution, cross-borehole, 3D electrical resistivity tomography (ERT) study of solute transport was conducted in a large experimental tank. ERT voxels comprising the time sequence of electrical images were converted into a 3D array of ERT estimated fluid conductivity breakthrough curves and compared with direct measurements of fluid conductivity breakthrough made in wells. The 3D ERT images of solute transport behaviour were also compared with predictions based on a 3D finite-element, coupled flow and transport model, accounting for gravity induced flow caused by concentration differences.The tank (dimensions 185×245×186 cm) was filled with medium sand, with a gravel channel and a fine sand layer installed. This heterogeneous system was designed to complicate solute transport behaviour relative to a homogeneous sand tank, and to thus provide a challenging but insightful analysis of the ability of 3D ERT to resolve transport phenomena. Four ERT arrays and 20 piezometers were installed during filling. A NaCl tracer (conductivity 1.34 S/m) was injected and intensively monitored with 3D ERT and direct sampling of fluid chemistry in piezometers.We converted the bulk conductivity estimate for 250 voxels in the ERT imaged volume into ERT estimated voxel fluid conductivity by assuming that matrix conduction in the tank is negligible. In general, the ERT voxel response is in reasonable agreement with the shape of fluid conductivity breakthrough observed in six wells in which direct measurements of fluid conductivity were made. However, discrepancies occur, particularly at early times, which we attribute to differences between the scale of the image voxels and the fluid conductivity measurement, measurement errors mapped into the electrical inversion and artificial image roughness resulting from the inversion.ERT images revealed the 3D tracer distribution at 15 times after tracer injection. The general pattern and timing of solute breakthrough observed with ERT agreed with that predicted from the flow/transport modelling. However, the ERT images indicate a vertical component of tracer transport and preferential flow paths in the medium sand. We attribute this to transient vertical gradients established during tracer injection, and heterogeneity caused by sorting of the sand resulting from the filling procedure. In this study, ERT provided a unique dataset of 250 voxel breakthrough curves in 1.04 m3. The use of 3D ERT to generate an array of densely sampled estimated fluid conductivity breakthrough curves is a potentially powerful tool for quantifying solute transport processes.  相似文献   

7.
Major challenges exist in delineating bedrock fracture zones because these cause abrupt changes in geological and hydrogeological properties over small distances. Borehole observations cannot sufficiently capture heterogeneity in these systems. Geophysical techniques offer the potential to image properties and processes in between boreholes. We used three‐dimensional cross borehole electrical resistivity tomography (ERT) in a 9 m (diameter) × 15 m well field to capture high‐resolution flow and transport processes in a fractured mudstone contaminated by chlorinated solvents, primarily trichloroethylene. Conductive (sodium bromide) and resistive (deionized water) injections were monitored in seven boreholes. Electrode arrays with isolation packers and fluid sampling ports were designed to enable acquisition of ERT measurements during pulsed tracer injections. Fracture zone locations and hydraulic pathways inferred from hydraulic head drawdown data were compared with electrical conductivity distributions from ERT measurements. Static ERT imaging has limited resolution to decipher individual fractures; however, these images showed alternating conductive and resistive zones, consistent with alternating laminated and massive mudstone units at the site. Tracer evolution and migration was clearly revealed in time‐lapse ERT images and supported by in situ borehole vertical apparent conductivity profiles collected during the pulsed tracer test. While water samples provided important local information at the extraction borehole, ERT delineated tracer migration over spatial scales capturing the primary hydrogeological heterogeneity controlling flow and transport. The fate of these tracer injections at this scale could not have been quantified using borehole logging and/or borehole sampling methods alone.  相似文献   

8.
Borehole dilution tests have been used for characterization of aquifer hydrogeologic properties for several decades. Based on the principles of borehole dilution tests, we conducted what more appropriately may be considered a wellbore fluid displacement test in a limestone aquifer in South Carolina. Our study area is a quarry in the coastal plain of South Carolina. Using a solution of reagent grade NaCl and deionized H2O as a tracer, a brine slug was introduced into a 5 cm (2 in.) diameter Schedule 40 PVC well with a 6-m slotted screen at the bottom. Immediately following addition of the brine, a recording electrical conductivity (EC) sensor was placed in the well opposite the screen and set to record EC in 2-min intervals for 5 days. An alternative to previous methods for analyzing data from wellbore brine displacement tests was developed. Results were analyzed using SEAWAT-2000 to account for the density dependency of brine flow and transport. The high spatial resolution, three-dimensional numerical simulation enabled direct incorporation of well construction peculiarities, including the sand pack and length of screen, in the data analysis. Hydraulic conductivity, effective porosity, and longitudinal dispersivity were adjusted in the simulation model until the best match of simulated wellbore fluid concentrations to observed concentrations was achieved. Using this procedure, we were able to obtain a very close agreement between observed and simulated concentrations and, hence, reliable estimates of the hydrogeologic properties of the aquifer in the vicinity of the test well.  相似文献   

9.
Forced gradient tracer tests between two boreholes can be used to study contaminant transport processes at the small field scale or investigate the transport properties of an aquifer. Full depth tests, in which tracer samples are collected just from the discharge of the abstraction borehole, often give rise to breakthrough curves with multiple peaks that are usually attributed to different flow paths through the aquifer that can rarely be identified from the test results alone. Tests in selected levels of the aquifer, such as those between packer‐isolated sections of the boreholes, are time consuming, expensive; and the identification of major transport pathways is not guaranteed. We present a method for simultaneously conducting multiple tracer tests covering the full depth of the boreholes, in which tracer sampling and monitoring is carried out by a novel multilevel sampling system allowing high frequency and cumulative sampling options. The method is applied to a tracer test using fluorescein conducted in the multilayered sandstone aquifer beneath the city of Birmingham, UK, producing six well‐defined tracer breakthrough curves.  相似文献   

10.
Fine-scale hydrostratigraphic features often play a critical role in controlling ground water flow and contaminant transport. Unfortunately, many conventional drilling- and geophysics-based approaches are rarely capable of describing these features at the level of detail needed for contaminant predictions and remediation designs. Previous work has shown that direct-push electrical conductivity (EC) logging can provide information about site hydrostratigraphy at a scale of relevance for contaminant transport investigations in many unconsolidated settings. In this study, we evaluate the resolution and quality of that information at a well-studied research site that is underlain by highly stratified alluvial sediments. Geologic and hydrologic data, conventional geophysical logs, and particle-size analyses are used to demonstrate the capability of direct-push EC logging for the delineation of fine-scale hydrostratigraphic features in saturated unconsolidated formations. When variations in pore-fluid chemistry are small, the electrical conductivity of saturated media is primarily a function of clay content, and hydrostratigraphic features can be described at a level of detail (<2.5 cm in thickness) that has not previously been possible in the absence of continuous cores. Series of direct-push EC logs can be used to map the lateral continuity of layers with non-negligible clay content and to develop important new insights into flow and transport at a site. However, in sand and gravel intervals with negligible clay, EC logging provides little information about hydrostratigraphic features. As with all electrical logging methods, some site-specific information about the relative importance of fluid and sediment contributions to electrical conductivity is needed. Ongoing research is directed at developing direct-push methods that allow EC logging, water sampling, and hydraulic testing to be done concurrently.  相似文献   

11.
Pore dilation, the compaction of humic acids on peat fibres due to the process of flocculation, causes the hydraulic conductivity of peat to increase with increasing pore water electrical conductivity. This is a reversible process and a reduction in the pore water conductivity produces a decrease in the hydraulic conductivity due to the constriction of pores. We verify how this dilation and constriction of pores, resulting from the application of artificial pore water (primarily deionized water), affects laboratory measurements of the hydraulic conductivity of peat. Repeat measurements of the hydraulic conductivity were performed on samples of Sphagnum peat. It is shown that the application of deionized water during constant head permeameter tests causes a significant decrease in the hydraulic conductivity. Between tests, the hydraulic conductivity of the peat continues to decline without an associate decrease in the pore water electrical conductivity because of a lagged pore constriction effect. We suggest that the use of artificially high or low pore water electrical conductivities, during laboratory hydraulic conductivity measurements, is likely to lead to significant errors. Experimental protocols must, therefore, be revised to take better account of the pore water chemistry. The ionic concentrations of the natural pore fluid should be replicated during hydraulic conductivity tests, either by using pore fluid extracted from the study site or by artificially replicating the major ionic composition of the natural pore fluid. In addition, prior to the hydraulic conductivity measurements, peat samples should be flushed with this solution until the hydraulic conductivity stabilizes and the samples subsequently allowed to equilibrate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Accurate quantification of in situ heterogeneity and flow processes through fractured geologic media remains elusive for hydrogeologists due to the complexity in fracture characterization and its multiscale behavior. In this research, we demonstrated the efficacy of tracer-electrical resistivity tomography (ERT) experiments combined with numerical simulations to characterize heterogeneity and delineate preferential flow paths in a fractured granite aquifer. A series of natural gradient saline tracer experiments were conducted from a depth window of 18 to 22 m in an injection well (IW) located inside the Indian Institute of Technology Hyderabad campus. Tracer migration was monitored in a time-lapse mode using two cross-sectional surface ERT profiles placed in the direction of flow gradient. ERT data quality was improved by considering stacking, reciprocal measurements, resolution indicators, and geophysical logs. Dynamic changes in subsurface electrical properties inferred via resistivity anomalies were used to highlight preferential flow paths of the study area. Temporal changes in electrical resistivity and tracer concentration were monitored along the vertical in an observation well located at 48 m to the east of the IW. ERT-derived tracer breakthrough curves were in agreement with geochemical sample measurements. Fracture geometry and hydraulic properties derived from ERT and pumping tests were further used to evaluate two mathematical conceptualizations that are relevant to fractured aquifers. Results of numerical analysis conclude that dual continuum model that combines matrix and fracture systems through a flow exchange term has outperformed equivalent continuum model in reproducing tracer concentrations at the monitoring wells (evident by a decrease in RMSE from 199 to 65 mg/L). A sensitivity analysis on model simulations conclude that spatial variability in hydraulic conductivity, local-scale dispersion, and flow exchange at fracture-matrix interface have a profound effect on model simulations.  相似文献   

13.
Characterization of a multilayer aquifer using open well dilution tests   总被引:1,自引:0,他引:1  
West LJ  Odling NE 《Ground water》2007,45(1):74-84
An approach to characterization of multilayer aquifer systems using open well borehole dilution is described. The approach involves measuring observation well flow velocities while a nearby extraction well is pumped by introducing a saline tracer into observation wells and collecting dilution vs. depth profiles. Inspection of tracer profile evolution allows discrete permeable layers within the aquifer to be identified. Dilution profiles for well sections between permeable layers are then converted into vertical borehole flow velocities and their evolution, using an analytic solution to the advection-dispersion equation applied to borehole flow. The dilution approach is potentially able to measure much smaller flow velocities that would be detectable using flowmeters. Vertical flow velocity data from the observation wells are then matched to those generated using a hydraulic model of the aquifer system, "shorted" by the observation wells, to yield the hydraulic properties of the constituent layers. Observation well flow monitoring of pumping tests represents a cost-effective alternative or preliminary approach to pump testing each layer of a multilayer aquifer system separately using straddle packers or screened wells and requires no prior knowledge of permeable layer depths and thicknesses. The modification described here, of using tracer dilution rather than flowmeter logging to obtain well flow velocities, allows the approach to be extended to greater well separations, thus characterizing a larger volume of the aquifer. An example of the application of this approach to a multilayer Chalk Aquifer in Yorkshire, Northeast England, is presented.  相似文献   

14.
In this work, numerical modeling is used to evaluate and interpret a series of detailed and well‐controlled two‐dimensional bench‐scale conservative tracer tank experiments performed to investigate transverse mixing in porous media. The porous medium used consists of a fine matrix and a more permeable lens vertically aligned with the tracer source and the flow direction. A sensitivity analysis shows that the tracer distribution after passing the lens is only slightly sensitive to variations in transverse dispersivity, but strongly sensitive to the contrast of hydraulic conductivities. A unique parameter set could be calibrated to closely fit the experimental observations. On the basis of calibrated and validated model, synthetic experiments with different contrasts in hydraulic conductivity and more complex setups were performed and the efficiency of mixing evaluated. Flux‐related dilution indices derived from these simulations show that the contrasts in hydraulic conductivity between matrix and high‐permeable lenses as well as the spatial configuration of tracer plumes and lenses dominate mixing, rather than the actual pore scale dispersivities. These results indicate that local material distributions, the magnitude of permeability contrasts, and their spatial and scale relation to solute plumes are more important for macro‐scale transverse dispersion than the micro‐scale dispersivities of individual materials. Local material characterization by thorough site investigation hence is of utmost importance for the evaluation of mixing‐influenced or ‐governed problems in groundwater, such as tracer test evaluation or an assessment of contaminant natural attenuation.  相似文献   

15.
Groundwater sampling from open boreholes in fractured‐rock aquifers is particularly challenging because of mixing and dilution of fluid within the borehole from multiple fractures. This note presents an alternative to traditional sampling in open boreholes with packer assemblies. The alternative system called ZONFLO (zonal flow) is based on hydraulic control of borehole flow conditions. Fluid from discrete fractures zones are hydraulically isolated allowing for the collection of representative samples. In rough‐faced open boreholes and formations with less competent rock, hydraulic containment may offer an attractive alternative to physical containment with packers. Preliminary test results indicate a discrete zone can be effectively hydraulically isolated from other zones within a borehole for the purpose of groundwater sampling using this new method.  相似文献   

16.
The Membrane‐Interface Probe and Hydraulic Profiling Tool (MiHpt) is a direct push probe that includes both the membrane interface probe (MIP) and hydraulic profiling tool (HPT) sensors. These direct push logging tools were previously operated as separate logging systems for subsurface investigation in unconsolidated formations. By combining these two probes into one logging system the field operator obtains useful data about the distribution of both volatile organic contaminants (VOCs) and relative formation permeability in a single boring. MiHpt logging was conducted at a chlorinated VOC contaminated site in Skuldelev, Denmark, to evaluate performance of the system. Formation cores and discrete interval slug tests are used to assess use of the HPT and electrical conductivity (EC) logs for lithologic and hydrostratigraphic interpretation. Results of soil and groundwater sample analyses are compared to the adjacent MiHpt halogen specific detector (XSD) logs to evaluate performance of the system to define contaminant distribution and relative concentrations for the observed VOCs. Groundwater profile results at moderate to highly contaminated locations were found to correlate well with the MiHpt‐XSD detector responses. In general, soil sample results corresponded with detector responses. However, the analyses of saturated coarse‐grained soils at the site proved to be unreliable as demonstrated by high RPDs for duplicate samples. The authors believe that this is due to pore water drainage observed from these cores during sampling. Additionally, a cross section of HPT pressure and MiHpt‐XSD detector logs provides insight into local hydrostratigraphy and formation control on contaminant migration.  相似文献   

17.
Deep observation boreholes in the vicinity of active production wells in Honolulu, Hawaii, exhibit the anomalous condition that fluid-column electrical conductivity logs and apparent profiles of pore-water electrical conductivity derived from induction conductivity logs are nearly identical if a formation factor of 12.5 is assumed. This condition is documented in three boreholes where fluid-column logs clearly indicate the presence of strong borehole flow induced by withdrawal from partially penetrating water-supply wells. This result appears to contradict the basic principles of conductivity-log interpretation. Flow conditions in one of these boreholes was investigated in detail by obtaining flow profiles under two water production conditions using the electromagnetic flowmeter. The flow-log interpretation demonstrates that the fluid-column log resembles the induction log because the amount of inflow to the borehole increases systematically upward through the transition zone between deeper salt water and shallower fresh water. This condition allows the properties of the fluid column to approximate the properties of water entering the borehole as soon as the upflow stream encounters that producing zone. Because this condition occurs in all three boreholes investigated, the similarity of induction and fluid-column logs is probably not a coincidence, and may relate to aquifer response under the influence of pumping from production wells.  相似文献   

18.
— Pressure-induced variations in pore geometry were studied on dry- and fluid- saturated samples by means of electrical impedance spectroscopy and permeability measurements. Hydrostatic pressures (up to 120 MPa) and uniaxial pressures (up to failure) were applied. Hydrostatic pressures reduce the aspect ratio of cracks and thus cause a decrease of permeability and electrical bulk conductivity. The opposite was observed in uniaxial pressure experiments where new cracks were formed and consequently permeability and electrical conductivity were increased. More specific informations of these generated observations were derived from the interpretation of the frequency dispersion of the complex electrical conductivity. This least-squares-refinement considers electrochemical interactions between the fluid pore electrolyte and the inner surface of the sample, thus providing informations on the pore geometry and pressure-induced variations. Consequently changes in aspect ratio, size and geometry of the pore system can be detected by means of impedance spectroscopy.  相似文献   

19.
The electromagnetic borehole flowmeter (EBF) is finding increasing application as a method for measuring hydraulic conductivity (K) distributions. A recent paper details an experimental/theoretical study of the effect of in-well hydraulics on calculated K distributions based on EBF measurements (Dinwiddie et al. 1999). Results showed that minimizing head loss associated with flow through the meter was the key to producing accurate K values. Using the same experimental procedures, the previous study has been extended to develop data from a larger diameter (1 inch) EBF, and to determine if an EBF can be calibrated effectively without using an inflatable packer to force all flow through the meter annulus. Both experiments were aimed at producing low head loss conditions. Results show that overall calibration can be accomplished in the absence of a packer, which reduces head losses to nonmeasurable levels, and use of the 1-inch EBF with a packer reduces head losses by a factor of 16 when compared with the 0.5-inch EBF studied by Dinwiddie et al. (1999).  相似文献   

20.
Chemical hydrograph separation using electrical conductivity and digital filters is applied to quantify runoff components in the 1,640 km2 semi‐arid Kaap River catchment and its subcatchments in South Africa. A rich data set of weekly to monthly water quality data ranging from 1978 to 2012 (450 to 940 samples per site) was analysed at 4 sampling locations in the catchment. The data were routinely collected by South Africa's national Department of Water and Sanitation, using standard sampling procedures. Chemical hydrograph separation using electrical conductivity (EC) as a tracer was used as reference and a recursive digital filter was then calibrated for the catchment. Results of the two‐component hydrograph separation indicate the dominance of baseflow in the low flow regime, with a contribution of about 90% of total flow; however, during the wet season, baseflow accounts for 50% of total flow. The digital filter parameters were very sensitive and required calibration, using chemical hydrograph separation as a reference. Calibrated baseflow estimates ranged from 40% of total flow at the catchment outlet to 70% in the tributaries. The study demonstrates that routinely monitored water quality data, especially EC, can be used as a meaningful tracer, which could also aid in the calibration of a digital filter method and reduce uncertainty of estimated flow components. This information enhances our understanding of how baseflow is generated and contributed to streamflow throughout the year, which can aid in quantification of environmental flows, as well as to better parameterize hydrological models used for water resources planning and management. Baseflow estimates can also be useful for groundwater and water quality management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号