首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The current generation of hydrological models has been widely criticized for their inability to adequately simulate hydrological processes. In this study, we evaluate competing model representations of hydrological processes with respect to their capability to simulate observed processes in the Mahurangi River basin in Northland, New Zealand. In the first part of this two‐part series, the precipitation, soil moisture, and flow data in the Mahurangi were used to estimate the dominant hydrological processes and explore several options for their suitable mathematical representation. In this paper, diagnostic tests are applied to gain several insights for model selection. The analysis highlights dominant hydrological processes (e.g. the importance of vertical drainage and baseflow compared to sub‐surface stormflow), provides guidance for the choice of modelling approaches (e.g. implicitly representing sub‐grid heterogeneity in soils), and helps infer appropriate values for model parameters. The approach used in this paper demonstrates the benefits of flexible model structures in the context of hypothesis testing, in particular, supporting a more systematic exploration of current ambiguities in hydrological process representation. The challenge for the hydrological community is to make better use of the available data, not only to estimate parameter values but also to diagnostically identify more scientifically defensible model structures. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Over the past decades, a number of water sciences and management programs have been developed to better understand and manage the water cycles at multiple temporal and spatial scales for various purposes, such as ecohydrology,global hydrology, sociohydrology, supply management, demand management, and integrated water resources management(IWRM). At the same time, rapid advancements have also been taking place in tracing, mapping, remote sensing, machine learning, and modelling technologies in hydrological research. Despite those programs and advancements, a water crisis is intensifying globally. The missing link is effective interactions between the hydrological research and water resource management to support implementation of the UN Sustainable Development Goals(SDGs) at multiple spatial scales. Since the watershed is the natural unit for water resources management, watershed science offers the potential to bridge this missing link.This study first reviews the advances in hydrological research and water resources management, and then discusses issues and challenges facing the global water community. Subsequently, it describes the core components of watershed science:(1)hydrological analysis;(2) water-operation policies;(3) governance;(4) management and feedback. The framework takes into account water availability, water uses, and water quality; explicitly focuses on the storage, fluxes, and quality of the hydrological cycle; defines appropriate local water resource thresholds through incorporating the planetary boundary framework; and identifies specific actionable measures for water resources management. It provides a complementary approach to the existing water management programs in addressing the current global water crisis and achieving the UN SDGs.  相似文献   

3.
The El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) are two important climate oscillations that affect hydrological processes at global and regional scales. However, few studies have attempted to identify their single and combined influences on water discharge variability at multiple timescales. In this study, we examine temporal variation in water discharge from the Yangtze River into the sea and explore the influence of the ENSO and the PDO on multiscale variations in water discharge over the last century. The results of the wavelet transform analysis of the water discharge series show significant periodic variations at the interannual timescale of 2 to 8 years and the decadal timescale of 15 to 17 years. Water discharge tended to be higher during the La Niña–PDO cold phase and lower during the El Niño–PDO warm phase. The results of the cross wavelet spectrum and wavelet coherence analyses confirm the relationship between the interannual (i.e., 2 to 8 years) and decadal (i.e., 15 to 17 years) periodicities in water discharge with the ENSO and the PDO, respectively. As an important large‐scale climate background, the PDO can modulate the influence of the ENSO on water discharge variability. In general, the warm PDO enhances the influence of El Niño events, and the cold PDO enhances the influence of La Niña events. Our study is helpful in understanding the influencing mechanism of climate change on hydrological processes and provides an important scientific guideline for water resource prediction and management.  相似文献   

4.
Despite their obvious environmental, societal and economic importance, our understanding of the causes and magnitude of the variations in the global water cycle is still unsatisfactory. Uncertainties in hydrological predictions from the current generation of models pose a serious challenge to the reliability of forecasts and projections across time and space scales. This paper provides an overview of the current issues and challenges in modelling various aspects of the Earth’s hydrological cycle. These include: the global water budget and water conservation, the role of model resolution and parametrisation of precipitation-generating processes on the representation of the global and regional hydrological cycle, representation of clouds and microphysical processes, rainfall variability, the influence of land–atmosphere coupling on rainfall patterns and their variability, monsoon processes and teleconnections, and ocean and cryosphere modelling. We conclude that continued collaborative activity in the areas of model development across timescales, process studies and climate change studies will provide better understanding of how and why the hydrological cycle may change, and better estimation of uncertainty in model projections of changes in the global water cycle.  相似文献   

5.
太湖流域LUCC对水文过程的影响   总被引:1,自引:1,他引:0  
荣洁  曾春芬  王腊春 《湖泊科学》2014,26(2):305-312
基于1971年枯水年、1989年丰水年、2000年平水年3类典型代表年的逐日降雨量、逐日蒸发量以及不同时期地表覆盖遥感分类数据,以城市化快速发展地表覆盖变化明显的太湖流域为研究区域,利用太湖流域河网水量模型进行了土地利用/覆被变化的水文响应研究,分析了太湖流域1990 2000年与2000 2006年间的土地利用/覆被变化及其对水位过程的影响.不仅有利于对城市化地区水文特征变化规律深入了解,也为典型城市化地区防洪减灾提供科学可靠的依据.研究表明,太湖流域城镇化进程的加快引起了土地利用/覆被变化的主要表现是水田、水域等面积向城镇面积转化,城镇化进程加快,2000 2006年期间的城镇化速度大于1990 2000年间;下垫面的变化对太湖流域水文过程产生了明显的影响,随着城市化进程地表覆盖的变化,水位有整体升高的趋势,并且增幅加大,与城镇化速率变化趋势相一致,城镇化程度高的地方水位上升更为明显;降雨量也是水位过程的影响因素之一.  相似文献   

6.
In scientific communication, ambiguities in term usage can go unnoticed due not only to the distance between reader and writer but also to the existence of highly specialized scientific subcommunities. This commentary therefore aims at raising awareness about the use of terms that have different meanings within different hydrological subcommunities such as field hydrology, hydrological modelling, or statistical hydrology. To do so, we discuss the use of the following commonly used hydrological terms: sample, runoff, discharge, and streamflow. We performed three types of analyses to provide evidence of term usage and understanding, including both qualitative and quantitative approaches: a drawing exercise, a survey, and a literature corpus analysis. These analyses allow for a comparison of spontaneous definitions and the actual use of these terms in scientific publications. Our various information sources revealed that the dialogue between hydrologists within and across subdisciplines is substantially influenced by personal conceptualizations of terms that are not always shared across conversational partners. The terms discussed and illustrated in this commentary have to be seen as a small sample used to demonstrate the need for a thoughtful use of hydrological terms when communicating research, not only to a general audience but even across subdisciplines within hydrology.  相似文献   

7.
A major challenge for geomorphologists is to scale up small‐magnitude processes to produce landscape form, yet existing approaches have been found to be severely limited. New ways to scale erosion and transfer of sediment are thus needed. This paper evaluates the concept of sediment connectivity as a framework for understanding processes involved in sediment transfer across multiple scales. We propose that the concept of sediment connectivity can be used to explain the connected transfer of sediment from a source to a sink in a catchment, and movement of sediment between different zones within a catchment: over hillslopes, between hillslopes and channels, and within channels. Using fluvial systems as an example we explore four scenarios of sediment connectivity which represent end‐members of behaviour from fully linked to fully unlinked hydrological and sediment connectivity. Sediment‐travel distance – when combined with an entrainment parameter reflecting the frequency–magnitude response of the system – maps onto these end‐members, providing a coherent conceptual model for the upscaling of erosion predictions. This conceptual model could be readily expanded to other process domains to provide a more comprehensive underpinning of landscape‐evolution models. Thus, further research on the controls and dynamics of travel distances under different modes of transport is fundamental. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
In the last few years, the scientific community has developed several hydrological models aimed at the simulation of hydrological processes acting at the basin scale. In this context, the portion of peak runoff contributing areas represents a critical variable for a correct estimate of surface runoff. Such areas are strongly influenced by the saturated portion of a river basin (influenced by antecedent conditions) but may also evolve during a specific rainfall event. In the recent years, we have developed 2 theoretically derived probability distributions that attempt to interpret these 2 processes adopting daily runoff and flood‐peak time series. The probability density functions (PDFs) obtained by these 2 schematisations were compared for humid river basins in southern Italy. Results highlighted that the PDFs of the peak runoff contributing areas can be interpreted by a gamma distribution and that the PDF of the relative saturated area provides a good interpretation of such process that can be used for flood prediction.  相似文献   

9.
Extreme events are drawing increasing concerns in recent decades due to their catastrophic nature. In this case, we thoroughly analysed the statistical behaviours of hydrological extremes in the south China by taking Guangdong province as a case study because of its unshakable position in the economic development in China. Our results further corroborated the fact that the hydrological changes are the integrated consequences of various external factors, basically the human activities and climate changes. Generally, decreasing annual maximum water (AMW) level was observed mainly in the seaward regions characterized by decreasing occurrence frequency of higher AMW level. Streamflow variations are influenced mainly by precipitation changes. Increasing annual maximum streamflow (AMS) can be attributed to the increasing precipitation intensity in recent years. However, in the East River basin, hydrological regulation function of the water reservoirs greatly reduced the AMS. In the lower East River, however, downcutting river channel and notable increases in the cross‐section area caused larger magnitude of decrease in AMW level when compared to AMS. The time when the relations between AMW level and streamflow start to change matches well the time when massive in‐channel sand dredging occurred, showing tremendous influences of human activities on hydrological processes in the lower Pearl River basin. This study will be of great scientific and practical merits in better understanding the statistical behaviours of hydrological extremes under the changing environment and also help to improve human mitigation to natural hazards in south China. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Mountain and lowland watersheds are two distinct geographical units with considerably different hydrological processes. Understanding their hydrological processes in the context of future climate change and land use scenarios is important for water resource management. This study investigated hydrological processes and their driving factors and eco-hydrological impacts for these two geographical units in the Xitiaoxi watershed, East China, and quantified their differences through hydrological modelling. Hydrological processes in 24 mountain watersheds and 143 lowland watersheds were simulated based on a raster-based Xin'anjiang model and a Nitrogen Dynamic Polder (NDP) model, respectively. These two models were calibrated and validated with an acceptable performance (Nash-Sutcliffe efficiency coefficients of 0.81 and 0.50, respectively) for simulating discharge for mountain watersheds and water level for lowland watersheds. Then, an Indicators of Hydrological Alteration (IHA) model was used to help quantify the alterations to the hydrological process and their resulting eco-hydrological impacts. Based on the validated models, scenario analysis was conducted to evaluate the impacts of climate and land use changes on the hydrological processes. The simulation results revealed that (a) climate change would cause a larger increase in annual runoff than that under land use scenario in the mountain watersheds, with variations of 19.9 and 10.5% for the 2050s, respectively. (b) Land use change was more responsible for the streamflow increment than climate change in the lowland watersheds, causing an annual runoff to increase by 27.4 and 16.2% for the 2050s, respectively. (c) Land use can enhance the response of streamflow to the climatic variation. (d) The above-mentioned hydrological variations were notable in flood and dry season in the mountain watersheds, and they were significant in rice season in the lowland watersheds. (e) Their resulting degradation of ecological diversity was more susceptible to future climate change in the two watersheds. This study demonstrated that mountain and lowland watersheds showed distinct differences in hydrological processes and their responses to climate and land use changes.  相似文献   

11.
Model diagnostic analyses help to improve the understanding of hydrological processes and their representation in hydrological models. A detailed temporal analysis detects periods of poor model performance and model components with potential for model improvements, which cannot be found by analysing the whole discharge time series. In this study, we aim to improve the understanding of hydrological processes by investigating the temporal dynamics of parameter sensitivity and of model performance for the Soil and Water Assessment Tool model applied to the Treene lowland catchment in Northern Germany. The temporal analysis shows that the parameter sensitivity varies temporally with high sensitivity for three groundwater parameters (groundwater time delay, baseflow recession constant and aquifer fraction coefficient) and one evaporation parameter (soil evaporation compensation factor). Whereas the soil evaporation compensation factor dominates in baseflow and resaturation periods, groundwater time delay, baseflow recession constant and aquifer fraction coefficient are dominant in the peak and recession phases. The temporal analysis of model performance identifies three clusters with different model performances, which can be related to different phases of the hydrograph. The lowest performance, when comparing six performance measures, is detected for the baseflow cluster. A spatially distributed analysis for six hydrological stations within the Treene catchment shows similar results for all stations. The linkage of periods with poor model performance to the dominant model components in these phases and with the related hydrological processes shows that the groundwater module has the highest potential for improvement. This temporal diagnostic analysis enhances the understanding of the Soil and Water Assessment Tool model and of the dominant hydrological processes in the lowland catchment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Physical models are a well‐established tool in education to strengthen hydrological understanding. They facilitate the straightforward visualization of hydrological processes and allow the communication of hydrological concepts, research and questions of general interest to the public. In order to visualize the water cycle in a landscape of postglacial sediments, in particular the subsurface part, a physical model was constructed. In two videos, (1) a detailed construction manual and (2) visualization examples of hydrological concepts and processes are presented. With our contribution, we like to encourage professionals in the field of hydrology to share methods and tools of knowledge transfer and communication of hydrological concepts. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Páramos, a neotropical alpine grassland-peatland biome of the northern Andes and Central America, play an essential role in regional and global cycles of water, carbon, and nutrients. They act as water towers, delivering water and ecosystem services from the high mountains down to the Pacific, Caribbean, and Amazon regions. Páramos are also widely recognized as a biodiversity and climate change hot spots, yet they are threatened by anthropogenic activities and environmental changes. Despite their importance for water security and carbon storage, and their vulnerability to human activities, only three decades ago, páramos were severely understudied. Increasing awareness of the need for hydrological evidence to guide sustainable management of páramos prompted action for generating data and for filling long-standing knowledge gaps. This has led to a remarkably successful increase in scientific knowledge, induced by a strong interaction between the scientific, policy, and (local) management communities. A combination of well-established and innovative approaches has been applied to data collection, processing, and analysis. In this review, we provide a short overview of the historical development of research and state of knowledge of the hydrometeorology, flux dynamics, anthropogenic impacts, and the influence of extreme events in páramos. We then present emerging technologies for hydrology and water resources research and management applied to páramos. We discuss how converging science and policy efforts have leveraged traditional and new observational techniques to generate an evidence base that can support the sustainable management of páramos. We conclude that this co-evolution of science and policy was able to successfully cover different spatial and temporal scales. Lastly, we outline future research directions to showcase how sustainable long-term data collection can foster the responsible conservation of páramos water towers.  相似文献   

14.
Keith Beven 《水文研究》2004,18(17):3447-3460
Robert E. Horton is best known as the originator of the infiltration excess overland flow concept for storm hydrograph analysis and prediction, which, in conjunction with the unit hydrograph concept, provided the foundation for engineering hydrology for several decades. Although these concepts, at least in their simplest form, have been largely superseded, a study of Horton's archived scientific papers reveals that his perceptual model of infiltration processes and appreciation of scale problems in modelling were far more sophisticated and complete than normally presented in hydrological texts. His understanding of surface controls on infiltration remain relevant today. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Soils affect the distribution of hydrological processes by partitioning precipitation into different components of the water balance. Therefore, understanding soil-water dynamics at a catchment scale remains imperative to future water resource management. In this study, the value of hydropedological insights was examined to calibrate a processes-based model. Soil morphology was used as soft data to assist in the calibration of the Soil Water Assessment Tool (SWAT+) model at five different catchment scales (48, 56, 174, 674, and 2421 km2) in the Sabie River catchment, South Africa. The aim of this study was to calibrate the SWAT+ model to accurately simulate long-term monthly streamflow predictions as well as to reflect internal soil hydrological processes using a procedure focusing on hydropedology as a calibration tool in a multigauge system. Results indicated that calibration improved streamflow predictions where R2 improved by 2%–8%. Nash-Sutcliffe Efficiency (NSE) improved from negative correlations to values exceeding 0.5 at four of the five catchment scales compared to the uncalibrated model. Results confirm that soil mapping units can be calibrated individually within SWAT+ to improve the representation of hydrological processes. Particularly, the spatial linkage between hydropedology and hydrological processes, which is captured within the soil map of the catchment, can be adequately reflected within the model simulations after calibration. This research will lead to an improved understanding of hydropedology as soft data to improve hydrological modelling accuracy.  相似文献   

16.
This paper discusses the analysis and modelling of the hydrological system of the basin of the Kara River, a transboundary river in Togo and Benin, as a necessary step towards sustainable water resources management. The methodological approach integrates the use of discharge parameters, flow duration curves and the lumped conceptual model IHACRES. A Sobol sensitivity analysis is performed and the model is calibrated by applying the shuffled complex evolution algorithm. Results show that discharge generation in three nested catchments of the basin is affected by landscape physical characteristics. The IHACRES model adequately simulates the rainfall–runoff dynamics in the basin with a mean modified Nash-Sutcliffe efficiency measure of 0.6. Modelling results indicate that parameters controlling rainfall transformation to effective rainfall are more sensitive than those routing the streamflow. This study provides insights into understanding the catchment’s hydrological system. Nevertheless, further investigations are required to better understand detailed runoff generation processes.
EDITOR M.C. Acreman; ASSOCIATE EDITOR N Verhoest  相似文献   

17.
It is widely recognized that multi-year drought can induce changes in catchment hydrological behaviours. However, at present, our understanding about multi-year drought-induced changes in catchment hydrological behaviours and its driving factors at the process level is still very limited. This study proposed a new approach using a data assimilation technique with a process-based hydrological model to detect multi-year drought-induced changes in catchment hydrological behaviours and to identify driving factors for the changes in an unimpaired Australian catchment (Wee Jasper) which experienced prolonged drought from 1997 to 2009. Modelling experiments demonstrated that the multi-year drought caused a significant change in the catchment rainfall-runoff relationship, indicated by significant step changes in the estimated time-variant hydrological parameters SC (indicating catchment active water storage capacity) and C (reflecting catchment evapotranspiration dynamics), whose average values increased 23.4% and 10.2%, respectively, due to drought. The change in the rainfall-runoff relationship identified by the data assimilation method is consistent with that arrived at by a statistical examination. The proposed method provides insights about the drivers of the changes in the rainfall-runoff relationship at the processes level. Increasing catchment water storage capacity and decreasing ratio of rainfall to soil moisture for supplying actual evapotranspiration during drought are the main driving factors for the catchment behaviours change in the Wee Jasper catchment in terms of model structure. And they are related to decrease in catchment groundwater level and deep soil moisture. The proposed new method can be used as an effective technique for detecting both the change of hydrological behaviours induced by prolonged drought and its driving factors at the process level.  相似文献   

18.
Connectivity describes the efficiency of material transfer between geomorphic system components such as hillslopes and rivers or longitudinal segments within a river network. Representations of geomorphic systems as networks should recognize that the compartments, links, and nodes exhibit connectivity at differing scales. The historical underpinnings of connectivity in geomorphology involve management of geomorphic systems and observations linking surface processes to landform dynamics. Current work in geomorphic connectivity emphasizes hydrological, sediment, or landscape connectivity. Signatures of connectivity can be detected using diverse indicators that vary from contemporary processes to stratigraphic records or a spatial metric such as sediment yield that encompasses geomorphic processes operating over diverse time and space scales. One approach to measuring connectivity is to determine the fundamental temporal and spatial scales for the phenomenon of interest and to make measurements at a sufficiently large multiple of the fundamental scales to capture reliably a representative sample. Another approach seeks to characterize how connectivity varies with scale, by applying the same metric over a wide range of scales or using statistical measures that characterize the frequency distributions of connectivity across scales. Identifying and measuring connectivity is useful in basic and applied geomorphic research and we explore the implications of connectivity for river management. Common themes and ideas that merit further research include; increased understanding of the importance of capturing landscape heterogeneity and connectivity patterns; the potential to use graph and network theory metrics in analyzing connectivity; the need to understand which metrics best represent the physical system and its connectivity pathways, and to apply these metrics to the validation of numerical models; and the need to recognize the importance of low levels of connectivity in some situations. We emphasize the value in evaluating boundaries between components of geomorphic systems as transition zones and examining the fluxes across them to understand landscape functioning. © 2018 John Wiley & Sons, Ltd.  相似文献   

19.
D. A. Hughes 《水文研究》2010,24(6):767-774
Understanding hydrological processes has always been important to the development and successful application of conceptual hydrological models. It can also contribute to informed water resources management, particularly in the context of understanding the potential impacts of both land use and climate change. Improved conceptual and quantitative understanding of near‐surface hydrological processes emerged through field studies during the 1960s to1980s; however, there remains a degree of ambiguity about the processes that link surface water and groundwater. This is especially the case in South Africa where a great deal of confusion has arisen about the source of the ‘baseflow’ signal in stream flow observations. This paper suggests that fracture flow within the unsaturated zone could have a lateral component and therefore re‐emerge and contribute to stream flow in catchments with relatively steep topography. The implication is that ‘baseflows’ could be made up of groundwater contributions (caused by intersection of the water table with stream channels) as well as an unsaturated zone flow component. Evidence for the existence of the process is presented on the basis of small‐scale observations and interpretations of stream flow observations. The potential importance of the process relates to interpreting different methods of recharge estimation, assessing the impacts of groundwater abstraction on stream flow, as well as the application and interpretation of the results of hydrological models. The conclusions are that the process does exist, but that there is less than conclusive evidence for its importance. There is therefore a need for further studies that can quantify the scale of the process and therefore its importance. Only then will it be possible to develop a consistent understanding of the processes of surface water and groundwater interaction and therefore manage water resources in a truly integrated manner. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
湖泊湿地水文过程研究进展   总被引:1,自引:0,他引:1  
湖泊湿地是世界上最重要的生态系统之一,在调蓄洪水、净化环境、保护生物多样性以及为人类提供淡水和食物等方面发挥着不可替代的作用.然而,受气候变化和人类活动叠加影响,湖泊湿地水文过程发生了剧烈变化,湖泊湿地面临着面积萎缩、质量下降和服务功能退化等风险.本文总结了原位观测、数值模拟和遥感技术在获取湖泊湿地关键水文要素方面的优...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号