首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
A study of the hydrologic effects of catchment change from pasture to plantation was carried out in Gatum, south‐western Victoria, Australia. This study describes the hydrologic characteristics of two adjacent catchments: one with 97% grassland and the other one with 62% Eucalyptus globulus plantations. Streamflow from both catchments was intermittent during the 20‐month study period. Monthly streamflow was always greater in the pasture‐dominated catchment compared with the plantation catchment because of lower evapotranspiration in the pasture‐based catchment. This difference in streamflow was also observed even during summer 2010/2011 when precipitation was 74% above average (1954–2012) summer rainfall. Streamflow peaks in the plantation‐based catchment were smaller than in the pasture‐dominated system. Flow duration curves show differences between the pasture and plantation‐dominated catchments and affect both high‐flow and low‐flow periods. Groundwater levels fell (up to 4.4 m) in the plantation catchment during the study period but rose (up to 3.2 m) in the pasture catchment. Higher evapotranspiration in the plantation catchment resulted in falling groundwater levels and greater disconnection of the groundwater system from the stream, resulting in lower baseflow contribution to streamflow. Salt export from each catchment increases with increasing flow and is higher at the pasture catchment, mainly because of the higher flow. Reduced salt loading to streams due to tree planting is generally considered environmentally beneficial in saline areas of south‐eastern Australia, but this benefit is offset by reduced total streamflow. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Groundwater levels in steep headwater catchments typically respond quickly to rainfall, but the timing of the response may vary spatially across the catchment. In this study, we investigated the topographic controls and the effects of rainfall and antecedent conditions on the groundwater response timing for 51 groundwater monitoring sites in a 20‐ha pre‐alpine catchment with low permeability soils. The median time to rise and median duration of recession for the 133 rainfall events were highly correlated to the topographic characteristics of the site and its upslope contributing area. The median time to rise depended more on the topographic characteristics than on the rainfall characteristics or antecedent soil wetness conditions. The median time to rise decreased with Topographic Wetness Index (TWI) for sites with TWI < 6 and was almost constant for sites with a higher TWI. The slope of this relation was a function of rainfall intensity. The rainfall threshold for groundwater initiation was also a function of TWI and allowed extrapolation of point measurements to the catchment scale. The median lag time between the rainfall centroid and the groundwater peak was 75 min. The groundwater level peaked before peak streamflow at the catchment outlet for half of the groundwater monitoring sites, but only by 15 to 25 min. The stronger correlations between topographic indices and groundwater response timing in this study compared to previous studies suggest that surface topography affects the groundwater response timing in catchments with low permeability soils more than in catchments with more transmissive soils. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Over a period of 12 months, soil moisture content and potential was monitored in an annual‐grass‐dominated 20 ha catchment in order to determine flow paths leading to exfiltration at the catchment outlet. Water was found to enter the catchment valley either through flow originating in the slopes or through surface infiltration during rainfall events. Although subsurface flow from the slopes to the catchment outlet occurred throughout the year, surface recharge was restricted to a few events during the wet season. In the deeper saturated profile of the valley, flow was directed upwards along the valley edges and gradually became horizontal towards the central axis of the valley. During the peak of the rainfall season, horizontal flow close to the catchment outlet intercepted the gradually sloping surface, resulting in exfiltration. Plants influenced the hydrology of the catchment by removing moisture from the root zone during spring and early summer, resulting in evapotranspiration losses from the vadose zone. Heterogeneities within the valley soil were evident as variable‐permeability layers that resulted in a seasonally confined water table within the valley. This investigation shows that the vadose zone plays an important role in redistributing surface recharge and emphasizes the importance of accounting for effective moisture in low‐yielding catchments with ephemeral surface runoff. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Sixteen small catchments in the Maroondah region of Victoria, Australia were analysed using rainfall, temperature and streamflow time series with a rainfall–runoff model whose parameters efficiently characterize the hydrological response of a catchment. A set of catchment attributes for each of these catchments was then compared with the associated set of hydrological response characteristics of the catchments as estimated by the model. The time constant governing quickflow recession of streamflow (τq) was related to the drainage network and catchment area. The time constant governing slowflow recession of streamflow (τs) was related to the slope and shape of the catchment. The parameter governing evapotranspirative losses ( f ) was related to catchment gradient and vegetative water use. Forestry activities in the catchments changed evapotranspirative losses and thus total volume of streamflow, but did not affect the rate of streamflow recession.  相似文献   

5.
In snowmelt-driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high-relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow-derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late-winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid-summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.  相似文献   

6.
Mountain front catchment net groundwater recharge (NR) represents the upper end of mountain block recharge (MBR) groundwater flow paths. Using environmental chloride in precipitation, streamflow and groundwater, we apply chloride mass balance (CMB) to estimate NR at multiple catchment scales within the 27 km2 Dry Creek Experimental Watershed (DCEW) on the Boise Front, southwestern Idaho. The estimate for average annual precipitation partitioning to NR is approximately 14% for DCEW. In contrast, as much as 44% of annual precipitation routes to NR in ephemeral headwater catchments. NR in headwater catchments is likely routed to downgradient springs, baseflow, and MBR, while downgradient streamflow losses contribute further to MBR. A key assumption in the CMB approach is that the change in stored chloride during the study period is zero. We found that this assumption is violated in some individual years, but that a 5‐year integration period is sufficient. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Catchment hydrological responses to precipitation inputs, particularly during exceptionally large storms, are complex and variable, and our understanding of the associated runoff generation processes during those events is limited. Hydrological monitoring of climatically and hydrologically distinct catchments can help to improve this understanding by shedding light on the interplay between antecedent soil moisture conditions, hydrological connectivity, and rainfall event characteristics. This knowledge is urgently needed considering that both the frequency and magnitude of extreme precipitation events are increasing worldwide as a consequence of climate change. In autumn 2018, we installed water level sensors to monitor stream water and near-stream groundwater levels at two Mediterranean forest headwater catchments with contrasting hydrological regimes: Font del Regàs (sub-humid climate, perennial flow regime) and Fuirosos (semi-arid climate, intermittent flow regime). Both catchments are located in northeastern Spain, where the extratropical cyclone Gloria hit in January 2020 and left in ca. 65 h outstanding accumulated rainfalls of 424 mm in Font del Regàs and 230 mm in Fuirosos. During rainfall events of low mean intensity, hydrological responses to precipitation inputs at the semi-arid Fuirosos were more delayed and more variable than at the sub-humid Font del Regàs. We explain these divergences by differences in antecedent soil moisture conditions and associated differences in catchment hydrological connectivity between the two catchments, which in this case are likely driven by differences in local climate rather than by differences in local topography. In contrast, during events of moderate and high mean rainfall intensities, including the storm Gloria, precipitation inputs and hydrological responses correlated similarly in the two catchments. We explain this convergence by rapid development of hydrological connectivity independently of antecedent soil moisture conditions. The data set presented here is unique and contributes to our mechanistic understanding on how streams respond to rainfall events and exceptionally large storms in catchments with contrasting flow regimes.  相似文献   

8.
The Demnitzer Millcreek catchment (DMC), is a 66 km2 long-term experimental catchment located 50 km SE of Berlin. Monitoring over the past 30 years has focused on hydrological and biogeochemical changes associated with de-intensification of farming and riparian restoration in the low-lying landscape dominated by rain-fed farming and forestry. However, the hydrological function of the catchment, which is closely linked to nutrient fluxes and highly sensitive to climatic variability, is still poorly understood. In the last 3 years, a prolonged drought period with below-average rainfall and above-average temperatures has resulted in marked hydrological change. This caused low soil moisture storage in the growing season, agricultural yield losses, reduced groundwater recharge, and intermittent streamflows in parts of an increasingly disconnected channel network. This paper focuses on a two-year long isotope study that sought to understand how different parts of the catchment affect ecohydrological partitioning, hydrological connectivity and streamflow generation during drought conditions. The work has shown the critical importance of groundwater storage in sustaining flows, basic in-stream ecosystem services and the dominant influence of vegetation on groundwater recharge. Recharge was much lower and occurred during a shorter window of time in winter under forests compared to grasslands. Conversely, groundwater recharge was locally enhanced by the restoration of riparian wetlands and storage-dependent water losses from the stream to the subsurface. The isotopic variability displayed complex emerging spatio-temporal patterns of stream connectivity and flow duration during droughts that may have implications for in-stream solute transport and future ecohydrological interactions between landscapes and riverscapes. Given climate projections for drier and warmer summers, reduced and increasingly intermittent streamflows are very likely not just in the study region, but in similar lowland areas across Europe. An integrated land and water management strategy will be essential to sustaining catchment ecosystem services in such catchment systems in future.  相似文献   

9.
In deeply weathered laterite catchments of the Darling Range in south-western Australia, the direct contribution (i.e., discharge) of permanent groundwater to streamflow has long been considered as minor. Instead, downslope shallow throughflow was thought to dominate, generating more than 90% of streamflow. We used a chemical hydrograph separation approach to estimate annual groundwater discharge for three catchments over periods of up to 39 years, and found that direct groundwater contributions to streamflow were far more variable across catchments and through time than has previously been acknowledged. The estimated proportion of annual streamflow sourced directly from groundwater ranged from 0 to 93% and was related linearly to the size of the groundwater discharge area in the catchment valley floor. In contrast, contributions from shallow sources including shallow throughflow varied primarily and linearly with annual rainfall. However, the response to rainfall was “amplified” in a predictable way by the size of the groundwater discharge area, consistent with the variable source area concept. We derived a functional relationship between catchment annual rainfall-runoff ratio and groundwater discharge area and successfully applied this to a further four catchments, inferring that the results were broadly applicable across the Darling Range. The implications for an improved understanding of streamflow generating processes in the study region, and for laterite catchments generally, are discussed.  相似文献   

10.
Ashley A. Webb 《水文研究》2009,23(12):1679-1689
Streamflows were measured in two Pinus radiata plantation catchments and one native eucalypt forest catchment in Canobolas State forest from 1999 to 2007. In 2002/2003, clearfall harvesting of 43·2 and 40·3% of two plantation catchments occurred, respectively. Water yields increased by 54 mm (52%), 71 mm (35%) and 50 mm (19%) in the first three years post‐harvest in treated catchment A and by 103 mm (118%), 157 mm (82%) and 119 mm (48%) in treated catchment B relative to the native forest control catchment. In the fourth post‐harvest water year annual rainfall was only 488 mm, which resulted in negligible run‐off in all catchments, regardless of forest cover. In both plantation catchments, monthly streamflows increased significantly (p = 0·01, p < 0·001) due to a significant increase in baseflows (p < 0·001) after harvesting. Monthly stormflows were not significantly affected by harvesting. Flow duration curve analyses indicated a variable response between the two plantation catchments. Treated catchment A was converted from an ephemeral stream flowing 42% of the time pre‐harvest to a temporary stream flowing 82% of the time post‐harvest. These changes occurred throughout all seasons of the year but were most pronounced during summer and autumn when baseflows were maintained post‐harvest but were not observed under native forest or mature pine plantations. By contrast, flow duration increased in treated catchment B from 12% of the time pre‐harvest to 38% of the time post‐harvest with the greatest changes measured during the winter and spring months when streamflow would normally occur under native forest conditions. These observations have important implications for the development of models of plantation water use to be utilized in water resource planning in Australia. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Identifying physical catchment processes from streamflow data, such as quick- and slow-flow paths, remains challenging. This study is designed to explore whether a flexible nonparametric regression model (generalized additive model, GAM) can be used to infer different flow paths. This assumes that the data relationship in data-driven models is also a reflection of catchment physical processes. The GAM, using time-lagged flow covariates, was fitted to synthetic rainfall–runoff data simulated using simple linear reservoirs. Partial plots of the time-lagged covariates show that the model could differentiate simple and more complex flow paths in simulated synthetic data with short and long memory systems and varying between dry and wet climates. Further analysis of data from real catchments showed that the model could differentiate catchments dominated by slow flow and by quick flow. Therefore, this study indicates that GAM can be used to identify catchment storages and delay processes from streamflow data.  相似文献   

12.
Land‐use/cover change (LUCC), and more specifically deforestation and multidecadal agriculture, is one of the various controlling factors of water fluxes at the hillslope or catchment scale. We investigated the impact of LUCC on water pathways and stream stormflow generation processes in a subtropical region in southern Brazil. We monitored, sampled and analysed stream water, pore water, subsurface water, and rainwater for dissolved silicon concentration (DSi) and 18O/16O (δ18O) signature to identify contributing sources to the streamflow under forest and under agriculture. Both forested and agricultural catchments were highly responsive to rainfall events in terms of discharge and shallow groundwater level. DSi versus δ18O scatter plots indicated that for both land‐use types, two run‐off components contributed to the stream discharge. The presence of a dense macropore network, combined with the presence of a compact and impeding B‐horizon, led to rapid subsurface flow in the forested catchment. In the agricultural catchment, the rapid response to rainfall was mostly due to surface run‐off. A 2‐component isotopic hydrograph separation indicated a larger contribution of rainfall water to run‐off during rainfall event in the agricultural catchments. We attributed this higher contribution to a decrease in topsoil hydraulic conductivity associated with agricultural practices. The chemical signature of the old water component in the forested catchment was very similar to that of the shallow groundwater and the pore soil water: It is therefore likely that the shallow groundwater was the main source of old water. This is not the case in the agricultural catchments where the old water component had a much higher DSi concentration than the shallow groundwater and the soil pore water. As the agricultural catchments were larger, this may to some extent simply be a scale effect. However, the higher water yields under agriculture and the high DSi concentration observed in the old water under agriculture suggest a significant contribution of deep groundwater to catchment run‐off under agriculture, suggesting that LUCC may have significant effects on weathering rates and patterns.  相似文献   

13.
High‐elevation mountain catchments are often subject to large climatic and topographic gradients. Therefore, high‐density hydrogeochemical observations are needed to understand water sources to streamflow and the temporal and spatial behaviour of flow paths. These sources and flow paths vary seasonally, which dictates short‐term storage and the flux of water in the critical zone (CZ) and affect long‐term CZ evolution. This study utilizes multiyear observations of chemical compositions and water residence times from the Santa Catalina Mountains Critical Zone Observatory, Tucson, Arizona to develop and evaluate competing conceptual models of seasonal streamflow generation. These models were tested using endmember mixing analysis, baseflow recession analysis, and tritium model “ages” of various catchment water sources. A conceptual model involving four endmembers (precipitation, soil water, shallow, and deep groundwater) provided the best match to observations. On average, precipitation contributes 39–69% (55 ± 16%), soil water contributes 25–56% (41 ± 16%), shallow groundwater contributes 1–5% (3 ± 2%), and deep groundwater contributes ~0–3% (1 ± 1%) towards annual streamflow. The mixing space comprised two principal planes formed by (a) precipitation‐soil water‐deep groundwater (dry and summer monsoon season samples) and (b) precipitation‐soil water‐shallow groundwater (winter season samples). Groundwater contribution was most important during the wet winter season. During periods of high dynamic groundwater storage and increased hydrologic connectivity (i.e., spring snowmelt), stream water was more geochemically heterogeneous, that is, geochemical heterogeneity of stream water is storage‐dependent. Endmember mixing analysis and 3H model age results indicate that only 1.4 ± 0.3% of the long‐term annual precipitation becomes deep CZ groundwater flux that influences long‐term deep CZ development through both intercatchment and intracatchment deep groundwater flows.  相似文献   

14.
Understanding the changes in streamflow and associated driving forces is crucial for formulating a sustainable regional water resources management strategy in the environmentally fragile karst area of the southwest China. This study investigates the spatio-temporal changes in streamflow of the Guizhou region and their linkage with meteorological influences using the Mann–Kendall trend analysis, singular-spectrum analysis (SSA), Lepage test, and flow duration curves (FDCs). The results demonstrate that: (1) the streamflow in the flood-season (June–August) during 1956–2000 increased significantly (confidence level ≥95%) in most catchments, closely consistent with the distinct increasing trend of annual rainfall over wet-seasons. The timings of abrupt change for streamflow in most catchments are found to occur at 1986; (2) streamflow in the Guizhou region experiences significant seasonal changes prior/posterior to 1986, and in most catchments the coefficient of variation of monthly streamflow increases; (3) spatial changes in streamflow indicate that monthly streamflow in the north-west decreases but increases in other parts; (4) the spatial high- and low-flow map (Q 5 and Q 95) reveals an increase in the extremely large streamflow in the five eastern catchments but a decrease in the extremely low streamflow in the four eastern catchments and three western catchments during 1987–2000. An increase in streamflow, particularly extreme flows, during the flood season would increase the risk of extreme flood events, while a decrease in streamflow in the dry season is not beneficial to vegetation restoration in this ecologically fragile region.  相似文献   

15.
Complex networks of both natural and engineered flow paths control the hydrology of streams in major cities through spatio-temporal variations in connection and disconnection of diverse water sources. We used spatially extensive and temporally intensive sampling of water stable isotopes to disentangle the hydrological sources of the heavily urbanized Panke catchment (~220 km2) in the north of Berlin, Germany. The isotopic data enabled us to partition stream water sources across the catchment using a Bayesian mixing analysis. The upper part of the catchment streamflow is dominated by groundwater (~75%) from gravel aquifers. In dry summer periods, streamflow becomes intermittent in the upper catchment, possibly as a result of local groundwater abstractions. Storm drainage dominates the responses to precipitation events. Although such events can dramatically change the isotopic composition of the upper stream network, storm drainage only accounts for 10%–15% of annual streamflow. Moving downstream, subtle changes in sources and isotope signatures occur as catchment characteristics vary and the stream is affected by different tributaries. However, effluents from a wastewater treatment plant (WWTP), serving 700,000 people, dominate stream flow in the lower catchment (~90% of annual runoff) where urbanization effects are more dramatic. The associated increase in sealed surfaces downstream also reduces the relative contribution of groundwater to streamflow. The volume and isotopic composition of storm runoff is again dominated by urban drainage, though in the lower catchment, still only about 10% of annual runoff comes from storm drains. The study shows the potential of stable water isotopes as inexpensive tracers in urban catchments that can provide a more integrated understanding of the complex hydrology of major cities. This offers an important evidence base for guiding the plans to develop and re-develop urban catchments to protect, restore, and enhance their ecological and amenity value.  相似文献   

16.
Understanding the natural low flow of a catchment is critical for effective water management policy in semi-arid and arid lands. The Geba catchment in Ethiopia, forming the headwaters of Tekeze-Atbara basin was known for its severe land degradation before the recent large scale Soil and Water conservation (SWC) programs. Such interventions can modify the hydrological processes by changing the partitioning of the incoming rainfall on the land surface. However, the literature lacks studies to quantify the hydrological impacts of these interventions in the semi-arid catchments of the Nile basin. Statistical test and Indicators of Hydrological Alteration (IHA) were used to identify the trends of streamflow in two comparatives adjacent (one treated with intensive SWC intervention and control with fewer interventions) catchments. A distributed hydrological model was developed to understand the differences in hydrological processes of the two catchments. The statistical and IHA tools showed that the low flow in the treated catchment has significantly increased while considerably decreased in the control catchment. Comparative analysis confirmed that the low flow in the catchment with intensive SWC works was greater than that of the control by >30% while the direct runoff was lower by >120%. This implies a large proportion of the rainfall in the treated catchment is infiltrated and recharge aquifers which subsequently contribute to streamflow during the dry season. The proportion of soil storage was more than double compared to the control catchment. Moreover, hydrological response comparison from pre- and post-intervention showed that a drastic reduction in direct runoff (>84%) has improved the low flow by >55%. This strongly suggests that the ongoing intensive SWC works have significantly improved the low flows while it contributed to the reduction of total streamflow in the catchment.  相似文献   

17.
《水文科学杂志》2013,58(3):618-628
Abstract

Seven catchments of diverse size in Mediterranean Europe were investigated in order to understand the main aspects of their hydrological functioning. The methods included the analysis of daily and monthly precipitation, monthly potential evapotranspiration rates, flow duration curves, rainfall—runoff relationships and catchment internal data for the smaller and more instrumented catchments. The results showed that the catchments were less “dry” than initially considered. Only one of them was really semi-arid throughout the year. All the remaining catchments showed wet seasons when precipitation exceeded potential evapotrans-piration, allowing aquifer recharge, “wet” runoff generation mechanisms and relevant baseflow contribution. Nevertheless, local infiltration excess (Hortonian) overland flow was inferred during summer storms in some catchments and urban overland flow in some others. The roles of karstic groundwater, human disturbance and low winter temperatures were identified as having an important impact on the hydrological regime in some of the catchments.  相似文献   

18.
Catchments in many parts of the world are either ungauged or poorly gauged, and the dominant processes governing their streamflow response are still poorly understood. The analysis of runoff coefficients provides essential insight into catchment response, particularly if both range of catchments and a range of events are compared. This paper investigates how well the hydrological runoff of 11 small, poorly gauged catchments with ephemeral streams (0·1‐0·6 km2) can be compared using estimated runoff with the associated uncertainty. Data of rainfall and water depth at a catchment's outlet were recorded using automatic logging equipment during 2008‐2009. The hydrological regime is intermittent and the annual precipitation ranged between 569 and 727 mm. Discharge was estimated using Manning's equation and channel cross‐section measurements. Innovative work has been performed under controlled experimental conditions to estimate Manning's coefficient values for the different cover types observed in studied streams: non‐aquatic vegetations (giant reed, bramble and thistle), grass and coarse granular deposits. The results show that estimates derived using roughness coefficients differ from those previously established for larger streams with aquatic vegetation. Catchment runoff was compared at both the event and the annual scale. The results indicate significant variability between the catchment's responses. This variability allows for classification in spite of all the uncertainty associated with runoff estimation. This study highlights the potential of using a network of poorly gauged catch ments. From almost no catchment understanding the proposed methodology allows to compare poorly gauged catchments and highlights similarity/dissimilarity between catchment responses. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
In single‐event deterministic design flood estimation methods, estimates of the peak discharge are based on a single and representative catchment response time parameter. In small catchments, a simplified convolution process between a single‐observed hyetograph and hydrograph is generally used to estimate time parameters such as the time to peak (TP), time of concentration (TC), and lag time (TL) to reflect the “observed” catchment response time. However, such simplification is neither practical nor applicable in medium to large heterogeneous catchments, where antecedent moisture from previous rainfall events and spatially non‐uniform rainfall hyetographs can result in multi‐peaked hydrographs. In addition, the paucity of rainfall data at sub‐daily timescales further limits the reliable estimation of catchment responses using observed hyetographs and hydrographs at these catchment scales. This paper presents the development of a new and consistent approach to estimate catchment response times, expressed as the time to peak (TPx) obtained directly from observed streamflow data. The relationships between catchment response time parameters and conceptualised triangular‐shaped hydrograph approximations and linear catchment response functions are investigated in four climatologically regions of South Africa. Flood event characteristics using primary streamflow data from 74 flow‐gauging stations were extracted and analysed to derive unique relationships between peak discharge, baseflow, direct runoff, and catchment response time in terms of TPx. The TPx parameters are estimated from observed streamflow data using three different methods: (a) duration of total net rise of a multipeaked hydrograph, (b) triangular‐shaped direct runoff hydrograph approximations, and (c) linear catchment response functions. The results show that for design hydrology and for the derivation of empirical equations to estimate catchment response times in ungauged catchments, the catchment TPx should be estimated from both the use of an average catchment TPx value computed using either Methods (a) or (b) and a linear catchment response function as used in Method (c). The use of the different methods in combination is not only practical but is also objective and has consistent results.  相似文献   

20.
Headwaters contribute a substantial part of the flow in river networks. However, spatial variations of streamflow generation processes in steep headwaters have not been well studied. In this study, we examined the spatio-temporal variation of streamflow generation processes in a steep 2.98-ha headwater catchment. The time when baseflow of the upstream section exceeded that downstream was coincident with the time when the riparian groundwater switched from downwelling to upwelling. This suggests that upwelling of the riparian groundwater increased considerably in the upstream section during the wet period, producing a shift in the relative size of baseflow between the upstream and downstream sections. The timing of fluctuations among hillslope soil moisture, hillslope groundwater and streamflow reveals that the hillslope contributed to storm flow, but this contribution was limited to the wet period. Overall, these results suggest that streamflow generation has strong spatial variations, even in small, steep headwater catchments.

EDITOR A. Castellarin ASSOCIATE EDITOR X. Chen  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号