首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2434篇
  免费   114篇
  国内免费   11篇
测绘学   84篇
大气科学   318篇
地球物理   620篇
地质学   976篇
海洋学   81篇
天文学   339篇
综合类   4篇
自然地理   137篇
  2021年   27篇
  2020年   33篇
  2019年   25篇
  2018年   83篇
  2017年   67篇
  2016年   97篇
  2015年   88篇
  2014年   105篇
  2013年   170篇
  2012年   69篇
  2011年   96篇
  2010年   118篇
  2009年   124篇
  2008年   67篇
  2007年   74篇
  2006年   80篇
  2005年   51篇
  2004年   51篇
  2003年   55篇
  2002年   42篇
  2001年   51篇
  2000年   46篇
  1999年   32篇
  1998年   29篇
  1997年   47篇
  1996年   34篇
  1995年   41篇
  1994年   37篇
  1993年   34篇
  1992年   16篇
  1991年   32篇
  1990年   24篇
  1988年   16篇
  1987年   27篇
  1986年   17篇
  1985年   19篇
  1984年   31篇
  1983年   37篇
  1982年   28篇
  1981年   21篇
  1980年   21篇
  1979年   22篇
  1978年   27篇
  1977年   20篇
  1976年   16篇
  1975年   22篇
  1974年   24篇
  1973年   24篇
  1972年   17篇
  1968年   17篇
排序方式: 共有2559条查询结果,搜索用时 46 毫秒
1.
The development of fragility curves to perform seismic scenario-based risk assessment requires a fully probabilistic procedure in order to account for uncertainties at each step of the computation. This is especially true when developing fragility curves conditional on an Intensity Measure that is directly available from a ground-motion prediction equation. In this study, we propose a new derivation method that uses realistic spectra instead of design spectral shapes or uniform hazard spectra and allows one to easily account for the features of the site-specific hazard that influences the fragility, without using non-linear dynamic analysis. The proposed method has been applied to typical school building types in the city of Basel (Switzerland) and the results have been compared to the standard practice in Europe. The results confirm that fragility curves are scenario dependent and are particularly sensitive to the magnitude of the earthquake scenario. The same background theory used for the derivation of the fragility curves has allowed an innovative method to be proposed for the conversion of fragility curves to a common IM (i.e. spectral acceleration or PGA). This conversion is the only way direct comparisons of fragility curves can be made and is useful when inter-period correlation cannot be used in scenario loss assessment. Moreover, such conversion is necessary to compare and verify newly developed curves against those from previous studies. Conversion to macroseismic intensity is also relevant for the comparison between mechanical-based and empirical fragility curves, in order to detect possible biases.  相似文献   
2.
The impact of sea level rise (SLR) on the future morphological development of the Wadden Sea (North Sea) is investigated by means of extensive process-resolving numerical simulations. A new sediment and morphodynamic module was implemented in the well-established 3D circulation model GETM. A number of different validations are presented, ranging from an idealized 1D channel over a semi-idealized 2D Wadden Sea basin to a fully coupled realistic 40-year hindcast without morphological amplification of the Sylt-Rømøbight, a semi-enclosed subsystem of the Wadden Sea. Based on the results of the hindcast, four distinct future scenarios covering the period 2010–2100 are simulated. While these scenarios differ in the strength of SLR and wind forcing, they also account for an expected increase of tidal range over the coming century. The results of the future projections indicate a transition from a tidal-flat-dominated system toward a lagoon-like system, in which large fractions of the Sylt-Rømøbight will remain permanently covered by water. This has potentially dramatic implications for the unique ecosystem of the Wadden Sea. Although the simulations also predict an increased accumulation of sediment in the back-barrier basin, this accumulation is far too weak to compensate for the rise in mean sea level.  相似文献   
3.
Sediment supply (Qs) is often overlooked in modelling studies of landscape evolution, despite sediment playing a key role in the physical processes that drive erosion and sedimentation in river channels. Here, we show the direct impact of the supply of coarse-grained, hard sediment on the geometry of bedrock channels from the Rangitikei River, New Zealand. Channels receiving a coarse bedload sediment supply are systematically (up to an order of magnitude) wider than channels with no bedload sediment input for a given discharge. We also present physical model experiments of a bedrock river channel with a fixed water discharge (1.5 l min−1) under different Qs (between 0 and 20 g l−1) that allow the quantification of the role of sediment in setting the width and slope of channels and the distribution of shear stress within channels. The addition of bedload sediment increases the width, slope and width-to-depth ratio of the channels, and increasing sediment loads promote emerging complexity in channel morphology and shear stress distributions. Channels with low Qs are characterized by simple in-channel morphologies with a uniform distribution of shear stress within the channel while channels with high Qs are characterized by dynamic channels with multiple active threads and a non-uniform distribution of shear stress. We compare bedrock channel geometries from the Rangitikei and the experiments to alluvial channels and demonstrate that the behaviour is similar, with a transition from single-thread and uniform channels to multiple threads occurring when bedload sediment is present. In the experimental bedrock channels, this threshold Qs is when the input sediment supply exceeds the transport capacity of the channel. Caution is required when using the channel geometry to reconstruct past environmental conditions or to invert for tectonic uplift rates, because multiple configurations of channel geometry can exist for a given discharge, solely due to input Qs. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
4.
Manually collected snow data are often considered as ground truth for many applications such as climatological or hydrological studies. However, there are many sources of uncertainty that are not quantified in detail. For the determination of water equivalent of snow cover (SWE), different snow core samplers and scales are used, but they are all based on the same measurement principle. We conducted two field campaigns with 9 samplers commonly used in observational measurements and research in Europe and northern America to better quantify uncertainties when measuring depth, density and SWE with core samplers. During the first campaign, as a first approach to distinguish snow variability measured at the plot and at the point scale, repeated measurements were taken along two 20 m long snow pits. The results revealed a much higher variability of SWE at the plot scale (resulting from both natural variability and instrumental bias) compared to repeated measurements at the same spot (resulting mostly from error induced by observers or very small scale variability of snow depth). The exceptionally homogeneous snowpack found in the second campaign permitted to almost neglect the natural variability of the snowpack properties and focus on the separation between instrumental bias and error induced by observers. Reported uncertainties refer to a shallow, homogeneous tundra-taiga snowpack less than 1 m deep (loose, mostly recrystallised snow and no wind impact). Under such measurement conditions, the uncertainty in bulk snow density estimation is about 5% for an individual instrument and is close to 10% among different instruments. Results confirmed that instrumental bias exceeded both the natural variability and the error induced by observers, even in the case when observers were not familiar with a given snow core sampler.  相似文献   
5.
Little is known about water in nominally anhydrous minerals of orogenic garnet peridotite and enclosed metabasic rocks. This study is focused on peridotite-hosted eclogite and garnetite (metarodingite) from the Erzgebirge (EG), Germany, and the Lepontine Alps (LA), Switzerland. Newly discovered, peridotite-hosted eclogite in the Erzgebirge occurs in the same ultra-high pressure (UHP) unit as gneiss-hosted coesite eclogite, from which it is petrologically indistinguishable. Garnet is present in all mafic and ultramafic high pressure (HP) rocks providing for an ideal proxy to compare the H2O content of the different rock types. Garnet composition is very similar in EG and LA samples and depends on the rock type. Garnet from garnetite, compared to eclogite, contains more CaO (garnetite: 10.5–16.5 wt%; eclogite: 5–11 wt%) and is also characterized by an anomalous REE distribution. In contrast, the infrared (IR) spectra of garnet from both rock types reveal the same OH absorption bands that are also identical to those of previously studied peridotitic garnet from the same locations. Two groups of IR bands, SW I (3,650 ± 10 cm−1) and SW II (3,570–3,630 cm−1) are ascribed to structural hydroxyl (colloquially ‘water’). A third, broad band is present in about half of the analysed garnet domains and related to molecular water (MW) in submicroscopic fluid inclusions. The primary content of structural H2O, preserved in garnet domains without fluid inclusions (and MW bands), varies systematically—depending on both the location and the rock type. Garnet from EG rocks contains more water compared to LA samples, and garnet from garnetite (EG: 121–241 wt.ppm H2O; LA: 23–46 wt.ppm) hosts more water than eclogitic garnet (EG: 84 wt.ppm; LA: 4–11 wt.ppm). Higher contents of structural water (SW) are observed in domains with molecular water, in which the SW II band (being not restricted to HP conditions) is simultaneously enhanced. This implies that fluid influx during decompression not only led to fluid inclusions but also favoured the uptake of secondary SW. The results signify that garnet from all EG and LA samples was originally H2O-undersaturated. Combining the data from eclogite, garnetite and previously studied peridotite, H2O and CaO are positively correlated, pointing to the same degree of H2O-undersaturation at peak metamorphism in all rock types. This ubiquitous water-deficiency cannot be reconciled with the derivation of any of these rocks from the lowermost part of the mantle wedge that was in contact with the subducting plate. This agrees with the previously inferred abyssal origin for part of the rocks from the LA (Cima di Gagnone). A similar origin has to be invoked for the Erzgebirge UHP unit. We suggest that all mafic and ultramafic rocks of this unit not only shared the same metamorphic evolution but also a common protolith origin, most probably on the ocean floor. This inference is supported by the presence of peridotite-hosted garnetite, representing metamorphosed rodingite.  相似文献   
6.
Ocean Dynamics - The existence of cross-sectionally averaged morphodynamic equilibria of tidal inlets is investigated, using a cross-sectionally averaged model, and their sensitivity to variations...  相似文献   
7.
Convolutional neural networks can provide a potential framework to characterize groundwater storage from seismic data. Estimation of key components, such as the amount of groundwater stored in an aquifer and delineate water table level, from active-source seismic data are performed in this study. The data to train, validate and test the neural networks are obtained by solving wave propagation in a coupled poroviscoelastic–elastic media. A discontinuous Galerkin method is applied to model wave propagation, whereas a deep convolutional neural network is used for the parameter estimation problem. In the numerical experiment, the primary unknowns estimated are the amount of stored groundwater and water table level, while the remaining parameters, assumed to be of less of interest, are marginalized in the convolutional neural network-based solution. Results, obtained through synthetic data, illustrate the potential of deep learning methods to extract additional aquifer information from seismic data, which otherwise would be impossible based on a set of reflection seismic sections or velocity tomograms.  相似文献   
8.
River engineering projects are developing rapidly across the globe, drastically modifying water courses and sediment transfer. Investigation of the impact of engineering works focuses usually on short-term impacts, thus a longer-term perspective is still missing on the effects that such projects have. The ‘Jura Water Corrections’ – the largest river engineering project ever undertaken in Switzerland – radically modified the hydrological system of Lake Biel in the 19th and 20th Century. The deviation of the Aare River into Lake Biel more than 140 years ago, in 1878, thus represents an ideal case study to investigate the long-term sedimentological impacts of such large-scale river rerouting. Sediment cores, along with new high-resolution bathymetric and seismic reflection datasets were acquired in Lake Biel to document the consequences of the Jura Water Corrections on the sedimentation history of Lake Biel. Numerous subaquatic mass transport structures were detected on all of the slopes of the lake. Notably, a relatively large mass transport complex (0·86 km2) was observed on the eastern shore, along the path of the Aare River intrusion. The large amount of sediment delivered by the Aare River since its deviation into the lake likely caused sediment overloading resulting in subaquatic mass transport. Alternatively, the dumping since 1963 in a subaquatic landfill of material excavated during the second phase of river engineering, when the channels flowing into and out of Lake Biel were widened and deepened, might have triggered the largest mass transport, dated to 1964 or 1965. Additional potential triggers include two nearby small earthquakes in 1964 and 1965 (MW 3·9 and 3·2, respectively). The data for this study indicate that relatively large mass transports have become recurrent in Lake Biel following the deviation of the Aare River, thus modifying hazard frequency for the neighbouring communities and infrastructure.  相似文献   
9.
ABSTRACT

Despite a notable increase in the literature on community resilience, the notion of ‘community’ remains underproblematised. This is evident within flood risk management (FRM) literature, in which the understanding and roles of communities may be acknowledged but seldom discussed in any detail. The purpose of the article is to demonstrate how community networks are configured by different actors, whose roles and responsibilities span spatial scales within the context of FRM. Accordingly, the authors analyse findings from semi-structured interviews, policy documents, and household surveys from two flood prone areas in Finnish Lapland. The analysis reveals that the ways in which authorities, civil society, and informal actors take on multiple roles are intertwined and form different types of networks. By implication, the configuration of community is fuzzy, elusive and situated, and not confined to a fixed spatiality. The authors discuss the implications of the complex nature of community for FRM specifically, and for community resilience more broadly. They conclude that an analysis of different actors across scales contributes to an understanding of the configuration of community, including community resilience, and how the meaning of community takes shape according to the differing aims of FRM in combination with differing geographical settings.  相似文献   
10.
The thermal evolution of sedimentary basins is usually constrained by maturity data, which is interpreted from Rock-Eval pyrolysis and vitrinite reflectance analytical results on field or boreholes samples. However, some thermal evolution models may be inaccurate due to the use of elevated maturities measured in samples collected within an undetected metamorphic contact aureole surrounding a magmatic intrusion. In this context, we investigate the maturity and magnetic mineralogy of 16 claystone samples from Disko-Svartenhuk Basin, part of the SE Baffin Bay volcanic margin. Samples were collected within thermal contact metamorphic aureoles near magma intrusions, as well as equivalent reference samples not affected by intrusions. Rock-Eval pyrolysis (Tmax), and vitrinite reflectance (Ro) analysis were performed to assess the thermal maturity, which lies in the oil window when 435°C ≤ Tmax ≤ 470°C and 0.6%–0.7% ≤ Ro ≤ 1.3%. In addition, we performed low- (<300K) and high-temperature (>300K) investigations of isothermal remanent magnetization to assess the magnetic mineralogy of the selected samples. The maturity results (0.37% ≤ Ro ≤ 2%, 22°C ≤ Tmax ≤ 604°C) show a predominance of immature to early mature Type III organic matter, but do not reliably identify the contact aureole when compared to the reference samples. The magnetic assemblage of the immature samples consists of iron sulphide (greigite), goethite and oxidized or non-stoichiometric magnetite. The magnetic assemblage of the early mature to mature samples consists of stoichiometric magnetite and fine-grained pyrrhotite (<1 μm). These results document the disappearance of the iron sulphide (greigite) and increase in content of magnetite during normal burial. On the other hand, magnetite is interpreted to be the dominant magnetic mineral inside the contact aureole surrounding dyke/sill intrusions where palaeotemperatures indicate mature to over-mature state. Interestingly, the iron sulphide (greigite) is still detected in the contact aureole where palaeotemperatures exceeded 130°C. Therefore, the magnetic mineralogy is a sensitive method that can characterize normal burial history, as well as identify hidden metamorphic contact aureoles where the iron sulphide greigite is present at temperatures beyond its stability field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号