首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   10篇
  国内免费   8篇
测绘学   16篇
大气科学   6篇
地球物理   66篇
地质学   92篇
海洋学   12篇
天文学   6篇
综合类   5篇
自然地理   7篇
  2023年   1篇
  2022年   7篇
  2021年   8篇
  2020年   23篇
  2019年   13篇
  2018年   16篇
  2017年   28篇
  2016年   18篇
  2015年   14篇
  2014年   19篇
  2013年   19篇
  2012年   10篇
  2011年   9篇
  2010年   9篇
  2009年   5篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  1996年   1篇
排序方式: 共有210条查询结果,搜索用时 31 毫秒
1.
Natural Resources Research - Base gas replacement by a cheap gas is one of the approved methods to reduce the cost of investment in underground gas storage process. Maximizing the amount of...  相似文献   
2.
Seismic methods are becoming an established choice for deep mineral exploration after being extensively tested and employed for the past two decades. To investigate whether the early European mineral-exploration datasets had potential for seismic imaging that was overlooked, we recovered a low-fold legacy seismic dataset from the Neves–Corvo mine site in the Iberian Pyrite Belt in southern Portugal. This dataset comprises six 4–6 km long profiles acquired in 1996 for deep targeting. Using today's industry-scale processing algorithms, the world-class, ca. 150 Mt, Lombador massive sulphide and other smaller deposits were better imaged. Additionally, we also reveal a number of shallow but steeply dipping reflections that were absent in the original processing results. This study highlights that legacy seismic data are valuable and should be revisited regularly to take advantage of new processing algorithms and the experiences gained from processing such data in hard-rock environments elsewhere. Remembering that an initial processing job in hard rock should always aim to first obtain an overall image of the subsurface and make reflections visible, and then subsequent goals of the workflow could be set to, for example understanding relative amplitude ratios. The imaging of the known mineralization implies that this survey could likely have been among one of the pioneer studies in the world that demonstrated the capability of directly imaging massive sulphide deposits using the seismic method.  相似文献   
3.
Convolutional neural networks can provide a potential framework to characterize groundwater storage from seismic data. Estimation of key components, such as the amount of groundwater stored in an aquifer and delineate water table level, from active-source seismic data are performed in this study. The data to train, validate and test the neural networks are obtained by solving wave propagation in a coupled poroviscoelastic–elastic media. A discontinuous Galerkin method is applied to model wave propagation, whereas a deep convolutional neural network is used for the parameter estimation problem. In the numerical experiment, the primary unknowns estimated are the amount of stored groundwater and water table level, while the remaining parameters, assumed to be of less of interest, are marginalized in the convolutional neural network-based solution. Results, obtained through synthetic data, illustrate the potential of deep learning methods to extract additional aquifer information from seismic data, which otherwise would be impossible based on a set of reflection seismic sections or velocity tomograms.  相似文献   
4.

Uncertainty in input fracture geometric parameters during analysis of the stability of jointed rock slopes is inevitable and therefore the stochastic discrete fracture network (DFN) — distinct element method (DEM) is an efficient modeling tool. In this research, potentially unstable conditions are detected in the right abutment of the Karun 4 dam and downstream of the dam body as a case study. Two extreme states with small and relatively large block sizes are selected and a series of numerical DEM models are generated using a number of validated DFN models. Stability of the rock slope is assessed in both static and dynamic loading states. Based on the design basis earthquake (DBE) and maximum credible earthquake (MCE) expected in the dam site, histories of seismic waves are applied to analyze the stability of the slope in dynamic earthquake conditions. The results indicate that a MCE is likely to trigger sliding of rock blocks on the rock slope major joint. Furthermore, the dynamic analysis also shows a local block failure by the DBE, which can consequently lead to slope instability over the long term. According to the seismic behavior of the two models, larger blocks are prone to greater instability and are less safe against earthquakes.

  相似文献   
5.
Chromite deposits in Iran are located in the ophiolite complexes, which have mostly podiform types and irregular in their settings. Exploration for podiform chromite deposits associated with ophiolite complexes has been a challenge for the prospectors due to tectonic disturbance and their distribution patterns. Most of Iranian ophiolitic zones are located in mountainous and inaccessible regions. Remote sensing approach could be applicable tool for choromite prospecting in Iranian ophiolitic zones with intensely rugged topography, where systematic sampling and conventional geological mapping are limited. In this study, Landsat Thematic Mapper (TM) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite data were used for chromite prospecting and lithological mapping in the Neyriz ophiolitic zone in the south of Iran. Image transformation techniques, namely decorrelation stretch, band ratio and principal component analysis (PCA) were applied to Landsat TM and ASTER data sets for lithological mapping at regional scale. The RGB decorrelated image of Landsat TM spectral bands 7, 5, and 4, and the principal components PC1, PC2 and PC3 image of ASTER SWIR spectral bands efficiently showed the occurrence of major lithological units in the study area at regional scale. The band ratios of 5/3, 5/1, 7/5 applied on ASTER VNIR‐SWIR bands were very useful for discriminating most of rock units in the study area and delineation of the transition zone and mantle harzburgite in the Neyriz ophiolitic complex. Spectral Angle Mapper (SAM) technique was implemented to ASTER VNIR‐SWIR spectral bands for detecting minerals of rock units and especially delineation of the transition zone and mantle harzburgite as potential zones with high chromite mineralization in the Neyriz ophiolitic complex. The integration of information extracted from the image processing algorithms used in this study mapped most of lithological units of the Neyriz ophiolitic complex and identified potential areas of high chromite mineralization (transition zone and mantle harzburgite) for chromite prospecting targets in the future. Furthermore, image processing results were verified by comprehensive fieldwork and laboratory analysis in the study area. Accordingly, result of this investigation indicate that the integration of information extracted from the image processing algorithms using Landsat TM and ASTER data sets could be broadly applicable tool for chromite prospecting and lithological mapping in mountainous and inaccessible regions such Iranian ophiolitic zones.  相似文献   
6.
Arabian Journal of Geosciences - In order to reconstruct sea surface water productivity and sea floor oxygenation during late Campanian-Maastrichtian, planktonic and benthic foraminiferal...  相似文献   
7.
How to select a limited number of strong ground motion records (SGMRs) is an important challenge for the seismic collapse capacity assessment of structures. The collapse capacity is considered as the ground motion intensity measure corresponding to the drift‐related dynamic instability in the structural system. The goal of this paper is to select, from a general set of SGMRs, a small number of subsets such that each can be used for the reliable prediction of the mean collapse capacity of a particular group of structures, i.e. of single degree‐of‐freedom systems with a typical behaviour range. In order to achieve this goal, multivariate statistical analysis is first applied, to determine what degree of similarity exists between each selected small subset and the general set of SGMRs. Principal Component analysis is applied to identify the best way to group structures, resulting in a minimum number of SGMRs in a proposed subset. The structures were classified into six groups, and for each group a subset of eight SGMRs has been proposed. The methodology has been validated by analysing a first‐mode‐dominated three‐storey‐reinforced concrete structure by means of the proposed subsets, as well as the general set of SGMRs. The results of this analysis show that the mean seismic collapse capacity can be predicted by the proposed subsets with less dispersion than by the recently developed improved approach, which is based on scaling the response spectra of the records to match the conditional mean spectrum. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
8.
In this paper, we analyzed the strong ground motion from the November 12, 2017, Kermanshah earthquake in western Iran with moment magnitude (M) of 7.3. Nonlinear and linear amplification of ground motion amplitudes were observed at stations with soft soil condition at hypocentral distances below and above 100 km, respectively. Observation of large ground motion amplitudes dominated with long-period pulses on the strike-normal component of the velocity time series suggests a right-lateral component of movement and propagation of rupture towards southeast. Comparison of the horizontal peak ground acceleration (PGA) from the M 7.3 earthquake with global PGA values showed a similar decay in ground motion amplitudes, although it seems that PGA from the M 7.3 Kermanshah earthquake is higher than global values for NEHRP site class B. We also found that the bracketed duration (Db) was higher in the velocity domain than in the acceleration domain for the same modified Mercalli intensity (MMI) threshold. For example, Db reached ~?30 s at the maximum PGA while it was ~?50 s at the maximum peak ground velocity above the threshold of MMI?=?5. Although the standard design spectrum from Iranian Code of Practice for Seismic Resistant Design of Buildings (standard No. 2800) seems to include appropriate values for the design of structures with fundamental period of 1 s and higher, it is underestimated for near-field ground motions at lower periods.  相似文献   
9.
The aim of this study is to develop a two-dimensional hydrodynamic tidal model for the Persian Gulf (PG2017) using 2D-MIKE21 software. The advantages of present study is accounting for the spatial variation of bed friction coefficient besides a precise bathymetry together with a 23-year of combined records of satellite altimetry data. We found that the bed friction coefficient has a significant effect on sea level changes in the region under our modeling consideration. Since the tidal behavior in the northern part of the Qeshm Island is significantly different from the other parts of the Persian Gulf, to present a more accurate hydrodynamic tidal model, the Gulf is divided into two regions where the bed friction coefficient is modeled separately for each region. The root mean square value of the differences between the amplitude of dominant constituents; M2, S2, K1, and O1 derived from the PG2017 model and that of 98 altimetry and coastal tide gauge stations are respectively equal to 1.6, 1.9, 2.8, and 1.3?cm. Moreover, comparing the PG2017 model efficiency with the FES2014, OSU12, EOT11a, DTU10, and Admiralty models shows that the PG2017 model has an improvement of 22.1%, 47.2%, 43.2%, 44.2%, and 57.6% in terms of relative error, respectively.  相似文献   
10.
Palynological and geochemical analyses provide valuable information about modern and past climatic regimes and vegetation. The impact of climate and humans on past vegetation in the semi-arid areas of northwestern Iran has received increased interest in the wake of warming temperatures in the Middle East. Palynological and down-core XRF elemental abundances from a peat core from Lake Neor enabled a reconstruction of vegetational changes of the past 7000 years over the highlands of northwestern Iran. Periods of increased arboreal pollen (AP) types and high (Artemisia + Poaceae)/Chenopodiaceae ratios along with low titanium abundances, high percentages of total organic carbon, more negative δD values, and higher carbon accumulation rates suggest a relatively wet climate. These conditions have persisted during the periods 6700–6200, 5200–4450 and 3200–2200 cal a bp. The overall low AP values, substantial rise of Chenopodiaceae, high Ti abundances and low values of palaeo-redox proxies, are all evidences of a drier climate, as has been reconstructed for the periods 6200–5200 and 4030–3150 cal a bp and the last 2200 years. An important feature of the last centuries is the increase of anthropogenic and pastoral indicator pollen types. Our results may provide basic data to predict future trends in vegetation dynamics under future climate change in western Asia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号