首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
大气科学   1篇
地球物理   2篇
地质学   5篇
综合类   1篇
自然地理   1篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2012年   1篇
排序方式: 共有10条查询结果,搜索用时 62 毫秒
1
1.
Natural Resources Research - Base gas replacement by a cheap gas is one of the approved methods to reduce the cost of investment in underground gas storage process. Maximizing the amount of...  相似文献   
2.
With respect to the different hydrological responses of catchments, even the adjacent ones, in mountainous regions, there are a great number of motivations for classifying them into homogeneous clusters. These motivations include prediction in ungauged basins (PUB), model parameterization, understanding the potential impact of environmental changes, transferring information from gauged catchments to the ungauged ones. The present study investigated the similarity of catchments through the hydro-climatological pure time-series of a 14-year period from 2001 to 2015. Data sets encompass more than 13,000 month-station streamflow, rainfall, and temperature data obtained from 27 catchments in Utah State as one of the eight mountainous states of the USA. The identification, analysis, and interpretation of homogeneous catchments were investigated by applying the four approaches of clustering, K-means, Ward, and SOM (Self-Organized Map) and a newly proposed Wavelet-Entropy-based (WE-SOM) clustering method. By using two clustering evaluation criteria, 3, 5, and 6 clusters were determined as the best numbers of clusters, depending on the method employed, where each cluster represents different hydro-climatological behaviors. Despite the absence of geographic characteristics in input data matrix, the results indicated a regionalization in agreement with topographic characteristics. Considering the dependency of the hydrological behavior of catchments on the physiographic field aspects and characteristics, WE-SOM method demonstrated a more acceptable performance, compared to the other three conventional clustering methods, by providing more clusters. WE-SOM appears to be a promising approach in catchment clustering. It preserves the topological structure of data which can, as a result, be proofed in a greater number of clusters by dividing data into higher numbers of distinct clusters with similar altitudes of catchments in each cluster. The results showed the aptitude of wavelets to quantify the time-based variability of temperature, rainfall and streamflow, in the way contributing to the regionalization of diverse catchments.  相似文献   
3.
Theoretical and Applied Climatology - Crop yield is one of the most critical factors in the food security chain. Climate plays a crucial role in crop water productivity in rainfed and irrigated...  相似文献   
4.
We present deterministic ground motion simulations that account for the cyclic multiaxial response of sediments in the shallow crust. We use the Garner Valley in Southern California as a test case. The multiaxial constitutive model is based on the bounding surface plasticity theory in terms of total stress and is implemented in a high‐performance computing finite‐element parallel code. A major advantage of this model is the small number of free parameters that need to be calibrated given a shear modulus reduction curve and the ultimate soil strength. This, in turn, makes the model suitable for regional‐scale simulations, where geotechnical data in the shallow crust are scarce. In this paper, we first describe a series of numerical experiments designed to verify the model implementation. This is followed by a series of idealized large‐scale simulations in a 35 26 4.5 km domain that encompasses the Garner Valley downhole array site, which is an instrumented and well‐characterized site in Southern California. Material properties were extracted from the Southern California Earthquake Center Community velocity model, CVM‐S4.26, considering its optional geotechnical layer, while the modulus reduction curves and soil strength were selected empirically to constrain the nonlinear soil model parameters. Our nonlinear simulations suggest that peak ground displacements within the valley increase relative to the linear case, while peak ground accelerations can increase or decrease, depending on the frequency content of the excitation. The comparisons of our simulations against hybrid three‐dimensional–one‐dimensional site response analyses suggest the inadequacy of the latter to capture the complexity of fully three‐dimensional simulations.  相似文献   
5.
6.
The concept of equivalent linearization, in which the actual nonlinear structure is replaced by an equivalent linear single-degree-of-freedom (SDOF) system, is extended for soil-structure systems in order to consider the simultaneous effects of soil-structure interaction (SSI) and inelastic behavior of the structure on equivalent linear parameters (ELP). This is carried out by searching over a two-dimensional equivalent period–equivalent damping space for the best pair, which can predict the earthquake response of the inelastic soil-structure system with sufficient accuracy. The super-structure is modeled as an elasto-plastic SDOF system whereas the soil beneath the structure is considered as a homogeneous half-space and is replaced by a discrete model. An extensive parametric study is carried out for a wide range of soil-structure systems subjected to a suite of 59 ground motions. The effect of SSI on ELP is studied through introducing a set of non-dimensional key parameters, which define the soil-structure system. It is shown that ELP of soil-structure systems result from a trade-off between SSI effect and nonlinear behavior of the structure. The contribution of each of these two factors depends on the characteristics of the soil-structure system which, in turn, are defined by the introduced non-dimensional key parameters. Moreover, the reliability of the predicted response of soil-structure systems and its sensitivity to deviation from optimal ELP is studied in detail, which sheds light on the consequences of using improper pairs of ELP for interacting systems in the framework of performance-based design of structures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
7.
Ghaffari Gilandeh  Ata  Sobhani  Behrooz  Ostadi  Elnaz 《Natural Hazards》2020,102(3):1435-1449
Natural Hazards - “Streets have been turned into rivers”; this is a news headline which we have been hearing more often recently and refers to the floodwaters flowing into cities....  相似文献   
8.
Kermani  Elnaz  Qiu  Tong 《Acta Geotechnica》2020,15(2):423-437
Acta Geotechnica - Flow of granular materials under different conditions poses significant challenges to engineers as their behavior can vary from solid-like to fluid-like. The quasi-static...  相似文献   
9.
The capability of a bounding surface plasticity model with a vanishing elastic region to capture the multiaxial dynamic hysteretic responses of soil deposits under broadband (eg, earthquake) excitations is explored by using data from centrifuge tests. The said model was proposed by Borja and Amies in 1994 (J. Geotech. Eng., 120, 6, 1051‐1070), which is theoretically capable of representing nonlinear soil behavior in a multiaxial setting. This is an important capability that is required for exploring and quantifying site topography, soil stratigraphy, and kinematic effects in ground motion and soil‐structure interaction analyses. Results obtained herein indicate that the model can accurately predict key response data recorded during centrifuge tests on embedded specimens—including soil pressures and bending strains for structural walls, structures' racking displacements, and surface settlements—under both low‐ and high‐amplitude seismic input motions, which was achieved after performing only a basic material parameter calibration procedure. Comparisons are also made with results obtained using equivalent linear models and a well‐known pressure‐dependent multisurface plasticity model, which suggested that the present model is generally more accurate. The numerical convergence behavior of the model in nonlinear equilibrium iterations is also explored for a variety of numerical implementation and model parameter options. To facilitate broader use by researchers and practicing engineers alike, the model is implemented as a “user material” in ABAQUS Standard for implicit time stepping.  相似文献   
10.
This article presents a sensitivity analysis investigating the impact of using high-resolution site conditions databases in portfolio earthquake loss estimation. This article also estimates the effects of variability in the site condition databases on probabilistic earthquake loss ratios and their geographical pattern with respect to structural characteristics of different building types. To perform the earthquake loss estimation here, the OpenQuake software developed by Global Earthquake Model is implemented in Clemson University’s supercomputer. The probabilistic event-based risk analysis is employed considering several notional portfolios of different building types in the San Francisco area as the inventory exposure. This analysis produces the stochastic event sets worth for 10,000 years including almost 8000 synthetically simulated earthquakes. Then, the ground motion prediction equations are used to calculate the ground motion per event and incorporate the effect of five site conditions, on amplifying or de-amplifying the ground motions on notional building exposure locations. Notional buildings are used to account for various building characteristics in conformance with the building taxonomy represented in HAZUS software. The HAZUS damage functions are applied to model the vulnerability of various structural types of buildings. Finally, the 50-year average mean loss and probabilistic loss for multiple values for probability of exceedance (2, 10, 20, and 40%) in 50 years are calculated, and the impact of different site condition databases on portfolio loss ratios is investigated for different structural types and heights of buildings. The results show the aggregated and geographical variation of loss and loss ratio throughout the region for various site conditions. Comparing the aggregated loss and loss ratio, while considering different databases, represents normalized differences that are limited to 6% for all building taxonomy with various heights and for all PoEs. However, site-specific loss ratio errors are significantly greater and in some cases are more than 20%.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号