首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   8篇
大气科学   2篇
地球物理   27篇
地质学   25篇
天文学   12篇
自然地理   3篇
  2021年   1篇
  2020年   1篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2011年   1篇
  2010年   2篇
  2009年   7篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1988年   3篇
  1986年   1篇
  1982年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1963年   1篇
  1962年   1篇
  1961年   1篇
  1959年   1篇
  1957年   1篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
1.
The Jalovecký Creek catchment, Slovakia (area 22.2 km2, mean elevation 1500 m a.s.l.), is likely the last big valley complex in the Carpathian Mountains, in which the hydrological cycle is still governed by natural processes. Hydrological research is conducted there since the end of the 1980s. The overall mission of the research is to increase the knowledge about the hydrological cycle in the highest part of the Carpathians. The research agenda, briefly introduced in the first part of this article, is focused on water balance, snow accumulation and melt and runoff formation. Recent analysis of precipitation, discharge, snow cover and isotopic data from period 1989–2018 indicates that hydrological cycle has become more dynamic since 2014. Although several indicators suggest that it could be related to the cold part of the year, direct links with snow storage and the contribution of snowmelt water to catchment runoff were not confirmed. The second part of the article is therefore focused on an analysis of daily cycles in streamflow in March to June 1988–2018 to obtain a deeper insight into the snowmelt process. We describe characteristics of the cycles and examine their variability over the study period. The results indicate that less snow at the lowest elevations (800–1150 m a.s.l.) since 2009 could have influenced the cessation of the cycles in June since 2010. The possible role of the decreased amount of snow at the lowest elevations in changes in runoff characteristics is also suggested by an increase in time lags between maximum discharges during the events and maximum air temperatures preceding discharge maxima measured near the catchment outlet (at 750 m a.s.l.) in spring 2018 compared to springs with a similar number of streamflow cycles in the years 1988, 2000 and 2009. Wavelet analysis did not indicate changes in global power spectra in hourly discharge and air temperature data.  相似文献   
2.
Manually collected snow data are often considered as ground truth for many applications such as climatological or hydrological studies. However, there are many sources of uncertainty that are not quantified in detail. For the determination of water equivalent of snow cover (SWE), different snow core samplers and scales are used, but they are all based on the same measurement principle. We conducted two field campaigns with 9 samplers commonly used in observational measurements and research in Europe and northern America to better quantify uncertainties when measuring depth, density and SWE with core samplers. During the first campaign, as a first approach to distinguish snow variability measured at the plot and at the point scale, repeated measurements were taken along two 20 m long snow pits. The results revealed a much higher variability of SWE at the plot scale (resulting from both natural variability and instrumental bias) compared to repeated measurements at the same spot (resulting mostly from error induced by observers or very small scale variability of snow depth). The exceptionally homogeneous snowpack found in the second campaign permitted to almost neglect the natural variability of the snowpack properties and focus on the separation between instrumental bias and error induced by observers. Reported uncertainties refer to a shallow, homogeneous tundra-taiga snowpack less than 1 m deep (loose, mostly recrystallised snow and no wind impact). Under such measurement conditions, the uncertainty in bulk snow density estimation is about 5% for an individual instrument and is close to 10% among different instruments. Results confirmed that instrumental bias exceeded both the natural variability and the error induced by observers, even in the case when observers were not familiar with a given snow core sampler.  相似文献   
3.
4.
Abstract

We discuss the steady states of the αω-dynamo in a thin disc which arise due to α-quenching. Two asymptotic regimes are considered, one for the dynamo numberD near the generation thresholdD 0, and the other for |D| ? 1. Asymptotic solutions for |D—D 0| ? |D 0| have a rather universal character provided only that the bifurcation is supercritical. For |D| ? 1 the asymptotic solution crucially depends on whether or not the mean helicity α, as a function ofB, has a positive root (hereB is the mean magnetic field). When such a root exists, the field value in the major portion of the disc is O(l), while near the disc surface thin boundary layers appear where the field rapidly decreases to zero (if the disc is surrounded by vacuum). Otherwise, when α = O(|B|?s) for |B| → ∞, we demonstrate that |B| = O(|D|1/s ) and the solution is free of boundary layers. The results obtained here admit direct comparison with observations of magnetic fields in spiral galaxies, so that an appropriate model of nonlinear galactic dynamos hopefully could be specified.  相似文献   
5.
6.
Our mainly R band photometry of V1493 Aql (1999) during its outburst, indicates periodic variations with a period of 0.156 days, seen only 5 days after the maximum in V. This period can be orbital. The light curve indicates in addition, the presence of a faint eclipse like feature. We try to explain its extremely low amlitude, as being due to the eclipse of an expanded white dwarf component of the binary below an optically thick wind. We discuss what conditions would be required for such an interpretation to work.  相似文献   
7.
This note summarizes results of the first integration of regional numerical weather prediction model ALADIN in a climate mode. The ALADIN model, developed in an international cooperation led by Météo France, is operationally used for weather prediction. The grid step of the model is 12 km; the integration domain covers a major part of Europe. A one-month-long run has been performed with this model on observed boundary conditions (represented by assimilations by the global model ARPEGE). It is demonstrated that no excessive error is generated and accumulated in the model during the integration; hence the model is integrable for extended time periods and may serve a basis for a development towards a regional climate model.  相似文献   
8.
9.
Summary The thermo-elastic deformations due to the annual temperature variation are computed. The time variation of these deformations is compared with the variation of the slow deformations observed at the tidal station in Vyhne.
u mnu ¶rt;auu, a¶rt; auau mnam nmu a nnmama. ¶rt; mu ¶rt;au a ¶rt; ¶rt; ¶rt;au, u a nuu mauu ().


Dedicated to RNDr Jan Pícha, CSc on his 70th birthday  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号