首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Vector-valued fragility functions for seismic risk evaluation   总被引:4,自引:4,他引:0  
This article presents a method for the development of vector-valued fragility functions, which are a function of more than one intensity measure (IM, also known as ground-motion parameters) for use within seismic risk evaluation of buildings. As an example, a simple unreinforced masonry structure is modelled using state-of-the-art software and hundreds of nonlinear time-history analyses are conducted to compute the response of this structure to earthquake loading. Dozens of different IMs (e.g. peak ground acceleration and velocity, response spectral accelerations at various periods, Arias intensity and various duration and number of cycle measures) are considered to characterize the earthquake shaking. It is demonstrated through various statistical techniques (including Receiver Operating Characteristic analysis) that the use of more than one IM leads to a better prediction of the damage state of the building than just a single IM, which is the current practice. In addition, it is shown that the assumption of the lognormal distribution for the derivation of fragility functions leads to more robust functions than logistic, log-logistic or kernel regression. Finally, actual fragility surfaces using two pairs of IMs (one pair are uncorrelated while the other are correlated) are derived and compared to scalar-based fragility curves using only a single IM and a significant reduction in the uncertainty of the predicted damage level is observed. This type of fragility surface would be a key component of future risk evaluations that take account of recent developments in seismic hazard assessment, such as vector-valued probabilistic seismic hazard assessments.  相似文献   

2.
Many historic buildings in old urban centers in Eastern Canada are made of stone masonry reputed to be highly vulnerable to seismic loads.Seismic risk assessment of stone masonry buildings is therefore the first step in the risk mitigation process to provide adequate planning for retrofit and preservation of historical urban centers.This paper focuses on development of analytical displacement-based fragility curves reflecting the characteristics of existing stone masonry buildings in Eastern Canada.The old historic center of Quebec City has been selected as a typical study area.The standard fragility analysis combines the inelastic spectral displacement,a structure-dependent earthquake intensity measure,and the building damage state correlated to the induced building displacement.The proposed procedure consists of a three-step development process:(1) mechanics-based capacity model,(2) displacement-based damage model and(3) seismic demand model.The damage estimation for a uniform hazard scenario of 2% in 50 years probability of exceedance indicates that slight to moderate damage is the most probable damage experienced by these stone masonry buildings.Comparison is also made with fragility curves implicit in the seismic risk assessment tools Hazus and ELER.Hazus shows the highest probability of the occurrence of no to slight damage,whereas the highest probability of extensive and complete damage is predicted with ELER.This comparison shows the importance of the development of fragility curves specific to the generic construction characteristics in the study area and emphasizes the need for critical use of regional risk assessment tools and generated results.  相似文献   

3.
In seismic risk assessment of structures, fragility functions are the probabilistic characterization of vulnerability at the component and/or structural level, expressing the probability of failure as a function of a ground motion intensity measure (IM). Fragility curves, in general, are structure- and site-specific, thus a comparison of fragility curves, then of vulnerability, is not straightforward across multiple structures. Also, it could be the case that hazard at a site of interest is not available for the IM originally considered in the fragility assessment. These situations require to convert fragility curves from an original IM to a target one. The present study addresses a hazard-consistent probabilistic framework for converting spectral acceleration-based IMs from an original IM to a target IM at a given site. In particular, three conversion cases, under different assumptions on the explanatory power of the involved IMs with respect to structural failure, are discussed: (a) a vector-valued IM consisting of the original and target IMs, magnitude, and source-to-site distance; (b) a vector-valued IM consisting of the original and target IMs; and (c) the original (scalar) IM only, assuming that structural response, given the IM, is statistically independent of the other ground motion variables. In this framework, the original fragility functions are characterized using the state-of-the-art methods in performance-based earthquake engineering, then the fragility curves as a function of the target IM are evaluated through applications of the probability calculus rules, ensuring consistency with the seismic hazard at the site of interest. The conversion strategy is illustrated through the applications to three-, six-, and nine-story Italian code-conforming reinforced concrete buildings designed for a high-hazard site in Italy. The study shows that, in most of the cases, the converted fragility curves have agreement with the reference curves directly developed in terms of the target IM. Cases in which least agreement was found are likely due to the models used to obtain the terms required by the conversion equations.  相似文献   

4.
Processing Italian damage data to derive typological fragility curves   总被引:4,自引:0,他引:4  
Typological fragility curves have been derived from post-earthquake survey data on building damage, collected in the areas affected by the most relevant Italian earthquakes of the last three decades. A complex and time consuming codification and reinterpretation work has been done on a set of about 150,000 survey building records, in order to define empirical damage probability matrices for several building typologies, characteristic of the Italian building stock. The obtained data have then been processed by advanced nonlinear regression methods in order to derive typological fragility curves. These curves, organised in five damage levels, provide useful information both for relative comparisons among typologies and for seismic risk analyses at different scales. By combining hazard definitions, fragility curves and inventory data, complete earthquake risk scenario studies can be performed, but even the single convolution of hazard and fragility allows to obtain typological risk maps, both for single damage state definitions and for concise average loss parameters. The very high potential of these results is shown by some applications reported in the paper.  相似文献   

5.
Seismic fragility can be assessed by conducting incremental dynamic analysis (IDA). This study extends the current conditional mean spectrum (CMS)-based record selection approach for IDA by taking into account detailed seismic hazard information. The proposed method is applied to conventional wood-frame houses in Canada, across which dominant earthquake scenarios and associated hazard levels vary significantly. Effects due to different seismic environments, site conditions, CMS-based record selection methods, and house models are investigated by comparing various seismic fragility models. Moreover, relative impact of the key characteristics is evaluated in terms of seismic loss curve for a group of wood-frame houses. Importantly, a close examination of regional seismic hazard characteristics using seismic hazard curve and seismic deaggregation facilitates the deeper understanding of the impact of ground motion characteristics on seismic fragility. A comprehensive and systematic assessment of key uncertainties associated with seismic fragility is provided.  相似文献   

6.
A hybrid method for the vulnerability assessment of R/C and URM buildings   总被引:6,自引:1,他引:6  
The methodology followed by the Aristotle University (AUTh) team for the vulnerability assessment of reinforced concrete (R/C) and unreinforced masonry (URM) structures is presented. The paper focuses on the derivation of vulnerability (fragility) curves in terms of peak ground acceleration (PGA), as well as spectral displacement (s d), and also includes the estimation of capacity curves, for several R/C and URM building types. The vulnerability assessment methodology is based on the hybrid approach developed at AUTh, which combines statistical data with appropriately processed (utilising repair cost models) results from nonlinear dynamic or static analyses, that permit extrapolation of statistical data to PGA’s and/or spectral displacements for which no data are available. The statistical data used herein are from earthquake-damaged greek buildings. An extensive numerical study is carried out, wherein a large number of building types (representing most of the common typologies in S. Europe) are modelled and analysed. Vulnerability curves for several damage states are then derived using the aforementioned hybrid approach. These curves are subsequently used in combination with the mean spectrum of the Microzonation study of Thessaloniki as the basis for the derivation of new vulnerability curves involving spectral quantities. Pushover curves are derived for all building types, then reduced to standard capacity curves, and can easily be used together with the S d fragility curves as an alternative for developing seismic risk scenarios.  相似文献   

7.
This paper evaluates a recent record selection and scaling procedure of the authors that can determine the probabilistic structural response of buildings behaving either in the elastic or post‐elastic range. This feature marks a significant strength on the procedure as the probabilistic structural response distribution conveys important information on probability‐based damage assessment. The paper presents case studies that show the utilization of the proposed record selection and scaling procedure as a tool for the estimation of damage states and derivation of site‐specific and region‐specific fragility functions. The method can be used to describe exceedance probabilities of damage limits under a certain target hazard level with known annual exceedance rate (via probabilistic seismic hazard assessment). Thus, the resulting fragility models can relate the seismicity of the region (or a site) with the resulting building performance in a more accurate manner. Under this context, this simple and computationally efficient record selection and scaling procedure can be benefitted significantly by probability‐based risk assessment methods that have started to be considered as indispensable for developing robust earthquake loss models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Seismic fragility curves provide a powerful tool to assess the reliability of structures. However, conventional fragility analysis of structures comprising a large number of components requires enormous computational efforts. In this paper, the application of probabilistic support vector machines (PSVM) for the system fragility analysis of existing structures is proposed. It is demonstrated that support vector machine based fragility curves provide accurate predictions compared to rigorous methodologies such as component based fragilities developed by Monte Carlo simulations. The proposed method is applied to an existing bridge structure in order to develop fragility curves for serviceability and collapse limit states. In addition, the efficiency of using the PSVM method in the application of vector-valued ground motion intensity measures (IM) as well as traditional single-valued IM are investigated. The results obtained from an incremental dynamic analysis of the structure are used to train PSVMs. The application of PSVM in binary and multi-class classifications is used for the fragility analysis and reliability assessment of the bridge structure.  相似文献   

9.
Objectives of this task are to conduct research on seismic hazards, and to provide relevant input on the expected levels of these hazards to other tasks. Other tasks requiring this input include those dealing with inventory, fragility curves, rehabilitation strategies and demonstration projects. The corresponding input is provided in various formats depending on the intended use: as peak ground motion parameters and/or response spectral values for a given magnitude, epicentral distance and site conditions; or as time histories for scenario earthquakes that are selected based on the disaggregated seismic hazard mapped by the U.S. Geological Survey and are incorporated in building codes. The user community for this research is both academic researchers and practicing engineers who may use the seismic input generated by the synthesis techniques that are developed under this task for a variety of applications. These include ground motions for scenario earthquakes, for developing fragility curves and in specifying ground motion input for critical facilities (such as hospitals) located in the eastern U.S. Supported in part by the Earthquake Engineering Research Centers Program of the National Science Foundation under Award Number EEC-9701471 to the Multidisciplinary Center for Earthquake Engineering Research.  相似文献   

10.
Fragility curves constitute an emerging tool for the seismic risk assessment of all constructions at risk. They describe the probability of a structure being damaged beyond a specific damage state for various levels of ground shaking. They are usually represented as two-parameter (median and log-standard deviation) cumulative lognormal distributions. In this paper a numerical approach is proposed for the construction of fragility curves for geotechnical constructions. The methodology is applied to cantilever bridge abutments on surface foundation often used in road and railway networks. The response of the abutment to increasing levels of seismic intensity is evaluated using a 2D nonlinear FE model, with an elasto-plastic criterion to simulate the soil behavior. A calibration procedure is followed in order to account for the dependency of both the stiffness and the damping on the soil strain level. The effect of soil conditions and ground motion characteristics on the global soil and structural response is taken into account considering different typical soil profiles and seismic input motions. The objective is to assess the vulnerability of the road network as regards the performance of the bridge abutments; therefore, the level of damage, is described in terms of the range of settlement that is observed on the backfill. The effect of backfill material to the overall response of the abutment wall is also examined. The fragility curves are estimated based on the evolution of damage with increasing earthquake intensity. The proposed approach allows the evaluation of new fragility curves considering the distinctive features of the structure geometry, the input motion and the soil properties as well as the associated uncertainties. The proposed fragility curves are verified based on observed damage during the 2007 Niigata-Chuetsu Oki earthquake.  相似文献   

11.
Empirical fragility curves, constructed from databases of thousands of building-damage observations, are commonly used for earthquake risk assessments, particularly in Europe and Japan, where building stocks are often difficult to model analytically (e.g. old masonry structures or timber dwellings). Curves from different studies, however, display considerable differences, which lead to high uncertainty in the assessed seismic risk. One potential reason for this dispersion is the almost universal neglect of the spatial variability in ground motions and the epistemic uncertainty in ground-motion prediction. In this paper, databases of building damage are simulated using ground-motion fields that take account of spatial variability and a known fragility curve. These databases are then inverted, applying a standard approach for the derivation of empirical fragility curves, and the difference with the known curve is studied. A parametric analysis is conducted to investigate the impact of various assumptions on the results. By this approach, it is concluded that ground-motion variability leads to flatter fragility curves and that the epistemic uncertainty in the ground-motion prediction equation used can have a dramatic impact on the derived curves. Without dense ground-motion recording networks in the epicentral area empirical curves will remain highly uncertain. Moreover, the use of aggregated damage observations appears to substantially increase uncertainty in the empirical fragility assessment. In contrast, the use of limited randomly-chosen un-aggregated samples in the affected area can result in good predictions of fragility.  相似文献   

12.
The seismic risk evaluation usually works with a fragmented concept of risk, which depends on the scientific discipline in charge of the assessment. To achieve an effective performance of the risk management, it is necessary to define risk as the potential economic, social and environmental consequences due to a hazardous phenomenon in a period of time. This article presents a methodology which evaluates the seismic risk from a holistic perspective, which means, it takes into account the expected physical damage and also the conditions related to social fragility and lack of resilience, which favour the second order effects when a hazard event strikes an urban centre. This seeks to obtain results which are useful in the decision making process for risk reduction. The proposed method for urban seismic risk evaluation uses the fuzzy sets theory in order to handle qualitative concepts and variables involved in the assessment, the physical risk level and aggravation level, related to the social fragility and the lack of resilience, are evaluated and finally a total risk level is determinate.  相似文献   

13.
This study presents a seismic fragility analysis and ultimate spectral displacement assessment of regular low-rise masonry infilled (MI) reinforced concrete (RC) buildings using a coefficient-based method. The coefficient-based method does not require a complicated finite element analysis; instead, it is a simplified procedure for assessing the spectral acceleration and displacement of buildings subjected to earthquakes. A regression analysis was first performed to obtain the best-fitting equations for the inter-story drift ratio (IDR) and period shift factor of low-rise MI RC buildings in response to the peak ground acceleration of earthquakes using published results obtained from shaking table tests. Both spectral acceleration-and spectral displacement-based fragility curves under various damage states (in terms of IDR) were then constructed using the coefficient-based method. Finally, the spectral displacements of low-rise MI RC buildings at the ultimate (or near-collapse) state obtained from this paper and the literature were compared. The simulation results indicate that the fragility curves obtained from this study and other previous work correspond well. Furthermore, most of the spectral displacements of low-rise MI RC buildings at the ultimate state from the literature fall within the bounded spectral displacements predicted by the coefficient-based method.  相似文献   

14.
A fundamental tool in seismic risk assessment of transportation systems is the fragility curve, which describes the probability that a structure will reach or exceed a certain damage state for a given ground motion intensity. Fragility curves are usually represented by two‐parameter (median and log‐standard deviation) cumulative lognormal distributions. In this paper, a numerical approach, in the spirit of the IDA, is applied for the development of fragility curves for highways and railways on embankments and in cuts due to seismic shaking. The response of the geo‐construction to increasing levels of seismic intensity is evaluated using a 2D nonlinear finite element model, with an elasto‐plastic criterion to simulate the soil behavior. A calibration procedure is followed in order to account for the dependency of both the stiffness and the damping to the soil strain level. The effect of soil conditions and ground motion characteristics on the response of the embankment and cut is taken into account considering different typical soil profiles and seismic input motions. This study will provide input for the assessment of the vulnerability of the road/railway network regarding the performance of the embankments and cuts; therefore, the level of damage is described in terms of the permanent ground displacement in these structures. The fragility curves are estimated based on the evolution of damage with increasing earthquake intensity, which is described by PGA. The proposed approach allows the evaluation of new fragility curves considering the distinctive features of the element's geometry, the input motion, and the soil properties as well as the associated uncertainties. A relationship between the computed permanent ground displacement on the surface of the embankment and the PGA in the free field is also suggested based on the results of the numerical analyses. Finally, the proposed fragility curves are compared with existing empirical data and the limitations of their applicability are outlined. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
A damage scenario modelling is developed and compared with the damage distribution observed after the 2011 Lorca earthquake. The strong ground motion models considered include five modern ground motion prediction equations (GMPEs) amply used worldwide. Capacity and fragility curves from the Risk-UE project are utilized to model building vulnerability and expected damage. Damage estimates resulting from different combinations of GMPE and capacity/fragility curves are compared with the actual damage scenario, establishing the combination that best explains the observed damage distribution. In addition, some recommendations are proposed, including correction factors in fragility curves in order to reproduce in a better way the observed damage in masonry and reinforce concrete buildings. The lessons learned would contribute to improve the simulation of expected damages due to future earthquakes in Lorca or other regions in Spain with similar characteristics regarding attenuation and vulnerability.  相似文献   

16.
A probabilistic approach to estimate maximum inelastic displacement demands of single‐degree‐of‐freedom (SDOF) systems is presented. By making use of the probability of exceedance of maximum inelastic displacement demands for given maximum elastic spectral displacement and the mean annual frequency of exceedance of elastic spectral ordinates, a simplified procedure is proposed to estimate mean annual frequencies of exceedance of maximum inelastic displacement demands. Simplifying assumptions are thoroughly examined and discussed. Using readily available elastic seismic hazard curves the procedure can be used to compute maximum inelastic displacement seismic hazard curves and uniform hazard spectra of maximum inelastic displacement demands. The resulting maximum inelastic displacement demand spectra provide a more rational way of establishing seismic demands for new and existing structures when performance‐based approaches are used. The proposed procedure is illustrated for elastoplastic SDOF systems having known‐lateral strength located in a region of high seismicity in California. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Earthquakes are generally clustered, both in time and space. Conventionally, each cluster is made of foreshocks, the mainshock, and aftershocks. Seismic damage can possibly accumulate because of the effects of multiple earthquakes in one cluster and/or because the structure is unrepaired between different clusters. Typically, the performance-based earthquake engineering (PBEE) framework neglects seismic damage accumulation. This is because (i) probabilistic seismic hazard analysis (PSHA) only refers to mainshocks and (ii) classical fragility curves represent the failure probability in one event, of given intensity, only. However, for life cycle assessment, it can be necessary to account for the build-up of seismic losses because of damage in multiple events. It has been already demonstrated that a Markovian model (i.e., a Markov chain), accounting for damage accumulation in multiple mainshocks, can be calibrated by maintaining PSHA from the classical PBEE framework and replacing structural fragility with a set of state-dependent fragility curves. In fact, the Markov chain also works when damage accumulates in multiple aftershocks from a single mainshock of known magnitude and location, if aftershock PSHA replaces classical PSHA. Herein, this model is extended further, developing a Markovian model that accounts, at the same time, for damage accumulation: (i) within any mainshock–aftershock seismic sequence and (ii) among multiple sequences. The model is illustrated through applications to a series of six-story reinforced concrete moment-resisting frame buildings designed for three sites with different seismic hazard levels in Italy. The time-variant reliability assessment results are compared with the classical PBEE approach and the accumulation model that only considers mainshocks, so as to address the relevance of aftershocks for life cycle assessment.  相似文献   

18.
In this paper a numerical approach is proposed for the construction of fragility curves for shallow metro tunnels in alluvial deposits, when subjected to transversal seismic loading. The response of the tunnel is calculated under quasi static conditions applying the induced seismic ground deformations which are calculated through 1D equivalent linear analysis for an increasing level of seismic intensity. The results of the present numerical analyses are compared with selected closed form solutions, highlighting the limitations of the latter, while indicative full dynamic analysis are performed in order to validate the results of the quasi-static method. The proposed approach allows the evaluation of new fragility curves considering the distinctive features of the tunnel geometries and strength characteristics, the input motion and the soil properties as well as the associated uncertainties. The comparison between the new fragility curves and the existing empirical ones highlights the important role of the local soil conditions, which is not adequately taken into account in the empirical curves.  相似文献   

19.
This paper presents a new methodology based on structural performance to determine uniform fragility design spectra, i.e., spectra with the same probability of exceedance of a performance level for a given seismic intensity. The design spectra calculated with this methodology provide directly the lateral strength, in terms of yield‐ pseudo‐accelerations, associated with the rate of exceedance of a specific ductility characterizing the performance level for which the structures will be designed. This procedure involves the assessment of the seismic hazard using a large enough number of seismic records of several magnitudes; these records are simulated with an improved empirical Green function method. The statistics of the performance of a single degree of freedom system are obtained using Monte Carlo simulation considering the seismic demand, the fundamental period, and the strength of the structure as uncertain variables. With these results, the conditional probability that a structure exceeds a specific performance level is obtained. The authors consider that the proposed procedure is a significant improvement to others considered in the literature and a useful research tool for the further development of uniform fragility spectra that can be used for the performance‐based seismic design and retrofit of structures.  相似文献   

20.
Earthquake-resistant design and seismic analysis often require the earthquake action to be represented in the form of acceleration time-histories. Real accelerograms can be selected based on matching an earthquake scenario, defined by magnitude and distance, and scaled if necessary. The scaled accelerograms should reflect the hazard in terms of the parameters that characterise the inelastic demand on structures, including response spectral ordinates, duration and energy content. In order to maintain realistic ground motions, the scaling factors should not differ greatly from unity. It is found that in many cases, where the hazard is influenced by more than one seismic source, it is impossible to define a single earthquake scenario that is compatible with the results of probabilistic seismic hazard assessment. Even if a hazard-consistent scenario can be defined, there are difficulties encountered in using the results to select and scale real accelerograms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号