首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
北半球大气遥相关型与区域尺度大气扰动   总被引:4,自引:2,他引:2       下载免费PDF全文
北极涛动(AO)、北大西洋涛动(NAO)和太平洋-北美型(PNA)等北半球大气遥相关型,可以用大气位势高度的物理分解扰动分量解释.结果发现,AO反映的是北极地区行星尺度纬圈平均扰动分量的变化,PNA与持续性天气尺度扰动分量相联系,NAO是行星尺度纬圈平均扰动与天气尺度扰动共同作用的结果.对行星尺度纬圈平均扰动分量和天气尺度扰动分量用旋转经验正交函数(REOF)展开,不但可以证实人们已经命名的区域性大气涛动,还新发现了北极地区的两对偶极涛动、欧亚涛动(EAO)和"大西洋-欧亚型"(AEA)波列.这些涛动连接了相邻地区的异常天气和异常气候.  相似文献   

2.
Abstract

Among the processes most affected by global warming are the hydrological cycle and water resources. Regions where the majority of runoff consists of snowmelt are very sensitive to climate change. It is significant to express the relationship between climate change and snow hydrology and it is imperative to perform climate change impact studies on snow hydrology at global and regional scales. Climate change impacts on the mountainous Upper Euphrates Basin were investigated in this paper. First, historical data trend analysis of significant hydro-meteorological data is presented. Available future climate data are then explained, and, finally, future climate data are used in hydrological models, which are calibrated and validated using historical hydro-meteorological data, and future streamflow is projected for the period 2070–2100. The hydrological model outcomes indicate substantial runoff decreases in summer and spring season runoff, which will have significant consequences on water sectors in the Euphrates Basin.

Citation Yilmaz, A.G. & Imteaz, M.A. (2011) Impact of climate change on runoff in the upper part of the Euphrates basin. Hydrol. Sci. J. 56(7), 1265–1279.  相似文献   

3.
Drought is a slow‐onset, creeping natural hazard which is an inevitable part of normal climate fluctuation especially in arid and semiarid regions, and its variability can be explained in terms of large‐scale atmospheric circulation patterns. Standardized streamflow index (SSFI) was utilized to characterize hydrological drought in the west of Iran for the hydrological years of 1969–1970 to 2008–2009. The linkage of atmospheric circulation patterns (ENSO, NAO) to hydrological drought was also used to reveal relations of climate variability affecting hydrological drought. River discharges exhibited negative anomalies during the warm phase of ENSO (El Niño) which caused the extreme and severe droughts in the study area, being strongest during the hydrological years of 2007–2008 and 2008–2009. The analysis also indicated the teleconnection impact of ENSO on the hydrological drought severity in the first half of the hydrological year especially between November and March. Moreover, the concurrent and lag correlations revealed a weak relationship between the SSFI drought severity and the NAO index. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
1 Introduction Antarctic Oscillation is a major mode of Southern Hemispheric (SH) extratropical atmospheric circula- tion. The SH Annual Mode represents a zonally sym- metric exchange of mass between polarward of 60°S and 40°S[1], therefore AAO indicates both the intensity of circumpolar low and zonal mean west wind at mid-high latitudes in SH. Positive phase of AAO tends to deepen circumpolar low and enhance west wind at mid-high latitudes in SH. Many studies show that AAO has bar…  相似文献   

5.
This paper aims to provide a comprehensive review of previous studies and concepts concerning the North Atlantic Oscillation. The North Atlantic Oscillation (NAO) and its recent homologue, the Arctic Oscillation/Northern Hemisphere annular mode (AO/NAM), are the most prominent modes of variability in the Northern Hemisphere winter climate. The NAO teleconnection is characterised by a meridional displacement of atmospheric mass over the North Atlantic area. Its state is usually expressed by the standardised air pressure difference between the Azores High and the Iceland Low. ThisNAO index is a measure of the strength of the westerly flow (positive with strong westerlies, and vice versa). Together with the El Niño/Southern Oscillation (ENSO) phenomenon, the NAO is a major source of seasonal to interdecadal variability in the global atmosphere. On interannual and shorter time scales, the NAO dynamics can be explained as a purely internal mode of variability of the atmospheric circulation. Interdecadal variability maybe influenced, however, by ocean and sea-ice processes.  相似文献   

6.
7.
Snow variability is an integrated indicator of climate change, and it has important impacts on runoff regimes and water availability in high‐altitude catchments. Remote sensing techniques can make it possible to quantitatively detect the snow cover changes and associated hydrological effects in those poorly gauged regions. In this study, the spatial–temporal variations of snow cover and snow melting time in the Tuotuo River basin, which is the headwater of the Yangtze River, were evaluated based on satellite information from the Moderate Resolution Imaging Spectroradiometer snow cover product, and the snow melting equivalent and its contribution to the total runoff and baseflow were estimated by using degree–day model. The results showed that the snow cover percentage and the tendency of snow cover variability increased with rising altitude. From 2000 to 2012, warmer and wetter climate change resulted in an increase of the snow cover area. Since the 1960s, the start time for snow melt has become earlier by 0.9–3 days/10a and the end time of snow melt has become later by 0.6–2.3 days/10a. Under the control of snow cover and snow melting time, the equivalent of snow melting runoff in the Tuotuo River basin has been fluctuating. The average contributions of snowmelt to baseflow and total runoff were 19.6% and 6.8%, respectively. Findings from this study will serve as a reference for future research in areas where observational data are deficient and for planning of future water management strategies for the source region of the Yangtze River. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, we analysed the influence of the North Atlantic Oscillation (NAO) on the hydrological response of the Duero River (central Spain) and its tributaries. We identified the positive and negative phases of the winter NAO for the period 1961–2006 and related precipitation and river discharge anomalies. Significant differences in precipitation and river discharge were found between the positive and negative NAO phases with negative anomalies (dry conditions) during positive NAO periods, and positive anomalies (wet conditions) during negative NAO periods. Marked differences were also found in the precipitation and river discharge response times to the NAO episodes, with an immediate response for precipitation but a lag and more sustained response for river discharges. Differing patterns were also identified in the response of river discharge to the NAO throughout the Duero basin. The physical characteristics of watersheds (including area, altitude and permeability explained most of the differences in the timing and magnitude of anomalies in the river discharge in response to the NAO. The findings highlight the great variability in the hydrological response of rivers to the NAO episodes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

This study was carried out in the framework of the Surface Water and Ocean Topography (SWOT) programme of the French National Centre of Space Studies (CNES). Based on discharge measurements and Gravity Recovery and Climate Experiment (GRACE) determination of total water storage (TWS), we have investigated the hydrological variability of the main French drainage basins (Seine, Loire, Garonne and Rhône) using a wavelet approach (continuous wavelet analyses and wavelet coherence analyses). The results of this analysis have shown a coherence ranging between 82% and 90% for TWS and discharge, thus demonstrating the potential use of TWS for characterization of the hydrological variability of French rivers. Strong coherence between the four basin discharges (between 73% and 92%) and between their associated TWS data (from 82% to 98%) suggested a common external influence on hydrological variability. To determine this influence, we investigated the relationship between hydrological variability and the North Atlantic Oscillation (NAO), considered as an index of prevailing climate in Europe. Basin discharges show strong coherence with NAO, ranging between 64% and 72% over the period 1959–2010. The coherence between NAO and TWS was 62% to 67% for 2003–2009. This is similar to the coherence between NAO and basin discharges detected for the same period. According to these results, strong influence of the NAO was clearly observed on the TWS and discharges of the major French river basins.
Editor Z.W. Kundzewicz  相似文献   

10.
This study examines the temporal patterns of precipitation and the influence of large-scale climate anomalies in the Pearl River basin (South China), with particular focus on sub-basin scale. Three popular data analysis techniques are employed: (1) wavelet analysis; (2) principal component analysis (PCA); and (3) rank correlation method. With due consideration to hydrologic factors, water resources activities, and large-scale climate data, the entire basin is divided into ten sub-basins and the analysis is performed on monthly data. The wavelet analysis reveals discernible differences in temporal scales of fluctuation embedded in the monthly precipitation anomalies over the basin. The PCA delineates three coherent regions exhibiting similar distribution of variability across scales. Analysis of linkages between precipitation and teleconnection patterns using cross-wavelet transform and wavelet coherence reveals that the dominant variabilities of precipitation are essentially depicted by the Indian Ocean Dipole (IOD), especially for the central and eastern part of the Pearl River basin. On the influence of El Niño-Southern Oscillation (ENSO) signal on precipitation, more significant correlation is detected for the eastern part of the basin, long-term relationships (within 4–8 years band) are found for the western part of the basin, while the central part seems to be acting as a transition zone. Rank correlations of scale-averaged wavelet power between regional precipitation and climate indices for the dominant low-frequency variability band (0.84–8.40 years) provide further support to the different precipitation-climate relationships for different regions over the basin. The present results provide valuable information towards: (1) improving predictions of extreme hydroclimatic events in the Pearl River basin, based on their relationships with IOD or ENSO; and (2) devising better adaptation and mitigation strategies under a future changing climate.  相似文献   

11.
The evaluation of climate change and its side effects on the hydrological processes of the basin can increasingly help in dealing with the challenges that water resource managers and planners face in future courses. These side effects are investigated using the simulation of hydrological processes with the help of physical rainfall‐runoff model. Hydrological models provide a framework for examining the relationship between climate and water resources. This research aims at the investigation of the effect of climate change on the runoff of Gharesou, which is one of the main branches of the “Karkheh” River in Iran during the periods 2040–2069. To achieve this, the distributed hydrological model Soil and Water Assessment Tool (SWAT) – a model that is sensitive to the changes in land, water, and climate – has been used with the aim of evaluating the impact of climate change on the hydrology of the Gharesou Basin. For this reason, first, the continuous distributed model of rainfall‐runoff SWAT for the period 1971–2000 has been calibrated and validated. Next, with the aim of evaluating the impact of climate change and global warming on the basin hydrology for the period 2040–2069, HadCM3‐AR4 global climate model data under the A2 scenario – from the SRES scenario set‐haves been downscaled. Eventually, the downscaled climate data haves been introduced in the SWAT model, and the future runoff changes have been studied. The results showed that the temperature increases in most of the months, and the precipitation rate exhibits a change in the range of ±30%. Moreover, the produced runoff in this period changes from ?90 to 120% during different months.  相似文献   

12.
Abstract

The identification of Atlantic Ocean (AO) climatic drivers may prove valuable in long lead-time forecasting of streamflow in the Adour-Garonne basin in southwestern France. Previous studies have identified the Atlantic Multidecadal Oscillation (AMO) and the North Atlantic Oscillation (NAO) as drivers of European hydrology. The current research applied the singular value decomposition (SVD) statistical method to AO sea-surface temperatures (SSTs) to identify the primary AO climatic drivers of the Adour-Garonne basin streamflow. Annual and seasonal streamflow volumes were selected as the hydrological response, while average AO SSTs were calculated for three different 6-month averages (January–June, April–September and July–December) for the year preceding streamflow. The results identified a region along the Equator as the probable driver of the basin streamflow. Additional analysis evaluated the influence of the AMO and NAO on Adour-Garonne basin streamflow.

Editor Z.W. Kundzewicz; Associate editor H. Aksoy

Citation Oubeidillah, A.A., Tootle, G. and Anderson, S.-R., 2012. Atlantic Ocean sea-surface temperatures and regional streamflow variability in the Adour-Garonne basin, France. Hydrological Sciences Journal, 57 (3), 496–506.  相似文献   

13.
Lengthy records of river discharge are necessary to comprehensively assess the long‐term connection between synoptic climate forcings and nival‐regime systems in British Columbia. A regional multispecies network of tree‐ring width and ring density chronologies was built for west central British Columbia with the intention of dendrohydrologically extending short runoff records in this area. Extended records of July–August mean discharge anomalies for the Skeena and Atnarko Rivers were reconstructed back to ad 1660. Low flow events represented during the late 1600s, early 1700s and late 1800s lie beyond those experienced during the recent instrumental period for these basins. The documentation of extreme events of this magnitude necessitates consideration when planning for future water resources in this region. Supplementary dendroclimatic reconstructions of the winter Pacific North American (PNA) pressure anomaly pattern and records of mean summer temperature and end‐of‐winter snow water equivalent were also constructed. These ancillary climate records provide insight into the long‐term climate drivers of annual discharge dynamics within these nival basins. Correlation and wavelet analyses confirm the persistent relationship of synoptic climate regimes described by the Southern Oscillation Index, NINO 3.4, Pacific Decadal Oscillation and PNA indices on runoff in west central British Columbia. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Hydrological processes change from the impacts of climate variability and human activities. Runoff in the upper reaches of the Hun‐Taizi River basin, which is mainly covered by forests in northeast China, decreased from 1960 to 2006. The data used in this study were based on runoff records from six hydrological stations in the upper reaches of the Hun‐Taizi River basin. Nonparametric Mann–Kendall statistic was used to identify change trends and abrupt change points and consequently analyze the change characteristics in hydrological processes. The abrupt change in the annual runoff in most subcatchments appeared after 1975. Finally, the effects of climate change and land cover change on water resources were identified using regression analysis and a hydrology model. Results of the regression analysis suggest that the correlation coefficients between precipitation and runoff prior to the abrupt change were higher compared with those after the abrupt change. Moreover, using hydrology model analysis, the water yield was found to increase because of the decrease in forest land. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The hydroclimatic conditions of water runoff formation and the hydrography of Parana and Uruguay river basins in the South America are considered. A survey of the recent studies of the hydrological regime of these rivers is given. Observation data are used to evaluate the long-term average values of water runoff and suspended sediment yield in the Parana and Uruguay and their variations along the rivers. Characteristics of many-year runoff variations in the rivers were evaluated. A climate-induced increase was identified in the Parana and Uruguay water runoff, and the corresponding present-day trends in river runoff variations in both rivers were evaluated. The total water runoff and suspended sediment yield of the Parana and Uruguay into La Plata estuary were calculated. Water balance of the drainage basin of La Plata estuary was characterized.  相似文献   

16.
The June 2013 flood in the Canadian Rockies featured rain‐on‐snow (ROS) runoff generation at alpine elevations that contributed to the high streamflows observed during the event. Such a mid‐summer ROS event has not been diagnosed in detail, and a diagnosis may help to understand future high discharge‐producing hydrometeorological events in mountainous cold regions. The alpine hydrology of the flood was simulated using a physically based model created with the modular cold regions hydrological modelling platform. The event was distinctive in that, although at first, relatively warm rain fell onto existing snowdrifts inducing ROS melt; the rainfall turned to snowfall as the air mass cooled and so increased snowcover and snowpacks in alpine regions, which then melted rapidly from ground heat fluxes in the latter part of the event. Melt rates of existing snowpacks were substantially lower during the ROS than during the relatively sunny periods preceding and following the event as a result of low wind speeds, cloud cover and cool temperatures. However, at the basin scale, melt volumes increased during the event as a result of increased snowcover from the fresh snowfall and consequent large ground heat contributions to melt energy, causing snowmelt to enhance rainfall–runoff by one fifth. Flow pathways also shifted during the event from relatively slow sub‐surface flow prior to the flood to an even contribution from sub‐surface and fast overland flow during and immediately after the event. This early summer, high precipitation ROS event was distinctive for the impact of decreased solar irradiance in suppressing melt rates, the contribution of ground heat flux to basin scale snowmelt after precipitation turned to snowfall, the transition from slow sub‐surface to fast overland flow runoff as the sub‐surface storage saturated and streamflow volumes that exceeded precipitation. These distinctions show that summer, mountain ROS events should be considered quite distinct from winter ROS and can be important contributors to catastrophic events. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
梁新歌  王涵  赵爽  宋春桥 《湖泊科学》2023,35(6):2111-2122
在全球气候变暖和极端气候事件增加的背景下,流域水文循环过程受到的影响越来越强烈,导致湖泊水位变化表现出复杂的时空特征。而泛北极地区是地球上湖泊数量与面积分布最为集中的区域之一,该地区湖泊对气候变化响应非常敏感。因此,了解这些湖泊近期水文变化特征十分必要。本研究共搜集了36个泛北极大型湖泊(>500 km2)基于遥感或站点观测的近20年水位数据,分析其时空变化特征。本文使用线性回归模型来估算湖泊水位的变化趋势,进而利用皮尔逊相关分析了其主要水文影响变量和大气环流机制,并运用Mann-Kendall突变检验法探讨了水位突变的原因。结果表明,泛北极湖泊的水位整体上呈现不同程度上升(平均速率为0.013 m/a),有23个(64%)湖泊的水位呈上升趋势;研究湖泊中有10个通过90%统计显著性检验。其中,水位上升速率最大的湖泊是位于哈萨克斯坦的腾吉兹湖,上升速率为0.078 m/a。泛北极湖泊水位的波动主要与径流有关,有19个(53%)湖泊的水位波动与径流的增加更为相关;相比而言,位于亚洲的极地湖泊水位的上升与流域蒸发的降低显著相关,尤其是库苏古尔湖。从区域大气环流影响来看,泛北极湖泊水位变化主要与厄尔尼诺-南方涛动有关,其次是北极涛动和北大西洋涛动。本研究有助于加深对泛北极湖泊近20年水位变化规律及气候影响特征的科学理解。  相似文献   

18.
The present study sets out to investigate the sensitivity of water availability to climate change for a large western Himalayan river (the Satluj River basin with an area of 22 275 km2 and elevation range of 500 to 7000 m), which receives contributions from rain, snow and glacier melt runoff. About 65% of the basin area is covered with snow during winter, which reduces to about 11% after the ablation period. After having calibrated a conceptual hydrological model to provide accurate simulations of observed stream flow, the hydrological response of the basin was simulated using different climatic scenarios over a period of 9 years. Adopted plausible climate scenarios included three temperature scenarios (T + 1, T + 2, T + 3 °C) and four rainfall scenarios (P ? 10, P ? 5, P + 5 and P + 10%). The effect of climate change was studied on snowmelt and rainfall contribution runoff, and total stream flow. Under warmer climate, a typical feature of the study basin was found to be reduction in melt from the lower part of the basin owing to a reduction in snow covered area and shortening of the summer melting season, and, in contrast, an increase in the melt from the glacierized part owing to larger melt and an extended ablation period. Thus, on the basin scale, reduction in melt from the lower part was counteracted by the increase from melt from upper part of the basin, resulting in a decrease in the magnitude of change in annual melt runoff. The impact of climate change was found to be more prominent on seasonal rather than annual water availability. Reduction of water availability during the summer period, which contributes about 60% to the annual flow, may have severe implications on the water resources of the region, because demand of water for irrigation, hydropower and other usage is at its peak at this time. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
The northern portion of the Pacific coastal temperate rainforest (PCTR) is one of the least anthropogenically modified regions on earth and remains in many respects a frontier area to science. Rivers crossing the northern PCTR, which is also an international boundary region between British Columbia, Canada and Alaska, USA, deliver large freshwater and biogeochemical fluxes to the Gulf of Alaska and establish linkages between coastal and continental ecosystems. We evaluate interannual flow variability in three transboundary PCTR watersheds in response to El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Arctic Oscillation (AO), and North Pacific Gyre Oscillation (NPGO). Historical hydroclimatic datasets from both Canada and the USA are analyzed using an up-to-date methodological suite accommodating both seasonally transient and highly nonlinear teleconnections. We find that streamflow teleconnections occur over particular seasonal windows reflecting the intersection of specific atmospheric and terrestrial hydrologic processes. The strongest signal is a snowmelt-driven flow timing shift resulting from ENSO- and PDO-associated temperature anomalies. Autumn rainfall runoff is also modulated by these climate modes, and a glacier-mediated teleconnection contributes to a late-summer ENSO-flow association. Teleconnections between AO and freshet flows reflect corresponding temperature and precipitation anomalies. A coherent NPGO signal is not clearly evident in streamflow. Linear and monotonically nonlinear teleconnections were widely identified, with less evidence for the parabolic effects that can play an important role elsewhere. The streamflow teleconnections did not vary greatly between hydrometric stations, presumably reflecting broad similarities in watershed characteristics. These results establish a regional foundation for both transboundary water management and studies of long-term hydroclimatic and environmental change.  相似文献   

20.
Extended severe dry and wet periods are frequently observed in the northern continental climate of the Canadian Prairies. Prairie streamflow is mainly driven by spring snowmelt of the winter snowpack, whilst summer rainfall is an important control on evapotranspiration and thus seasonality affects the hydrological response to drought and wet periods in complex ways. A field‐tested physically based model was used to investigate the influences of climatic variability on hydrological processes in this region. The model was set up to resolve agricultural fields and to include key cold regions processes. It was parameterized from local and regional measurements without calibration and run for the South Tobacco Creek basin in southern Manitoba, Canada. The model was tested against snow depth and streamflow observations at multiple scales and performed well enough to explore the impacts of wet and dry periods on hydrological processes governing the basin scale hydrological response. Four hydro‐climatic patterns with distinctive climatic seasonality and runoff responses were identified from differing combinations of wet/dry winter and summer seasons. Water balance analyses of these patterns identified substantive multiyear subsurface soil moisture storage depletion during drought (2001–2005) and recharge during a subsequent wet period (2009–2011). The fractional percentage of heavy rainfall days was a useful metric to explain the contrasting runoff volumes between dry and wet summers. Finally, a comparison of modeling approaches highlights the importance of antecedent fall soil moisture, ice lens formation during the snowmelt period, and peak snow water equivalent in simulating snowmelt runoff.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号