首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper aims to provide a comprehensive review of previous studies and concepts concerning the North Atlantic Oscillation. The North Atlantic Oscillation (NAO) and its recent homologue, the Arctic Oscillation/Northern Hemisphere annular mode (AO/NAM), are the most prominent modes of variability in the Northern Hemisphere winter climate. The NAO teleconnection is characterised by a meridional displacement of atmospheric mass over the North Atlantic area. Its state is usually expressed by the standardised air pressure difference between the Azores High and the Iceland Low. ThisNAO index is a measure of the strength of the westerly flow (positive with strong westerlies, and vice versa). Together with the El Niño/Southern Oscillation (ENSO) phenomenon, the NAO is a major source of seasonal to interdecadal variability in the global atmosphere. On interannual and shorter time scales, the NAO dynamics can be explained as a purely internal mode of variability of the atmospheric circulation. Interdecadal variability maybe influenced, however, by ocean and sea-ice processes.  相似文献   

2.
Ocean–atmosphere modes of climate variability in the Pacific and Indian oceans, as well as monsoons, regulate the regional wet and dry episodes in tropical regions. However, how those modes of climate variability, and their interactions, lead to spatial differences in drought patterns over tropical Asia at seasonal to interannual time scales remains unclear. This study aims to analyse the hydroclimate processes for both short- and long-term spatial drought patterns (3-, 6, 12- and 24-months) over Peninsular Malaysia using the Standardized Precipitation Index, Standardized Precipitation Evapotranspiration Index, and Palmer Drought Severity Index. Besides that, a generalized least squares regression is used to explore underlying circulation mechanisms of these spatio-temporal drought patterns. The tested drought indices indicate a tendency towards wetter conditions over Peninsular Malaysia. Based on principal component analysis, distinct spatio-temporal drought patterns are revealed, suggesting North–South and East–West gradients in drought distribution. The Pacific El Nino Southern Oscillation (ENSO), the South Western Indian Ocean (SWIO) variability, and the quasi-biennial oscillation (QBO) are significant contributors to the observed spatio-temporal variability in drought. Both the ENSO and the SWIO modulate the North–South gradient in drought conditions over Peninsular Malaysia, while the QBO contributes more to the East–West gradient. Through modulating regional moisture fluxes, the warm phases of the ENSO and the SWIO, and the western phases of the QBO weaken the southwest and northeast monsoon, leading to precipitation deficits and droughts over Peninsular Malaysia. The East–West or North–South gradients in droughts are related to the middle mountains blocking southwest and northeast moisture fluxes towards Peninsular Malaysia. In addition, the ENSO and QBO variations are significantly leading to short-term droughts (less than a year), while the SWIO is significantly associated with longer-duration droughts (2 years or more). Overall, this work demonstrates how spatio-temporal drought patterns in tropical regions are related to monsoons and moisture transports affected by the oscillations over the Pacific and Indian oceans, which is important for national water risk management.  相似文献   

3.
A number of previous studies have identified changes in the climate occurring on decadal to multi‐decadal time‐scales. Recent studies also have revealed multi‐decadal variability in the modulation of the magnitude of El Niño–Southern Oscillation (ENSO) impacts on rainfall and stream flow in Australia and other areas. This study investigates multi‐decadal variability of drought risk by analysing the performance of a water storage reservoir in New South Wales, Australia, during different climate epochs defined using the Inter‐decadal Pacific Oscillation (IPO) index. The performance of the reservoir is also analysed under three adaptive management techniques and these are compared with the reservoir performance using the current ‘reactive’ management practices. The results indicate that IPO modulation of both the magnitude and frequency of ENSO events has the effect of reducing and elevating drought risk on multi‐decadal time‐scales. The results also confirm that adaptive reservoir management techniques, based on ENSO forecasts, can improve drought security and become significantly more important during dry climate epochs. These results have marked implications for improving drought security for water storage reservoirs. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
The Middle East region, where arid and semi‐arid regions occupy most of the land, is extremely vulnerable to any natural or anthropogenic reductions in available water resources. Much of the observed interannual‐decadal variability in Middle Eastern streamflow is physically linked to a large‐scale atmospheric circulation patterns such as the North Atlantic Oscillation (NAO). In this work, the relationship between the NAO index and the seasonal and annual streamflows in the west of Iran was statistically examined during the last four decades. The correlations were constructed for two scenarios (with and without time lag). The associations between the annual and seasonal streamflows and the simultaneous NAO index were found to be poor and insignificant. The possibility of streamflow forecasting was also explored, and the results of lag correlations revealed that streamflow responses at the NAO signal with two and three seasons delays. The highest Spearman correlation coefficient of 0.379 was found between the spring NAO index and the autumn streamflow series at Taghsimab station, indicating that roughly 14% of the variance in the streamflow series is associated with NAO forcing. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Climate patterns over preceding years affect seasonal water and moisture conditions. The linkage between regional climate and local hydrology is challenging due to scale differences, both spatially and temporally. In this study, variance, correlation, and singular spectrum analyses were conducted to identify multiple hydroclimatic phases during which climate teleconnection patterns were related to hydrology of a small headwater basin in Idaho, USA. Combined field observations and simulations from a physically based hydrological model were used for this purpose. Results showed statistically significant relations between climate teleconnection patterns and hydrological fluxes in the basin, and climate indices explained up to 58% of hydrological variations. Antarctic Oscillation (AAO), North Atlantic Oscillation (NAO), and Pacific North America (PNA) patterns affected mountain hydrology, in that order, by decreasing annual runoff and rain on snow (ROS) runoff by 43% and 26% during a positive phase of NAO and 25% and 9% during a positive phase of PNA. AAO showed a significant association with the rainfall-to-precipitation ratio and explained 49% of its interannual variation. The runoff response was affected by the phase of climate variability indices and the legacy of past atmospheric conditions. Specifically, a switch in the phase of the teleconnection patterns of NAO and PNA caused a transition from wet to dry conditions in the basin. Positive AAO showed no relation with peak snow water equivalent and ROS runoff in the same year, but AAO in the preceding year explained 24 and 25% (p < 0.05) of their variations, suggesting that the past atmospheric patterns are equally important as the present conditions in affecting local hydrology. Areas sheltered from the wind and acted as a source for snow transport showed the lowest (40% below normal) ROS runoff generation, which was associated with positive NAO that explained 33% (p < 0.01) of its variation. The findings of this research highlighted the importance of hydroclimatic phases and multiple year variations that must be considered in hydrological forecasts, climate projections, and water resources planning.  相似文献   

6.
The North Atlantic Oscillation (NAO) is a large‐scale mode of natural climate variability governing the path of Atlantic mid‐latitude storm tracks and precipitation regimes in the Atlantic and Mediterranean sectors. The primary focus of this study is to investigate the variability of lake levels in seven lakes scattered across Turkey using the method of continuous wavelet transforms and global spectra. The long winter (December, January, February and March) lake‐level series and the NAO index (NAOI) series were subjected to wavelet transform. The global wavelet spectrum (energy spectrum of periodicities) of lake levels and winter NAOI anomalies, in most cases, revealed a significant correlation. It was shown that the Tuz, Sapanca, and Uluabat lakes reflect much stronger influences of the NAO than the other four lakes. In contrast, weak correlations were found in the coastal areas of the Mediterranean and eastern Turkey. The periodic structures of Turkish lake levels in relation to the NAO revealed a spectrum between the 1‐year and 10‐year scale level. Although the periodicities of more than 10‐year scale levels were detected, explaining significant relations between the NAO and these long‐term periodicities remains a challenging task. The results of this study are consistent with the earlier studies concerning the teleconnection between the NAO and climate variables in Turkey. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Abstract

This study was carried out in the framework of the Surface Water and Ocean Topography (SWOT) programme of the French National Centre of Space Studies (CNES). Based on discharge measurements and Gravity Recovery and Climate Experiment (GRACE) determination of total water storage (TWS), we have investigated the hydrological variability of the main French drainage basins (Seine, Loire, Garonne and Rhône) using a wavelet approach (continuous wavelet analyses and wavelet coherence analyses). The results of this analysis have shown a coherence ranging between 82% and 90% for TWS and discharge, thus demonstrating the potential use of TWS for characterization of the hydrological variability of French rivers. Strong coherence between the four basin discharges (between 73% and 92%) and between their associated TWS data (from 82% to 98%) suggested a common external influence on hydrological variability. To determine this influence, we investigated the relationship between hydrological variability and the North Atlantic Oscillation (NAO), considered as an index of prevailing climate in Europe. Basin discharges show strong coherence with NAO, ranging between 64% and 72% over the period 1959–2010. The coherence between NAO and TWS was 62% to 67% for 2003–2009. This is similar to the coherence between NAO and basin discharges detected for the same period. According to these results, strong influence of the NAO was clearly observed on the TWS and discharges of the major French river basins.
Editor Z.W. Kundzewicz  相似文献   

8.
《水文科学杂志》2012,57(1):57-70
ABSTRACT

Leading patterns of observed seasonal extreme and mean streamflow on the Korean peninsula were estimated using an empirical orthogonal teleconnection (EOT) technique. In addition, statistical correlations on a seasonal basis were calculated using correlation and regression analyses between the leading streamflow patterns and various climate indices based on atmospheric–ocean circulation. The spatio-temporal patterns of the leading EOT modes for extreme and mean streamflow indicate an upstream mode for the Han River, with increasing trends in summer, and a downstream mode for the Nakdong River, with oscillations mainly on inter-decadal time scales in winter. The tropical ENSO (El Niño Southern Oscillation) forcing for both extreme and mean streamflow is coherently associated with summer to winter streamflow patterns. The western North Pacific monsoon has a negative correlation with winter streamflow variability, and tropical cyclone indices also exhibit significant positive correlation with autumn streamflow. Leading patterns of autumn and winter streamflow time series show predictability up to two seasons in advance from the Pacific sea-surface temperatures.  相似文献   

9.
Runoff signatures, including low flow, high flow, mean flow and flow variability, have important implications on the environment and society, predominantly through drought, flooding and water resources. Yet, the response of runoff signatures has not been previously investigated at the global scale, and the influencing mechanisms are largely unclear. Hence, this study makes a global assessment of runoff signature responses to the El Niño and La Niña phases using daily streamflow observations from 8217 gauging stations during 1960–2015. Based on the Granger causality test, we found that ~15% of the hydrological stations of multiple runoff signatures show a significant causal relationship with El Niño–southern oscillation (ENSO). The quantiles of all runoff signatures were larger during the El Niño phase than during the La Niña phase, implying that the entire flow distribution tends to shift upward during El Niño and downward during La Niña. In addition, El Niño has different effects on low and high flows: it tends to increase the low and mean flow signatures but reduces the high flow and flow variability signatures. In contrast, La Niña generally reduces all runoff signatures. We highlight that the impacts of ENSO on streamflow signatures are manifested by its effects on precipitation (P), potential evaporation (PET) and leaf area index (LAI) through ENSO-induced atmospheric circulation changes. Overall, our study provides a comprehensive picture of runoff signature responses to ENSO, with valuable insights for water resources management and flood and drought disaster mitigation.  相似文献   

10.
Droughts are natural phenomena that severely affect socio economic and ecological systems. In Chile, population and economic activities are highly concentrated in its central region (i.e. between latitudes 29°S and 40°S), which periodically suffers from severe droughts affecting agriculture, hydropower, and mining. Understanding the dynamics of droughts and large-scale atmospheric processes that influence the occurrence of dry spells is essential for forecasting and efficient early detection of drought events. Central Chile's climate is marked by a significant El Niño Southern Oscillation (ENSO) influence that might help to better characterize droughts as well as to identify the effects of ENSO on the spatial and temporal characteristics of meteorological and hydrological droughts in the region. We analysed the behaviour of the Standardized Precipitation Evapotranspiration Index (SPEI) and Standardized Streamflow Index (SSI) time series for 6-month accumulation periods over the austral winter and summer seasons. Multiple linear regression (MLR) and Generalized Linear Models (GLM) showed a significant ENSO influence on dry events for SPEI-6 and SSI-6 during winter and summer. We found that the magnitude of correlation between ENSO and SPEI-6 has changed over the last decades becoming weaker in winter periods and increasing in spring summer periods. Increasing trends in meteorological and hydrological drought events were also identified, along all latitudes, with significant trends during winter in the southern latitudes, and during summer in the semi-arid and Mediterranean zones. These results indicate that drought mitigation actions and policies are necessary to overcome their adverse effects. Given the monthly persistence of ENSO and its relationship to drought indices, there are opportunities for drought monitoring and seasonal forecasting that could become part of national drought management systems.  相似文献   

11.
In the context of climate change and variability, there is considerable interest in how large scale climate indicators influence regional precipitation occurrence and its seasonality. Seasonal and longer climate projections from coupled ocean–atmosphere models need to be downscaled to regional levels for hydrologic applications, and the identification of appropriate state variables from such models that can best inform this process is also of direct interest. Here, a Non‐Homogeneous Hidden Markov Model (NHMM) for downscaling daily rainfall is developed for the Agro‐Pontino Plain, a coastal reclamation region very vulnerable to changes of hydrological cycle. The NHMM, through a set of atmospheric predictors, provides the link between large scale meteorological features and local rainfall patterns. Atmospheric data from the NCEP/NCAR archive and 56‐years record (1951–2004) of daily rainfall measurements from 7 stations in Agro‐Pontino Plain are analyzed. A number of validation tests are carried out, in order to: 1) identify the best set of atmospheric predictors to model local rainfall; 2) evaluate the model performance to capture realistically relevant rainfall attributes as the inter‐annual and seasonal variability, as well as average and extreme rainfall patterns. Validation tests show that the best set of atmospheric predictors are the following: mean sea level pressure, temperature at 1000 hPa, meridional and zonal wind at 850 hPa and precipitable water, from 20°N to 80°N of latitude and from 80°W to 60°E of longitude. Furthermore, the validation tests show that the rainfall attributes are simulated realistically and accurately. The capability of the NHMM to be used as a forecasting tool to quantify changes of rainfall patterns forced by alteration of atmospheric circulation under climate change and variability scenarios is discussed.  相似文献   

12.
In this study, we analysed the influence of the North Atlantic Oscillation (NAO) on the hydrological response of the Duero River (central Spain) and its tributaries. We identified the positive and negative phases of the winter NAO for the period 1961–2006 and related precipitation and river discharge anomalies. Significant differences in precipitation and river discharge were found between the positive and negative NAO phases with negative anomalies (dry conditions) during positive NAO periods, and positive anomalies (wet conditions) during negative NAO periods. Marked differences were also found in the precipitation and river discharge response times to the NAO episodes, with an immediate response for precipitation but a lag and more sustained response for river discharges. Differing patterns were also identified in the response of river discharge to the NAO throughout the Duero basin. The physical characteristics of watersheds (including area, altitude and permeability explained most of the differences in the timing and magnitude of anomalies in the river discharge in response to the NAO. The findings highlight the great variability in the hydrological response of rivers to the NAO episodes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
River flow constitutes an important element of the terrestrial branch of the hydrological cycle, yet knowledge regarding the extent to which its variability, at a range of timescales, is linked to a number of modes of atmospheric circulation is meagre. This is especially so in the Southern Hemisphere where strong candidates, such as El Niño Southern Oscillation and the Southern Annular Mode (SAM), for influencing climate and thus river flow variability can be found. This paper presents the results of an analysis of the impact of the SAM on winter and summer river flow variability across New Zealand, purposefully controlling for the influence of El Niño Southern Oscillation and the tendency for the SAM to adopt a positive phase over the last 10–20 years. Study results, based on identifying hydrological regions and applying circulation‐to‐environment and environment‐to‐circulation approaches commonly used in synoptic climatology, reveal a seasonal asymmetry of the response of river flow variability to the SAM; winter flows demonstrate a higher degree of statistical association with the SAM compared to summer flows. Further, because of the complex orography of New Zealand and its general disposition normal to zonal flows of moisture bearing winds, there are intraseasonal spatial variations in river flow SAM associations with clear rain shadow effects playing out in resultant river flow volumes. The complexity of SAM river flow associations found in this study warns against using indices of large scale modes of atmospheric circulation as blunt tools for hydroclimatological prediction at scales beyond hydroclimatological regions or areas with internal hydrological consistency.  相似文献   

14.
We investigate a new proxy for ENSO climate variability based on particle‐size data from long‐term, coastal sediment records preserved in a barrier estuary setting. Corresponding ~4–8 year periodicities identified from Wavelet analysis of particle‐size data from Pescadero Marsh in Central Coast California and rainfall data from San Francisco reflect established ENSO periodicity, as further evidenced in the Multivariate ENSO Index (MEI), and thus confirms an important ENSO control on both precipitation and barrier regime variability. Despite the fact that barrier estuary mean particle size is influenced by coastal erosion, precipitation and streamflow, balanced against barrier morphology and volume, it is encouraging that considerable correspondence can also be observed in the time series of MEI, regional rainfall and site‐based mean particle size over the period 1871–2008. This correspondence is, however, weakened after c.1970 by temporal variation in sedimentation rate and event‐based deposition. These confounding effects are more likely when: (i) accommodation space may be a limiting factor; and (ii) particularly strong El Niños, e.g. 1982/1983 and 1997/1998, deposit discrete >cm‐thick units during winter storms. The efficacy of the sediment record of climate variability appears not to be compromised by location within the back‐barrier setting, but it is limited to those El Niños that lead to barrier breakdown. For wider application of this particle size index of ENSO variability, it is important to establish a well‐resolved chronology and to sample the record at the appropriate interval to characterize deposition at a sub‐annual scale. Further, the sample site must be selected to limit the influence of decreasing accommodation space through time (infilling) and event‐based deposition. It is concluded that particle‐size data from back‐barrier sediment records have proven potential for preserving evidence of sub‐decadal climate variability, allowing researchers to explore temporal and spatial patterns in phenomena such as ENSO. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
16.
There is some evidence of rapid changes in the global atmosphere and hydrological cycle caused by the influence of climate variability. In West Africa, such changes impact directly on water resources leading to incessant extreme hydro‐meteorological conditions. This study examines the association of three global climate teleconnections—El‐Niño Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), and Atlantic Multi‐decadal Oscillation (AMO) with changes in terrestrial water storage (TWS) derived from both Modern‐Era Retrospective Analysis for Research and Applications (MERRA, 1980–2015) and Gravity Recovery and Climate Experiment (GRACE, 2002–2014). In the Sahel region, positive phase of AMO coincided with above‐normal rainfall (wet conditions) and the negative phase with drought conditions and confirms the observed statistically significant association (r = 0.62) between AMO and the temporal evolutions of standardised precipitation index. This relationship corroborates the observed presence of AMO‐driven TWS in much of the Sahel region (though considerably weak in some areas). Although ENSO appears to be more associated with GRACE‐derived TWS over the Volta basin (r =?0.40), this study also shows a strong presence of AMO‐ and ENSO‐induced TWS derived from MERRA reanalysis data in the coastal West African countries and most of the regions below latitude 10°N. The observed presence of ENSO‐ and AMO‐driven TWS is noticeable in tropical areas with relatively high annual/bimodal rainfall and strong inter‐annual variations in surface water. The AMO has a wider footprint and sphere of influence on the region's TWS and suggests the important role of North Atlantic Ocean. IOD‐related TWS also exists in West Africa and its influence on the region's hydrology maybe secondary and somewhat complementary. Nonetheless, presumptive evidence from the study indicates that ENSO and AMO are the two major climatic indices more likely to impact on West Africa's TWS.  相似文献   

17.
Interaction between the Quasi-Biennial Oscillation in far west equatorial Pacific (QBOWP) and the El Ni?o/Southern Oscillation (ENSO) is studied using a new conceptual model. In this conceptual model, the QBOWP effects on ENSO are achieved through two ways: (1) the oceanic Kelvin wave along equatorial Pacific, and (2) the Atmospheric Walker Circulation anomaly, while ENSO effects on QBOWP can be accomplished by the atmospheric Walker Circulation anomaly. Diagnosis analysis of the model results shows that the Atmospheric bridge (Walker circulation) plays a more important role in interaction between the ENSO and QBOWP than the oceanic bridge (oceanic Kelvin wave along equatorial Pacific); It is found that by the interaction of the ENSO and QBOWP, a free ENSO oscillation with 3–5 years period could be substituted by a oscillation with the quasi-biennial period, and the dominant period of SST anomaly and wind anomaly in the far west equatorial Pacific tends to be prolonged with enhanced ENSO forcing. Generally, the multi-period variability in the coupled Atmosphere-Ocean System in the Tropical Pacific can be achieved through the interaction between ENSO and QBOWP.  相似文献   

18.
鄱阳湖流域过去1000 a径流模拟以及对气候变化响应研究   总被引:1,自引:1,他引:0  
张小琳  李云良  于革  张奇 《湖泊科学》2016,28(4):887-898
为研究过去千年尺度径流变化及其对气候变化的响应,以长江中游鄱阳湖流域为研究区,运用气候模式CCSM4和ECHAM5模拟过去1000 a气候数据,空间降尺度后驱动水文模型模拟了鄱阳湖流域过去近千年流域径流序列.利用快速傅里叶变换、小波分析等手段,分析流域极端径流变化特征、周期和该流域旱涝事件发生频率.结果表明:2种气候模式均能反映出中世纪暖期及小冰期阶段的干湿交替变化,且小冰期内中干旱状态维持时间较长;径流的丰枯变化与降水量变化具有较好的对应关系.CCSM4和ECHAM5模式下发生旱涝灾害与极大极小降水事件发生频率基本相同,径流丰枯变化与降水变化周期相近,均具有30 a左右的主周期,10~15、7 a左右的子周期.小波系数模平方图中30 a左右显著的能量信号揭示了该周期与北太平洋气候的主要环流机制的太平洋年代际振荡周期相近,因此,大气环流涛动是造成气候-水文变化的主要原因.研究结果拓展了基于近代60 a观测记录的流域水文变化的认识,探讨了千年时间长度下流域干湿变化特征和水文对气候响应的动力机制,有助于全面系统认识长江中游在全球气候暖化背景下旱涝极端水文事件的发生机制与变化规律.  相似文献   

19.
The El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) are two important climate oscillations that affect hydrological processes at global and regional scales. However, few studies have attempted to identify their single and combined influences on water discharge variability at multiple timescales. In this study, we examine temporal variation in water discharge from the Yangtze River into the sea and explore the influence of the ENSO and the PDO on multiscale variations in water discharge over the last century. The results of the wavelet transform analysis of the water discharge series show significant periodic variations at the interannual timescale of 2 to 8 years and the decadal timescale of 15 to 17 years. Water discharge tended to be higher during the La Niña–PDO cold phase and lower during the El Niño–PDO warm phase. The results of the cross wavelet spectrum and wavelet coherence analyses confirm the relationship between the interannual (i.e., 2 to 8 years) and decadal (i.e., 15 to 17 years) periodicities in water discharge with the ENSO and the PDO, respectively. As an important large‐scale climate background, the PDO can modulate the influence of the ENSO on water discharge variability. In general, the warm PDO enhances the influence of El Niño events, and the cold PDO enhances the influence of La Niña events. Our study is helpful in understanding the influencing mechanism of climate change on hydrological processes and provides an important scientific guideline for water resource prediction and management.  相似文献   

20.
Interaction between the Quasi-Biennial Oscillation in far west equatorial Pacific (QBOWP) and the El Nino/Southern Oscillation (ENSO) is studied using a new conceptual model. In this conceptual model, the QBOWP effects on ENSO are achieved through two ways: (1) the oceanic Kelvin wave along equatorial Pacific, and (2) the Atmospheric Walker Circulation anomaly, while ENSO effects on QBOWP can be accomplished by the atmospheric Walker Circulation anomaly. Diagnosis analysis of the model results shows that the Atmospheric bridge (Walker circulation) plays a more important role in interaction between the ENSO and QBOWP than the oceanic bridge (oceanic Kelvin wave along equatorial Pacific); It is found that by the interaction of the ENSO and QBOWP, a free ENSO oscillation with 3-5 years period could be substituted by a oscillation with the quasi-biennial period, and the dominant period of SST anomaly and wind anomaly in the far west equatorial Pacific tends to be prolonged with enhanced ENSO forcing. Generally, the multi-period variability in the coupled Atmosphere-Ocean System in the Tropical Pacific can be achieved through the interaction between ENSO and QBOWP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号