首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study evaluates changes in streamflow, temperature and precipitation over a time span of 105 years (1906–2010) in the Colorado River Basin (CRB). Monthly precipitation and temperature data for 29 climate divisions, and streamflow data for 29 naturalized gauges were analyzed. Two variations of the Mann-Kendall test, considering lag-1 auto correlation and long-term persistence, and the Pettitt test were employed to assess trends and shifts, respectively. Results indicated that streamflow increased during the winter–spring months and decreased during the summer– autumn period. Decreasing trends in winter precipitation were identified over snow-dominated regions in the upper basin. Significant increases in temperature were detected over several months. Major shifts were noticed in 1964, 1968 and in the late 1920s. Increasing temperature while decreasing streamflow and precipitation were noticed after major shifts in the 1930s, and these shifts coincided with coupled phases of El Niño Southern Oscillation and Pacific Decadal Oscillation.
EDITOR A. Castellarin; ASSOCIATE EDITOR R. Hirsch  相似文献   

2.
ABSTRACT

Ten notable meteorological drought indices were compared on tracking the effect of drought on streamflow. A 730-month dataset of precipitation, temperature and evapotranspiration for 88 catchments in Oregon, USA, representing pristine conditions, was used to compute the drought indices. These indices were correlated with the monthly streamflow datasets of the minimum, maximum and mean discharge, and the discharge monthly fluctuation; it was revealed that the 3-month Z-score drought index (Z3) has the best association with the four streamflow variables. The Mann-Kendall trend detection test applied to the latter index time series mainly highlighted a downward trend in the autumn and winter drought magnitude (DM) and an upward trend in the spring and summer DM (p = 0.05). Finally, the Pettitt test indicated an abrupt decline in the annual and autumn DM, which began in 1984 and 1986, respectively.  相似文献   

3.
Abstract

Winter mean 700-hectoPascal (hPa) height anomalies, representing the average atmospheric circulation during the snow season, are compared with annual streamflow measured at 140 streamgauges in the western United States. Correlation and anomaly pattern analyses are used to identify relationships between winter mean atmospheric circulation and temporal and spatial variability in annual streamflow. Results indicate that variability in winter mean 700-Hpa height anomalies accounts for a statistically significant portion of the temporal variability in annual streamflow in the western United States. In general, above-average annual streamflow is associated with negative winter mean 700-Hpa height anomalies over the eastern North Pacific Ocean and/or the western United States. The anomalies produce an anomalous flow of moist air from the eastern North Pacific Ocean into the western United States that increases winter precipitation and snowpack accumulations, and subsequently streamflow. Winter mean 700-hPa height anomalies also account for statistically significant differences in spatial distributions of annual streamflow. As part of this study, winter mean atmospheric circulation patterns for the 40 years analysed were classified into five winter mean 700-hPa height anomaly patterns. These patterns are related to statistically significant and physically meaningful differences in spatial distributions of annual streamflow.  相似文献   

4.
ABSTRACT

We investigated the isotopic composition of the Urumqi River and documented seasonal variability attributable to the mixing of various flow sources. Next, we applied these isotopic signals to partition the sources and studied their temporal variability in summer. The isotope hydrology separation results indicated that groundwater is the dominant streamflow source (approximately 62.7%) in the Urumqi River. Precipitation is an important source for the Urumqi River; approximately 19.1–20.7% of the runoff came from precipitation during summer and early autumn. In summer, approximately 21.1% of the runoff is derived from glacial meltwater. In summer, with the increasing distance to the glacier front, groundwater accounts for a larger and larger percentage of the river water, and the contributions of precipitation and glacial meltwater gradually diminish. Throughout 2012, the proportions of precipitation and glacial meltwater in the streamflow were 17.6% and 14.7%, respectively, and only 5% of the streamflow was derived from snowmelt.
Editor Z. W. Kundzewicz; Associate editor not assigned  相似文献   

5.
The El Niño-Southern Oscillation (ENSO) phenomenon has been shown to influence dramatically precipitation and streamflow in tropical western South America. The statistical properties of annual and winter precipitation totals and streamflow characteristics in the Aconcagua River basin, in temperate central Chile, are investigated in such a way as to permit the identification of flood- and drought-generating processes and their possible linkages to upset behavior in the tropical Pacific. Despite the considerable distance to those regions generally associated with ENSO events, the phenomenon produces marked effects upon the various physical processes which govern the surface hydrometeorology of the study area. El Niño years result in significant increases in annual and winter precipitation, particularly along the coastal margin. The likelihood of rain or rain-on-snow flooding, in the succeeding winter, increases, as does the size of spring snowmelt in the southern summer, 1 year after the upset conditions in the tropical region. Annual low flows are of higher magnitude and occur earlier in the year than is usual.  相似文献   

6.
基于鄱阳湖流域五河水文站1960-2013年逐日径流量和14个国家级气象站的日气象数据,本文利用长短记忆模型框架构建神经网络模型来开展鄱阳湖流域的径流过程模拟,结合生态赤字与生态盈余等生态径流指标,定量分析了鄱阳湖流域的水文变异特征.同时,利用差异化的情景模拟方式,定量区分了人类活动和气候变化对鄱阳湖流域生态径流变化的...  相似文献   

7.
Skillful streamflow forecasts at seasonal lead times may be useful to water managers seeking to provide reliable water supplies and maximize hydrosystem benefits. In this study, a class of data mining techniques, known as tree-structured models, is investigated to address the nonlinear dynamics of climate teleconnections and screen promising probabilistic streamflow forecast models for river–reservoir systems. In a case study of the Lower Colorado River system in central Texas, a number of potential predictors are evaluated for forecasting seasonal streamflow, including large-scale climate indices related to the El Niño–Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and others. Results show that the tree-structured models can effectively capture the nonlinear features hidden in the data. Skill scores of probabilistic forecasts generated by both classification trees and logistic regression trees indicate that seasonal inflows throughout the system can be predicted with sufficient accuracy to improve water management, especially in the winter and spring seasons in central Texas.  相似文献   

8.
Antecedent anomalies of sea surface temperature and atmospheric circulation are important signals for making long-term streamflow forecasts. In this study, four groups of ocean-atmospheric indices, i.e, El Niño Southern Oscillation (ENSO), the Northern Hemisphere atmospheric circulation, the Southern Hemisphere atmospheric circulation (SAC), and the Western Pacific and Indian Ocean SST (WPI), are evaluated for forecasting summer streamflow of the Yangtze River. The gradient boosting regression tree (GBRT) is used to forecast streamflow based on each group of indices. The score based on receiver operating characteristics (ROC) curves, i.e., area under the ROC curve (AUC), is used to evaluate skills of models for identifying the high category and the low category of summer streamflow. It is found that the ENSO group and the SAC group show higher AUC values. Furthermore, both AUC values of GBRT models and individual indices show that the low flow years are easier to be identified than the high flow years. The result of this study highlights the skill from the Southern Hemisphere circulation systems for forecasting summer streamflow of the Yangtze River. Results of relative influences of predictors in GBRT models and AUC of individual indices indicate some key ocean-atmospheric indices, such as the Multivariate ENSO Index and the 500-hPa height of the east of Australia.  相似文献   

9.
本文采用经验正交函数展开(EOF)及相关分析等方法,使用中国气象局整编的160站1951~2005年月平均降水资料和NCEP/NCAR再分析资料研究了中国东部夏季降水准两年周期振荡的空间模态及其大气环流背景场.结果表明:(1)中国地区降水季节性差异明显,夏季是主要的降水期并具有明显的准两年周期振荡(TBO)特征,中国东部地区是降水TBO方差变化最大的区域.(2)中国东部夏季降水TBO存在两个主要的空间模态,第1模态以27°N为界南北成反位相的变化关系,降水振幅较大;第2模态降水振幅相对较小,大值中心位于河套-华北地区.(3)形成中国东部夏季降水TBO的两个主要空间模态环流背景场明显不同.第1模态与西太平洋海温成正相关,与东太平洋海温成负相关.第2模态则主要与日本海附近的海温成正相关.当夏季降水TBO以江淮偏多时(第1模态),西太平洋海温偏高,东太平洋海温偏低,中国东部及沿海上空850 hPa有异常反气旋,500 hPa高度相关场东亚上空呈"正负正"波列特征,200 hPa南亚高压加强,西风急流位置偏南.当夏季降水TBO降水位置偏北时(第2模态),中国东部及沿海上空有异常气旋,200 hPa南亚高压偏弱,西风急流位置偏北.  相似文献   

10.
Mean daily streamflow records from 44 river basins in Romania with an undisturbed runoff regime have been analyzed for trends with the nonparametric Mann‐Kendall test for two periods of study: 1961–2009 (25 stations) and 1975–2009 (44 stations). The statistical significance of trends was tested for each station on an annual and seasonal basis, for different streamflow quantiles. In order to account for the presence of serial correlation that might lead to an erroneous rejection of the null hypothesis, a trend‐free prewhitening was applied to the original data series. The regional field significance of trends is tested by a bootstrap procedure. Changes in the streamflow regime in Romania are demonstrated. The main identified trends are an increase in winter and autumn streamflow since 1961 and a decrease in summer flow since 1975. The streamflow trends are well explained by recent changes in temperature and precipitation that occurred in the last 50 years. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
ABSTRACT

Understanding streamflow patterns by incorporating climate signal information can contribute remarkably to the knowledge of future local environmental flows. Three machine learning models, the multivariate adaptive regression splines (MARS), the M5 Model Tree and the least squares support vector machine (LSSVM) are established to predict the streamflow pattern over the Mediterranean region of Turkey (Besiri and Baykan stations). The structure of the predictive models is built using synoptic-scale climate signal information and river flow data from antecedent records. The predictive models are evaluated and assessed using quantitative and graphical statistics. The correlation analysis demonstrates that the North Pacific (NP) and the East Central Tropical Pacific Sea Surface Temperature (Niño3.4) indices have a substantial influence on the streamflow patterns, in addition to the historical information obtained from the river flow data. The model results reveal the utility of the LSSVM model over the other models through incorporating climate signal information for modelling streamflow.  相似文献   

12.
Summer streamflow droughts are becoming more severe in many watersheds on Vancouver Island, British Columbia, as a result of climate warming. Small coastal basins that are the primary water source for most communities and essential to Pacific salmon populations have been particularly affected. Because the most extreme naturally occurring droughts are rarely captured within short instrumental records water managers likely underestimate, and are unprepared for, worst‐case scenario low flows. To provide a long‐term perspective on recent droughts on Vancouver Island, we developed a 477‐year long dendrohydrological reconstruction of summer streamflow for Tsable River based on a network of annual tree‐ring width data. A novel aspect of our study is the use of conifer trees that are energy limited by spring snowmelt timing. Explaining 63% of the instrumental streamflow variability, to our knowledge the reconstruction is the longest of its kind in British Columbia. We demonstrate that targeting the summer streamflow component derived from snowmelt is powerful for determining drought‐season discharge in hybrid runoff regimes, and we suggest that this approach may be applied to small watersheds in temperate environments that are not usually conducive to dendrohydrology. Our findings suggest that since 1520, 21 droughts occurred that were more extreme than recent ‘severe’ events like those in 2003 and 2009. Recent droughts are therefore not anomalous relative to the ~400‐year pre‐instrumental record and should be anticipated within water management strategies. In coming decades, worst‐case scenario natural droughts compounded by land use change and climate change could result in droughts more severe than any since 1520. The influence of the Pacific Decadal Oscillation on instrumental and modelled Tsable River summer streamflow is likely linked to the enhanced role of snowmelt in determining summer discharge during cool phases. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Assessment of hydrological extremes in the Kamo River Basin,Japan   总被引:1,自引:1,他引:0  
A suite of extreme indices derived from daily precipitation and streamflow was analysed to assess changes in the hydrological extremes from 1951 to 2012 in the Kamo River Basin. The evaluated indices included annual maximum 1-day and 5-day precipitation (RX1day, RX5day), consecutive dry days (CDD), annual maximum 1-day and 5-day streamflow (SX1day, SX5day), and consecutive low-flow days (CDS). Sen’s slope estimator and two versions of the Mann-Kendall test were used to detect trends in the indices. Also, frequency distributions of the indices were analysed separately for two periods: 1951–1981 and 1982–2012. The results indicate that quantiles of the rainfall indices corresponding to the 100-year return period have decreased in recent years, and the streamflow indices had similar patterns. Although consecutive no rainfall days represented by 100-year CDD decreased, continuous low-flow days represented by 100-year CDS increased. This pattern change is likely associated with the increase in temperature during this period.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR E. Gargouri  相似文献   

14.
Spatiotemporal changes in climatic extremes in the Yellow River Basin from 1959 to 2008 were investigated on the basis of a suite of 27 climatic indices derived from daily temperature and precipitation data from 75 meteorological stations with the help of the Mann–Kendall test, linear regression method and GIS technique. Furthermore, the changes in the probability distribution of the extreme indices were examined. The results indicate: (1) The whole basin is dominated by significant increase in the frequency of warm days and warm nights, and dominated by significant decrease in the frequency of cold days and cold nights. Although trends in absolute temperature indices show less spatial coherence compared with that in the percentile-based temperature indices, overall increasing trends can be found in Max Tmax (TXx), Min Tmax (TXn), Max Tmin (TNx) and Min Tmin (TNn). (2) Although the spatial patterns and the number of stations with significant changes for threshold and duration temperature indices are also not identical, general positive trends in warm indices (i.e., summer days (SU25), tropical nights (TR20), warm spell duration indicator and growing season length) and negative trends in cold indices (i.e., frost days, ice days and cold spell duration indicator) can be found in the basin. Annual nighttime temperature has increased at a faster rate than that in daytime temperature, leading to obvious decrease in diurnal temperature range. (3) The changes in precipitation indices are much weaker and less spatially coherent compared with these of temperature indices. For all precipitation indices, only few stations are characterized by significantly change in extreme precipitation, and their spatial patterns are always characterized by irregular and insignificant positive and negative changes. However, generally, changes in precipitation extremes present drying trends, although most of the changes are insignificant. (4) Results at seasonal scale show that warming trends occur for all seasons, particularly in winter. Different from that in other three seasons, general positive trends in max 1-day precipitation (Rx1DAY) and max 5-day precipitation (Rx5DAY) are found in winter. Analysis of changes in probability distributions of indices for 1959–1983 and 1984–2008 indicate a remarkable shift toward warmer condition and a less pronounced tendency toward drier condition during the past decades. The results can provide beneficial reference to water resource and eco-environment management strategies in the Yellow River Basin for associated policymakers and stakeholders.  相似文献   

15.
We analyzed seasonal and annual variations of the whole layer atmospheric moisture budget and precipitation during 1961–2005 and their associations with large-scale circulation in the Yangtze River basin, China. The results indicated increasing moisture budget in summer and winter, but decreasing moisture budget in spring and autumn. Positive correlations between moisture budget and precipitation illustrate tremendous impacts the moisture budget has on the precipitation changes across the Yangtze River basin. In terms of seasonal variations, significant correlations were observed between precipitation and moisture budget in spring and autumn in the upper Yangtze River basin. Besides, we also analyzed changes of geopotential height. The positive trends of the geopotential height (850 hPa) were observed in the East Asia and the negative trends in the middle and west Pacific Ocean, indicating increasing geopotential height from south to north in east Asia which largely limited the moisture propagation to north China. While decreasing meridional geopotential height from west to east along the Yangtze River basin caused more moisture propagation from the west to the east parts of the study region, which may benefit more precipitation in the middle and lower Yangtze River basin.  相似文献   

16.
Changes in the spatial scale of Beijing UHI and urban development   总被引:2,自引:1,他引:2  
The seasonal and interannual variations of Beijing urban heat island (UHI) are investigated in this paper using the temperature data from 1960 to 2000 at 20 meteorological stations in the Beijing region, and then the relationship between the intensity and spatial scale of UHI and Beijing urbanization indices is analyzed and discussed. Main conclusions are the followings. First, Beijing UHI shows obvious seasonal variations, and it is strongest in winter, next in spring and autumn, and least in summer. The seasonal variation of the UHI mainly occurs in the urban area. The UHI intensity at the center of Beijing is more than 0.8℃ in winter, and only 0.5℃ in summer. Second, the intensity of Beijing HUI exhibits a clear interannual warming trend with its mean growth rate (MGR) being 0.3088℃/10 a. The MGR of HUI is largest in winter, next in spring and autumn, and least in summer, and the urban temperature increase makes a major contribution to the growth of HUI intensity. Third, since the Reform and Opening, the urbanization indices have grown several ten times or even one hundred times, the intensity of HUI has increased dramatically, and its spatial scale also expanded distinctively along with the expansion of urban architectural complexes. Fourth, the interannual variation of urbanization indices is very similar with that of HUI intensity, and their linear correlation coefficients are significant at a more than 0.001 confidence level.  相似文献   

17.
This study investigates reference evapotranspiration (ET0) trends in China from 1960 to 2012 based on the Penman–Monteith equation and gridded meteorological measurements. Under the combined impacts of factors influencing ET0 (i.e., net radiation [RN], mean temperature [TAVE], vapour pressure deficit [VPD], and wind speed [WND]), both seasonal and annual ET0 for the whole China and more than half of the grids decreased over the past 53 years. The attribution analyses suggest that for the whole China, the WND is responsible for annual and seasonal ET0 decreases (excluding summer, where RN is responsible). Across China, the annual cause of WND with the largest spatial extent (43.1% of grids) mainly derives from north of the Changjiang River Basin (CJRB), whereas VPD (RN) as a cause is dispersedly distributed (within and to the south of the CJRB). In summer, RN is dominant in more than half of the grids, but the dominance of VPD and WND accounts for approximately 90% of grids during the remaining seasons. Finally, the correlation coefficients between ET0 and the Atlantic Oscillation (AO), North AO, Indian Ocean Dipole (IOD), Pacific Decadal Oscillation (PDO), and El Niño Southern Oscillation (ENSO) indices with different lead times are calculated. For the whole China, annual and seasonal ET0 always significantly correlate with these indices (excluding the IOD) but with varied lead times. Additionally, near half of the grids show significant and maximum (i.e., the largest one between ET0 and a certain index with a lead time of 0–3 seasons) correlation coefficients of ET0 with PDO in spring and summer, ENSO in autumn, and AO in winter. This study is not only significant for understanding ET0 changes, but it also provides preliminary and fundamental reference information for ET0 prediction.  相似文献   

18.
Streamflow drought time series forecasting   总被引:5,自引:2,他引:5  
Drought is considered to be an extreme climatic event causing significant damage both in the natural environment and in human lives. Due to the important role of drought forecasting in water resources planning and management and the stochastic behavior of drought, a multiplicative seasonal autoregressive integrated moving average (SARIMA) model is applied to the monthly streamflow forecasting of the Zayandehrud River in western Isfahan province, Iran. After forecasting 12 leading month streamflow, four drought thresholds including streamflow mean, monthly streamflow mean, 2-, 5-, 10- and 20-year return period monthly drought and standardized streamflow index were chosen. Both observed and forecasted streamflow showed a drought period with different severity in the lead-time. This study also demonstrates the usefulness of SARIMA models in forecasting, water resources planning and management.  相似文献   

19.
南印度洋海温偶极子型振荡及其气候影响   总被引:23,自引:2,他引:23       下载免费PDF全文
印度洋海表温度(Sea Surface Temperature,简称SST)的方差分析和相关分析表明南印度洋也存在一个海温偶极子型振荡,并定义了一个南印度洋海表温度异常偶极子指数.夏、秋季(南半球冬、春)的南印度洋偶极子指数与后期热带500hPa和100hPa高度场异常有显著而持续的相关,在冬、春达到最大,并可以持续到次年夏、秋.前期夏、秋季节的南印度洋偶极模对次年我国大陆东部夏季降水异常有显著的影响,对应偶极子正位相,次年夏季印度洋、南海(东亚)夏季风偏弱;副高加强且南撤、西伸,南亚高压偏强且位置偏东,易形成我国长江流域降水偏多,华南降水偏少;负位相年反之.后期冬季西太平洋暖池是联系南印度洋偶极子与次年我国夏季降水异常关系的一条重要途径.南印度洋偶极子表现出了明显的独立于ENSO(El Nio Southern Oscillation,简称ENSO)的特征.  相似文献   

20.
Long streamflow series and precipitation data are analysed in this study with aim to investigate changing properties of precipitation and associated impacts on hydrological processes of the Poyang Lake basin. Underlying causes behind the precipitation variations are also explored based on the analysis of the National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) reanalysis data. Besides, water intrusion from the Yangtze River to the Poyang Lake basin is studied. The results indicate that (1) seasonal transitions of precipitation are observed, showing increasing precipitation in winter, slight increase and even decrease of precipitation in summer; (2) analysis of water vapour circulation indicates decreasing/increasing water vapour flux in summer/winter; in winter, water vapour flux tends to be from the Pacific. Altered water vapour flux is the major cause behind the altered precipitation changes across the Poyang Lake basin and (3) occurrence of water intrusion from the Yangtze River to the Poyang Lake basin is heavily influenced by hydrological processes of the Poyang Lake basin. Effects of the hydrological processes from the middle Yangtze River on the occurrence of water intrusion events are not significant. The results of this study indicate that floods and droughts should share the same concerns from the scholars and policy makers. Besides, the altered hydrological circulation and associated seasonal transition of precipitation drive us to face new challenges in terms of conservations of wetlands and ecological environment under the changing climate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号