首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Bettina Schaefli 《水文研究》2016,30(22):4019-4035
Discharge simulation from snow‐dominated catchments seems to be an easy task. Any spatially explicit precipitation–runoff model coupled to a temperature‐index snow model generally yields simulations that mimic well the observed daily discharges. The robustness of such models is, however, questionable: in the presence of strong annual discharge cycles, small model residuals do not guarantee high explanatory power of the underlying model. This paper proposes a methodology for snow hydrological model identification within a limits‐of‐acceptability framework, where acceptable model simulations are the ones that reproduce a set of signatures within an a priori specified range. The signatures proposed here namely include the relationship between the air temperature regime and the discharge regime, a new snow hydrology signature that can be readily transferred to other Alpine settings. The discriminatory power of all analysed signatures is assessed with a new measure of their discriminatory power in the model prediction domain. The value of the proposed snow hydrology signatures and of the limits‐of‐acceptability approach is demonstrated for the Dischma river in Switzerland, whose discharge shows a strong temporal variability of hydrologic forcing conditions over the last 30 years. The signature‐based model identification for this case study leads to the surprising conclusion that the observed discharge data contains a multi‐year period that cannot be reproduced with the model at hand. This model‐data mismatch might well result from a yet to be identified problem with the discharge observations, which would have been difficult to detect in a classical residual‐based model identification approach. Overall, the detailed results for this case study underline the robustness of the limits‐of‐acceptability approach in the presence of error‐prone observations if it is applied in combination with relatively robust signatures. Future work will show whether snow hydrology signatures and their limits‐of‐acceptability can be regionalized to ungauged catchments, which would make this model selection approach particularly powerful for Alpine environments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
The soil moisture in Shaanxi Province,a region with complex topography,is simulated using the distributed hydrological model Soil Water Assessment Tool(SWAT).Comparison and contrast of modeled and observed soil moisture show that the SWAT model can reasonably simulate the long-term trend in soil moisture and the spatiotemporal variability of soil moisture in the region.Comparisons to NCEP/NCAR and ERA40 reanalysis of soil moisture show that the trend of variability in soil moisture simulated by SWAT is more...  相似文献   

3.
The drought of summer 2018, which affected much of Northern Europe, resulted in low river flows, biodiversity loss and threats to water supplies. In some regions, like the Scottish Highlands, the summer drought followed two consecutive, anomalously dry, winter periods. Here, we examine how the drought, and its antecedent conditions, affected soil moisture, groundwater storage, and low flows in the Bruntland Burn; a sub-catchment of the Girnock Burn long-term observatory in the Scottish Cairngorm Mountains. Fifty years of rainfall-runoff observations and long-term modelling studies in the Girnock provided unique contextualisation of this extreme event in relation to more usual summer storage dynamics. Whilst summer precipitation in 2018 was only 63% of the long-term mean, soil moisture storage across much of the catchment were less than half of their summer average and seasonal groundwater levels were 0.5 m lower than normal. Hydrometric and isotopic observations showed that ~100 mm of river flows during the summer (May-Sept) were sustained almost entirely by groundwater drainage, representing ~30% of evapotranspiration that occurred over the same period. A key reason that the summer drought was so severe was because the preceding two winters were also dry and failed to adequately replenish catchment soil moisture and groundwater stores. As a result, the drought had the biggest catchment storage deficits for over a decade, and likely since 1975–1976. Despite this, recovery was rapid in autumn/winter 2018, with soil and groundwater stores returning to normal winter values, along with stream flows. The study emphasizes how long-term data from experimental sites are key to understanding the non-linear flux-storage interactions in catchments and the “memory effects” that govern the evolution of, and recovery from, droughts. This is invaluable both in terms of (a) giving insights into hydrological behaviours that will become more common water resource management problems in the future under climate change and (b) providing extreme data to challenge hydrological models.  相似文献   

4.
Satellite‐based soil moisture data accuracies are of important concerns by hydrologists because they could significantly influence hydrological modelling uncertainty. Without proper quantification of their uncertainties, it is difficult to optimize the hydrological modelling system and make robust decisions. Currently, the satellite soil moisture data uncertainty has been limited to summary statistics with the validations mainly from the in situ measurements. This study attempts to build the first error distribution model with additional higher‐order uncertainty modelling for satellite soil moisture observations. The methodology is demonstrated by a case study using the Soil Moisture and Ocean Salinity satellite soil moisture observations. The validation is based on soil moisture estimates from hydrological modelling, which is more relevant to the intended data use than the in situ measurements. Four probability distributions have been explored to find suitable error distribution curves using the statistical tests and bootstrapping resampling technique. General extreme value is identified as the most suitable one among all the curves. The error distribution model is still in its infant stage, which ignores spatial and temporal correlations, and nonstationarity. Further improvements should be carried out by the hydrological community by expanding the methodology to a wide range of satellite soil moisture data using different hydrological models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A conceptual water‐balance model was modified from a point application to be distributed for evaluating the spatial distribution of watershed water balance based on daily precipitation, temperature and other hydrological parameters. The model was calibrated by comparing simulated daily variation in soil moisture with field observed data and results of another model that simulates the vertical soil moisture flow by numerically solving Richards' equation. The impacts of soil and land use on the hydrological components of the water balance, such as evapotranspiration, soil moisture deficit, runoff and subsurface drainage, were evaluated with the calibrated model in this study. Given the same meteorological conditions and land use, the soil moisture deficit, evapotranspiration and surface runoff increase, and subsurface drainage decreases, as the available water capacity of soil increases. Among various land uses, alfalfa produced high soil moisture deficit and evapotranspiration and lower surface runoff and subsurface drainage, whereas soybeans produced an opposite trend. The simulated distribution of various hydrological components shows the combined effect of soil and land use. Simulated hydrological components compare well with observed data. The study demonstrated that the distributed water balance approach is efficient and has advantages over the use of single average value of hydrological variables and the application at a single point in the traditional practice. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
Soil water repellency can impact soil hydrology, overland flow generation and associated soil losses. However, current hydrological models do not take it into account, which creates a challenge in repellency‐prone regions. This work focused on the adaptation for soil water repellency of a daily water balance model. Repellency is estimated from soil moisture content using site‐specific empirical relations and used to limit maximum soil moisture. This model was developed and tested using approximately 2 years of data from one long‐unburned and two recently burned eucalypt plantations in northern Portugal, all of which showed strong seasonal soil water repellency cycles. Results indicated important improvements for the burned plantations, with the Nash–Sutcliffe efficiency increasing from ?0.55 and ?0.49 to 0.55 and 0.65. For the unburned site, model performance was already good without the modification and efficiency only improved slightly from 0.71 to 0.74, mostly due to the better simulation of delayed soil wetting after dry periods. Results suggested that even a simple approach to simulate soil water repellency can markedly improve the performance of hydrological models in eucalypt forests, especially after fire. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
 A soil moisture balance equation over large spatial regions is studied at seasonal and annual time scales for the Arkansas river basin. Interaction and feedback effects between land-surface and atmospheric moisture are studied in the parameterization for this basin. Due to the interaction between the land-surface and atmosphere at large scales, the surface hydrology of large land areas is susceptible to two distinct stable modes in the long-term probability density function: a dry and a wet state. In the soil moisture balance equation, stochastic fluctuations lead to separate preferred statistical stable states with transitions between these stable states induced by environmental fluctuations. On the basis of historical data, the soil moisture balance equation is calibrated for the Arkansas river basin. The transition times between the stable modes in the model are studied based on the stochastic representation of the physical processes and the calibrated model parameters. This study has implications for prediction of the transition times between stable modes or residence times, that is, the time the system spends in a given stable mode, since this would be equivalent to predicting the duration of droughts or wet conditions.  相似文献   

8.
Soil moisture is a key hydrological variable in flood forecasting: it largely influences the partition of rain between runoff and infiltration and thus controls the flow at the outlet of a catchment. The methodology developed in this paper aims at improving the commonly used hydrological tools in an operational forecasting context by introducing soil moisture data into streamflow modelling. A sequential assimilation procedure, based on an extended Kalman filter, is developed and coupled with a lumped conceptual rainfall–runoff model. It updates the internal states of the model (soil and routing reservoirs) by assimilating daily soil moisture and streamflow data in order to better fit these external observations. We present in this paper the results obtained on the Serein, a Seine sub-catchment (France), during a period of about 2 years and using Time Domain Reflectivity probe soil moisture measurements from 0–10 to 0–100 cm and stream gauged data. Streamflow prediction is improved by assimilation of both soil moisture and streamflow individually and by coupled assimilation. Assimilation of soil moisture data is particularly effective during flood events while assimilation of streamflow data is more effective for low flows. Combined assimilation is therefore more adequate on the entire forecasting period. Finally, we discuss the adequacy of this methodology coupled with Remote Sensing data.  相似文献   

9.
In this paper, we investigate the possibility to improve discharge predictions from a lumped hydrological model through assimilation of remotely sensed soil moisture values. Therefore, an algorithm to estimate surface soil moisture values through active microwave remote sensing is developed, bypassing the need to collect in situ ground parameters. The algorithm to estimate soil moisture by use of radar data combines a physically based and an empirical back‐scatter model. This method estimates effective soil roughness parameters, and good estimates of surface soil moisture are provided for bare soils. These remotely sensed soil moisture values over bare soils are then assimilated into a hydrological model using the statistical correction method. The results suggest that it is possible to determine soil moisture values over bare soils from remote sensing observations without the need to collect ground truth data, and that there is potential to improve model‐based discharge predictions through assimilation of these remotely sensed soil moisture values. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Remotely sensed (RS) data can add value to a hydrological model calibration. Among this, RS soil moisture (SM) data have mostly been assimilated into conceptual hydrological models using various transformed variable or indices. In this study, raw RS surface SM is used as a calibration variable in the Soil and Water Assessment Tool model. This means the SM values were not transformed into another variable (e.g., soil water index and root zone SM index). Using a nested catchment, calibration based only on RS SM and optimizing model parameters sensitive to SM using particle swarm optimization improved variations in streamflow predictions at some of the gauging stations compared to the uncalibrated model. This highlighted part of the catchments where the SM signal directly influenced the flow distribution. Additionally, highlighted high and low flow signals were mostly influenced. The seasonal breakdown indicates that the SM signal is more useful for calibrating in wetter seasons and in areas with higher variations in elevation. The results identified that calibration only on RS SM improved the general rainfall–runoff response simulation by introducing delays but cannot correct the overall routing effect. Furthermore, catchment characteristics (e.g., land use, elevation, soil types, and precipitation) regulating SM variation in different seasons highlighted by the model calibration are identified. This provides further opportunities to improve model parameterization.  相似文献   

11.
The hydrological sensitivities to long-term climate change of a watershed in Eastern Canada were analysed using a deterministic watershed runoff model developed to simulate watershed acidification. This model was modified to study atmospheric change effects in the watershed. Water balance modelling techniques, modified for assessing climate effects, were developed and tested for a watershed using atmospheric change scenarios from both state of the art general circulation models and a series of hypothetical scenarios. The model computed daily surface, inter- and groundwater flows from the watershed. The moisture, infiltration and recharge rate are also computed in the soil reservoirs. The thirty years of simulated data can be used to evaluate the effects of climatic change on soil moisture, recharge rate and surface and subsurface flow systems. The interaction between surface and subsurface water is discussed in relation to climate change. These hydrological results raise the possibility of major environmental and socioeconomic difficulties and have significant implications for future water resource planning and management. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
Predicting long‐term consequences of climate change on hydrologic processes has been limited due to the needs to accommodate the uncertainties in hydrological measurements for calibration, and to account for the uncertainties in the models that would ingest those calibrations and uncertainties in climate predictions as basis for hydrological predictions. We implemented a hierarchical Bayesian (HB) analysis to coherently admit multiple data sources and uncertainties including data inputs, parameters, and model structures to identify the potential consequences of climate change on soil moisture and streamflow at the head watersheds ranging from low to high elevations in the southern Appalachian region of the United States. We have considered climate change scenarios based on three greenhouse gas emission scenarios of the Interovernmental Panel on Climate Change: A2, A1B, and B1 emission scenarios. Full predictive distributions based on HB models are capable of providing rich information and facilitating the summarization of prediction uncertainties. With predictive uncertainties taken into account, the most pronounced change in soil moisture and streamflow would occur under the A2 scenario at both low and high elevations, followed by the A1B scenario and then by the B1 scenario. Uncertainty in the change of soil moisture is less than that of streamflow for each season, especially at high elevations. A reduction of soil moisture in summer and fall, a reduction or slight increase of streamflow in summer, and an increase of streamflow in winter are predicted for all three scenarios at both low and high elevations. The hydrological predictions with quantified uncertainties from a HB model could aid more‐informed water resource management in developing mitigation plans and dealing with water security under climate change. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The aim of this review is to provide a basis for selecting a suitable hydrological model, or combination of models, for hydrological drought forecasting in Africa at different temporal and spatial scales; for example short and medium range (1–10 days or monthly) forecasts at medium to large river basin scales or seasonal forecasts at the Pan-African scale. Several global hydrological models are currently available with different levels of complexity and data requirements. However, most of these models are likely to fail to properly represent the water balance components that are particularly relevant in arid and semi-arid basins in sub-Saharan Africa. This review critically looks at weaknesses and strengths in the representation of different hydrological processes and fluxes of each model. The major criteria used for assessing the suitability of the models are (1) the representation of the processes that are most relevant for simulating drought conditions, such as interception, evaporation, surface water-groundwater interactions in wetland areas and flood plains and soil moisture dynamics; (2) the capability of the model to be downscaled from a continental scale to a large river basin scale model; and (3) the applicability of the model to be used operationally for drought early warning, given the data availability of the region. This review provides a framework for selecting models for hydrological drought forecasting, conditional on spatial scale, data availability and end-user forecast requirements. Among 16 well known hydrological and land surface models selected for this review, PCR-GLOBWB, GWAVA, HTESSEL, LISFLOOD and SWAT show higher potential and suitability for hydrological drought forecasting in Africa based on the criteria used in this evaluation.  相似文献   

14.
Lu Zhuo  Dawei Han 《水文研究》2016,30(10):1637-1648
Soil moisture is a significant state variable in flood forecasting. Nowadays more and more satellite soil moisture products are available, yet their usage in the operational hydrology is still limited. This is because the soil moisture state variables in most operational hydrological models (mostly conceptual models) are over‐simplified—resulting in poor compatibility with the satellite soil moisture observations. A case study is provided to discuss this in more detail, with the adoption of the XAJ model and the Soil Moisture and Ocean Salinity (SMOS) level‐3 soil moisture observation to illustrate the relevant issues. It is found that there are three distinct deficiencies existed in the XAJ model that could cause the mismatch issues with the SMOS soil moisture observation: (i) it is based on runoff generation via the field capacity excess mechanism (interestingly, such a runoff mechanism is called the saturation excess in XAJ while in fact it is clearly a misnomer); (ii) evaporation occurs at the potential rate in its upper soil layer until the water storage in the upper layer is exhausted, and then the evapotranspiration process from the lower layers will commence – leading to an abrupt soil water depletion in the upper soil layer; (iii) it uses the multi‐bucket concept at each soil layer – hence the model has varied soil layers. Therefore, it is a huge challenge to make an operational hydrological model compatible with the satellite soil moisture data. The paper argues that this is possible and some new ideas have been explored and discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

The purpose of this paper is to present the methodology set up to derive catchment soil moisture from Earth Observation (EO) data using microwave spaceborne Synthetic Aperture Radar (SAR) images from ERS satellites and to study the improvements brought about by an assimilation of this information into hydrological models. The methodology used to derive EO data is based on the appropriate selection of land cover types for which the radar signal is mainly sensitive to soil moisture variations. Then a hydrological model is chosen, which can take advantage of the new information brought by remote sensing. The assimilation of soil moisture deduced from EO data into hydrological models is based principally on model parameter updating. The main assumption of this method is that the better the model simulates the current hydrological system, the better the following forecast will be. Another methodology used is a sequential one based on Kalman filtering. These methods have been put forward for use in the European AIMWATER project on the Seine catchment upstream of Paris (France) where dams are operated to alleviate floods in the Paris area.  相似文献   

16.
Data assimilation techniques have been proven as an effective tool to improve model forecasts by combining information about observed variables in many areas. This article examines the potential of assimilating surface soil moisture observations into a field‐scale hydrological model, the Root Zone Water Quality Model, to improve soil moisture estimation. The Ensemble Kalman Filter (EnKF), a popular data assimilation technique for nonlinear systems, was applied and compared with a simple direct insertion method. In situ soil moisture data at four different depths (5, 20, 40, and 60 cm) from two agricultural fields (AS1 and AS2) in northeastern Indiana were used for assimilation and validation purposes. Through daily update, the EnKF improved soil moisture estimation compared with the direct insertion method and model results without assimilation, having more distinct improvement at the 5 and 20 cm depths than for deeper layers (40 and 60 cm). Local vertical soil property heterogeneity in AS1 deteriorated soil moisture estimates with the EnKF. Removal of systematic bias in the forecast model was found to be critical for more successful soil moisture data assimilation studies. This study also demonstrates that a more frequent update generally contributes in enhancing the open loop simulation; however, large forecasting error can prevent more frequent update from providing better results. In addition, results indicate that various ensemble sizes make little difference in the assimilation results. An ensemble of 100 members produced results that were comparable with results obtained from larger ensembles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Olive cultivation is a widespread land use in Mediterranean climates. The proper implementation of soil and water conservation practices in groves requires detailed knowledge of the governing hydrological processes. In this work topsoil moisture dynamics under wet and dry conditions and across a small catchment was investigated in the inter row (IR) and directly under the olive tree canopies (UC). We do this using a sensor network (11 stations) and a simple bucket model which was calibrated (June, 2011–2012) and validated (June, 2012–2013). During most of the year the normalized soil moisture contents (s) were greater in the IR than under UC, with an average normalized soil moisture difference of 0.12. The difference between UC and IR normalized soil moisture followed a seasonal pattern, reaching a maximum near 0.30 during spring. An analysis of the normalized soil moisture probability density functions (pdfs) was bimodal, showing characteristic dominant wet and dry soil moisture states, with the highest probability densities for the dry state. Overall the spatial variability of soil moisture was lower UC than in the IR. This was a result of the soil moisture buffering capacity of the canopy with respect to rainfall and evaporation, in addition to observed differences in soil properties. Hourly soil moisture data were successfully modelled (R2 > 0.85), both UC and in the IR, yet with the inclusion of a simple formulation for canopy interception for the former. The results provide insight into how olive trees change hydrological processes in their neighbourhood. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
In this study, we evaluate uncertainties propagated through different climate data sets in seasonal and annual hydrological simulations over 10 subarctic watersheds of northern Manitoba, Canada, using the variable infiltration capacity (VIC) model. Further, we perform a comprehensive sensitivity and uncertainty analysis of the VIC model using a robust and state-of-the-art approach. The VIC model simulations utilize the recently developed variogram analysis of response surfaces (VARS) technique that requires in this application more than 6,000 model simulations for a 30-year (1981–2010) study period. The method seeks parameter sensitivity, identifies influential parameters, and showcases streamflow sensitivity to parameter uncertainty at seasonal and annual timescales. Results suggest that the Ensemble VIC simulations match observed streamflow closest, whereas global reanalysis products yield high flows (0.5–3.0 mm day−1) against observations and an overestimation (10–60%) in seasonal and annual water balance terms. VIC parameters exhibit seasonal importance in VARS, and the choice of input data and performance metrics substantially affect sensitivity analysis. Uncertainty propagation due to input forcing selection in each water balance term (i.e., total runoff, soil moisture, and evapotranspiration) is examined separately to show both time and space dimensionality in available forcing data at seasonal and annual timescales. Reliable input forcing, the most influential model parameters, and the uncertainty envelope in streamflow prediction are presented for the VIC model. These results, along with some specific recommendations, are expected to assist the broader VIC modelling community and other users of VARS and land surface schemes, to enhance their modelling applications.  相似文献   

19.
Inadequate knowledge exists on the distribution of soil moisture and shallow groundwater in intensively cultivated inland valley wetlands in tropical environments, which are required for determining the hydrological regime. This study investigated the spatial and temporal variability of soil moisture along 4 hydrological positions segmented as riparian zone, valley bottom, fringe, and valley slope in an agriculturally used inland valley wetland in Central Uganda. The determined hydrological regimes of the defined hydrological positions are based on soil moisture deficit calculated from the depth to the groundwater table. For that, the accuracy and reliability of satellite‐derived surface models, SRTM‐30m and TanDEM‐X‐12m, for mapping microscale topography and hydrological regimes are evaluated against a 5‐m digital elevation model (DEM) derived from field measurements. Soil moisture and depth to groundwater table were measured using frequency domain reflectometry sensors and piezometers installed along the hydrological positions, respectively. Results showed that spatial and temporal variability in soil moisture increased significantly (p < .05) towards the riparian zone; however, no significant difference was observed between the valley bottom and riparian zone. The distribution of soil hydrological regimes, saturated, near‐saturated, and nonsaturated regimes does not correlate with the hydrological positions. This is due to high spatial and temporal variability in depth to groundwater and soil moisture content across the valley. Precipitation strongly controlled the temporal variability, whereas microscale topography, soil properties, distance from the stream, anthropogenic factors, and land use controlled the spatial variability in the inland valley. TanDEM‐X DEM reasonably mapped the microscale topography and thus soil hydrological regimes relative to the Shuttle Radar Topography Mission DEM. The findings of the study contribute to improved understanding of the distribution of hydrological regimes in an inland valley wetland, which is required for a better agricultural water management planning.  相似文献   

20.
Abstract

Many of the hydrological and ecological functions of alluvial flood plains within watersheds depend on the water flow exchanges between the vadoze soil zone and the shallow groundwater. The water balance of the soil in the flood plain is investigated, in order to evaluate the main hydrological processes that underlie the temporal dynamics of soil moisture and groundwater levels. The soil moisture and the groundwater level in the flood plain were monitored continuously for a three-year period. These data were integrated with the results derived from applying a physically-based numerical model which simulated the variably-saturated vertical water flow in the soil. The analysis indicated that the simultaneous processes of lateral groundwater flow and the vertical recharge from the unsaturated zone caused the observed water table fluctuations. The importance of these flows in determining the rises in the water table varied, depending on soil moisture and groundwater depth before precipitation. The monitoring period included two hydrological years (September 2009–September 2011). About 13% of the precipitation vertically recharged the groundwater in the first year and about 50% in the second. The difference in the two recharge coefficients was in part due to the lower groundwater levels in the recharge season of the first hydrological year, compared to those observed in the second. In the latter year, the shallow groundwater increased the soil moisture in the unsaturated zone due to capillary rise, and so the mean hydraulic conductivity of the unsaturated soil was high. This moisture state of soil favoured a more efficient conversion of infiltrated precipitation into vertical groundwater recharge. The results show that groundwater dynamics in the flood plain are an important source of temporal variability in soil moisture and vertical recharge processes, and this variability must be properly taken into account when the water balance is investigated in shallow groundwater environments.

Citation Pirastru, M. and Niedda, M., 2013. Evaluation of the soil water balance in an alluvial flood plain with a shallow groundwater table. Hydrological Sciences Journal, 58 (4), 898–911.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号