首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since the earliest use of this technology, a growing number of researchers have employed passive Radio Frequency Identification (RFID) transponders to track sediment transport in gravel rivers and coastal environments. RFID transponders are advantageous because they are inexpensive, durable and use unique codes that allow sediment particle mobility and displacement to be assessed on a clast‐by‐clast basis. Despite these advantages, this technology is in need of a rigorous error and detection analysis. Many studies work with a precision of ~1 m, which is insufficient for some applications, and signal shadowing can occur due to clustering of tagged particles. Information on in‐field performance is also incomplete with respect to burial and submergence, especially for different transponders and antennae combinations. The objectives of this study are to qualify and quantify the factors that influence the detection zone of RFID tracers including antenna type, transponder size, transponder orientation, burial depth, submergence and clustering. Results of this study show that the detection zone is complex in shape due to a set of lobes in the detection field and provide a better understanding of transponder detection shape for different RFID transponder/antenna combinations. This study highlights a strong influence of clustering and submergence, but no significant effect of burial. Finally we propose standard operating procedures for tagging and tracking in rivers and coastal environments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Radio frequency identification (RFID) technologies, which allow wireless detection of individual buried or immersed tracers, represent a step forward in sediment tracking, especially passive integrated transponders (PIT tags) that have been widely used. Despite their widespread adoption in the scientific community, they typically have low efficiency when deployed in river systems with active bedload transport or deep wet channels, attributed to their technical specifications. A recent evaluation of active ultra-high frequency transponders (a-UHF tags) assessed their larger detection range and provided a methodology for their geopositioning. In this study, we test five different survey methods (one including an unmanned aerial vehicle [UAV]) in a sediment tracking study, and compare them in terms of recovery rate, field effort, geopositioning error, and efficiency. We then tested the method on a larger reach following a Q5 flood and performed cross-comparisons between active and passive RFIDs. The results confirmed that the a-UHF RFID technology allowed rapid (1.5 h ha−1) survey of a large area (<34 ha) of emerged bars and shallow water channels with recovery of a high percentage of tracers (72%) that had travelled large distances (mean ≈ 1000 m; max ≈ 3400 m). Moreover, the tracers were identified with low geopositioning error (mean ≈ 7.1 m, ≤1% of their travel distance). We also showed that a UAV-based survey was fast (0.38 h ha−1), efficient (recovery rate = 84%), and low error (mean ≈ 4.2 m). Thus, a-UHF RFID technology permits the development of a variety of survey methods, depending on the study objectives and the human and financial resources available. This allows field efforts to be optimized by determining an appropriate balance between the high equipment cost of a-UHF tracers and the resulting reduced survey costs. © 2019 John Wiley & Sons, Ltd.  相似文献   

3.
The vertical position of the streambed–water boundary fluctuates during the course of sediment transport episodes, due to particle entrainment/deposition and bedform migration, amongst other hydraulic and bedload mechanisms. These vertical oscillations define a topmost stratum of the streambed (i.e. the ‘active layer or active depth’), which usually represents the main source of particles entrained during long and high-magnitude bedload transport episodes. The vertical extent of this layer is hence a capital parameter for the quantification of bedload volumes and a major driver of stream ecology in gravel-bed rivers. However, knowledge on how the active depth scales to flow strength and the nature of the different controls on the relation between the flow strength and the active depth is still scarce. In this paper we present a meta-analysis over active depth data coming from ~130 transport episodes extracted from a series of published field studies. We also incorporate our own field data for the rivers Ebro and Muga (unpublished), both in the Iberian Peninsula. We explore the database searching for the influence of flow strength, grain size, streambed mobility and channel morphology on the vertical extent of the active layer. A multivariate statistical analysis (stepwise multiple regression) confirms that the set of selected variables explains a significant amount of variance in the compiled variables. The analysis shows a positive scaling between active depth and flow strength. We have also identified some links between the active depth and particle travel distances. However, these relations are also largely modulated by other fluvial drivers, such as the grain size of the bed surface and the dominant channel macro-bedforms, with remarkable differences between plane-bed, step-pool and riffle-pool channels. © 2020 John Wiley & Sons, Ltd.  相似文献   

4.
The question: ‘how does a streambed change over a minor flood?’ does not have a clear answer due to lack of measurement methods during high flows. We investigate bedload transport and disentrainment during a 1.5‐year flood by linking field measurements using fiber optic distributed temperature sensing (DTS) cable with sediment transport theory and an existing explicit analytical solution to predict depth of sediment deposition from amplitude and phase changes of the diurnal near‐bed pore‐water temperature. The method facilitates the study of gravel transport by using near‐bed temperature time series to estimate rates of sediment deposition continuously over the duration of a high flow event coinciding with bar formation. The observations indicate that all gravel and cobble particles present were transported along the riffle at a relatively low Shields Number for the median particle size, and were re‐deposited on the lee side of the bar at rates that varied over time during a constant flow. Approximately 1–6% of the bed was predicted to be mobile during the 1.5‐year flood, indicating that large inactive regions of the bed, particularly between riffles, persist between years despite field observations of narrow zones of local transport and bar growth on the order ~3–5 times the median particle size. In contrast, during a seven‐year flood approximately 8–55% of the bed was predicted to become mobile, indicating that the continuous along‐stream mobility required to mobilize coarse gravel through long pools and downstream to the next riffle is infrequent. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
This paper reports a radiofrequency identification (RFID) tracing experiment implemented in a high‐sediment‐load mountain stream typical of alpine gravel‐bed torrents. The study site is the Bouinenc Torrent, a tributary to the Bléone River in southeast France that drains a 38·9‐km² degraded catchment. In spring 2008, we deployed 451 tracers with b‐axis ranging from 23 to 520 mm. Tracers were seeded along eight cross‐sections located in the upstream part of the lowest 2·3 km of the stream. Three tracer inventories were implemented in July 2008, 2009 and 2010. Recovery rates calculated for mobile tracers declined from 78% in 2008 to 45% in 2009 and 25% in 2010. Observations of tracer displacement revealed very high sediment dispersion, with frontrunners having travelled more than 2 km only three months after their deployment. The declining recovery rate over time was interpreted as resulting from rapid dispersion rather than deep burial. We evaluated that 64% of the tracers deployed in the active channel were exported from the 2·3‐km study reach three years after the onset of the tracing experiment. Travel distances were characterized by right‐skewed and heavy‐tailed distributions, correctly fitted by a power‐law function. This supports the idea that in gravel‐bed rivers with abundant sediment supply relative to transport capacity, bedload transport can be viewed as a superdiffusive sediment dispersion process. It is also shown that tracers initially deployed in the low‐flow channel were characterized by a 15‐ to 30‐fold increase of mobility compared to tracers deployed in gravel bars. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The present contribution considers the dynamics of beaches occupied by outcropping/buried beachrocks, i.e. hard coastal formations consisting of beach material lithified by in situ precipitated carbonate cements. The dynamics of a Greek microtidal beach with beachrocks (Vatera, Lesbos) are examined through the collection and analysis of morphological and sedimentary field data, a 2-D nearshore hydrodynamic model and a specially constructed 1-D morphodynamic model. The results showed that the beachrock-occupied part of the beach is characterised by distinctive morphodynamics as: (i) its beachface is associated with large slopes; (ii) there is a good spatial correlation between the sub-aerial and shallow submerged mean beach profile and the buried/outcropping upper beachrock surface; and (iii) the seaward margins of the submerged beachrock outcrops are always associated with a ‘scour step’ i.e. a submerged cliff. The results also showed that beachrock outcrops can bias cross-shore sediment exchanges by impeding onshore transport due to the presence of the scour step. In this sense, beachrock outcrops may be considered as offshore transport ‘conduits’ for the beach sediments. A conceptual model of beach sediment transport, based on the field data and the hydrodynamic modelling is proposed. According to this model, fresh beach material from adjacent terrestrial sources is transported alongshore, towards the central part of the embayment, where a littoral transport convergence zone occurs under most wave conditions. There, the laterally supplied sediments are lost offshore.  相似文献   

7.
This paper explores changes in suspended sediment transport and fine sediment storage at the reach and patch scale associated with the reintroduction of partial large wood (LW) jams in an artificially over‐widened lowland river. The field site incorporates two adjacent reaches: a downstream section where LW jams were reintroduced in 2010 and a reach immediately upstream where no LW was introduced. LW pieces were organized into ‘partial’ jams incorporating several ‘key pieces’ which were later colonized by substantial stands of aquatic and wetland plants. Reach‐scale suspended sediment transport was investigated using arrays of time‐integrated suspended sediment samplers. Patch‐scale suspended sediment transport was explored experimentally using turbidity sensors to track the magnitude and velocity of artificially generated sediment plumes. Fine sediment storage was quantified at both reach and patch scales by repeat surveys of fine sediment depth. The results show that partial LW jams influence fine sediment dynamics at both the patch and reach scale. At the patch‐scale, introduction of LW led to a reduction in the concentration and increase in the time lag of released sediment plumes within the LW, indicating increased diffusion of plumes. This contrasted with higher concentrations and lower time lags in areas adjacent to the LW; indicating more effective advection processes. This led to increased fine sediment storage within the LW compared with areas adjacent to the LW. At the reach‐scale there was a greater increase in fine sediment storage through time within the restored reach relative to the unrestored reach, although the changes in sediment transport responsible for this were not evident from time‐integrated suspended sediment data. The results of the study have been used to develop a conceptual model which may inform restoration design. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
This study uses a unique 10‐year tracer dataset from a small gravel‐bed stream to examine bed mobility and sediment dispersion over long timescales and at a range of spatial scales. Seasonal tracer data that captured multiple mobilizing events was examined, while the effects of morphology on bed mobility and sediment dispersion were captured at three spatial scales: within morphological units (unit scale), between morphological units (reach scale) and between reaches with different channel morphologies (channel scale). This was achieved by analyzing both reach‐average mobility and travel distance data, as well as the development of ‘mobility maps’ that capture the spatial variability in tracer mobility within the channel. The tracer data suggest that sediment transport in East Creek remains near critical the majority of the time, with only rare large events resulting in high mobility rates and grain travel distances large enough to move sediment past dominant bedforms. While a variable capturing both the magnitude and frequency of flow events within a season yielded a better predictor to sediment mobility and dispersion than peak discharge alone, the distribution of events of different magnitude within the season played a large role in determining tracer mobility rates and travel distances. The effects of morphology differed depending on the analysis scale, demonstrating the importance of scale, and therefore study design, when examining the effect of morphology on sediment transport. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
A new field-based parameterisation (‘shape function’) describing the distribution of cross-shore suspended sediment transport across a beach profile is presented. Time-averaged and depth-integrated suspended sediment fluxes were measured over 39 tides at Sennen Cove, Cornwall, UK, for a range of wave conditions (offshore significant wave heights 0.1–2.5 m). The suspended sediment flux data were heuristically separated into four transport components: (1) mean flux in the surf/shoaling zone; (2) oscillatory flux in the surf/shoaling zone; (3) onshore flux in the swash/inner surf zone and (4) offshore flux in the swash/inner surf zone. Each of these transport components was related to the local water depth (h) normalised by the breakpoint depth (hb) and the four resulting suspended transport shape functions were combined to form a total suspended load shape function. Each shape function component is scaled independently by the wave energy level through hb. The total suspended load shape function predicts onshore sediment transport under low-energy conditions, with peaks at the breakpoint and in the swash zone, in agreement with the field observations. Under high-energy conditions the total suspended load shape function predicts onshore transport in the shoaling zone, offshore transport in the surf zone and onshore transport in the inner swash zone.  相似文献   

10.
Glaciers are major agents of erosion that increase sediment load to the downstream fluvial system. The Castle Creek Glacier, British Columbia, Canada, has retreated ~1.0 km in the past 70 years. Suspended sediment concentration (SSC) and streamflow (Q) were monitored independently at five sites within its pro‐glacial zone over a 60 day period from July to September 2011, representing part of the ablation season. Meteorological data were collected from two automatic weather stations proximal to the glacier. The time‐series were divided into hydrologic days and the shape and magnitude of the SSC response to hydro‐meteorological conditions (‘cold and wet’, ‘hot and dry’, ‘warm and damp’, and ‘storm’) were categorized using principal component analysis (PCA) and cluster analysis (CA). Suspended sediment load (SSL) was computed and summarized for the categories. The distribution of monitoring sites and results of the multivariate statistical analyses describe the temporal and spatial variability of suspended sediment flux and the relative importance of glacial and para‐glacial sediment sources in the pro‐glacial zone. During the 2011 study period, ~ 60% of the total SSL was derived from the glacial stream and sediment deposits proximal to the terminus of the glacier; during ‘storm’ events, that contribution dropped to ~40% as the contribution from diffuse and point sources of sediment throughout the pro‐glacial zone and within the meltwater channels increased. While ‘storm’ events accounted for just 3% of the study period, SSL was ~600% higher than the average over the monitoring period, and ~20% of the total SSL was generated in that time. Determining how hydro‐meteorological conditions and sediment sources control sediment fluxes will assist attempts to predict how pro‐glacial zones respond to future climate changes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The duration of the soil‐depth recovery needed for reoccurrence of shallow colluvial landslides at a given site in humid regions is much longer than the return period of rainfall needed to generate sufficient pore water pressure to initiate a landslide. Knowledge of the rate of change in soil depth in landslide scars is therefore necessary to evaluate return intervals of landslides. Spatial variation in sediment transport at the Kumanodaira landslide scar in central Japan was investigated by field observations. Spatial distribution of the rate of change in soil depth was estimated using sediment transport data and geographic information system (GIS) analysis. Observations revealed that the timing of sediment transport differed for shallow and deep soil layers. Near‐surface sediment transport (mostly dry ravel and some shallow soil creep at depths ≤0·05 m) measured in sediment traps was active in winter and early spring and was affected by freezing–thawing; soil creep of subsoil (i.e. >0·05 m), monitored by strain probes, was active in summer and autumn when precipitation was abundant. Near‐surface sediment flux was estimated by a power law function of slope gradient. Deeper soil creep was more affected by relative location to the landslide scar, which influences soil depth, than by slope gradient. Our study indicated that the rate of soil‐depth recovery is high just below the head scarp of the landslide. Abrupt changes in the longitudinal slope topography immediately above, within and just below the head scarp became smoother with time due to degradation proximate to the landslide head scarp and flanks, as well as aggradation just below the head scarp. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Tracer studies are a commonly used tool to develop and test Einstein-type stochastic bedload transport models. The movements of these tracers are controlled by many factors including grain characteristics, hydrologic forcing, and channel morphology. Although the influence of these sediment storage zones related to morphological features (e.g., bars, pools, riffles) have long been observed to “trap” bedload particles in transport, this influence has not been adequately quantified. In this paper we explore the influence of channel morphology on particle travel distances through the development of a Bayesian survival process model. This model simulates particle path length distributions using a location-specific “trapping probability” parameter (pi ), which is estimated using the starting and ending locations of bedload tracers. We test this model using a field tracer study from Halfmoon Creek, Colorado. We find that (1) the model is able to adequately recreate the observed multi-modal path length distributions, (2) particles tend to accumulate in trapping zones, especially during large floods, and (3) particles entrained near a trapping zone will travel a shorter distance than one that is further away. Particle starting positions can affect path lengths by as much as a factor of two, which we confirm by modelling “starting-location-specific” path length probability distributions. This study highlights the importance of considering both tracer locations and channel topography in examinations of field tracer studies. © 2020 John Wiley & Sons, Ltd.  相似文献   

13.
In a flume experiment with steady flow conditions, H. A. Einstein recognised the transport of bedload particles as consisting of steps of rolling, sliding, or saltation with intermittent rest periods, and introduced the concept of an average, ‘virtual’ transport velocity. This virtual velocity then has also been derived from tracer studies in the field by dividing the travelled distance of a tracer by the duration of competent flow. As a consequence, the virtual velocity in the field is represented by one single value only, despite the unsteady flow variables. Tracer measurements in a river have not been yet used to express transport velocity as a direct function of these actual variables, and insights from tracer measurements into the processes of sediment transport remain limited. In particular, the unsteady conditions for bedload in the field have impeded the derivation of sediment transport characteristics as determined from laboratory experiments, as well as the transfer of laboratory insights to a field setting. We introduce a method of data regression for the derivation of an ‘unsteady’ virtual velocity from repeated surveys of tracer positions. The regression program called graVel (provided as supplementary material) relates the integral of an excess flow variable term to measured travel distances, yielding the most probable threshold value for entrainment and the coefficient of linear and non‐linear formulas. An extended regression allows additional fitting of the exponent in non‐linear formulas. Application to published tracer data from the Mameyes River, Puerto Rico, shows that the unsteady virtual velocity is more likely governed by non‐linear relations to excess Shields stress, similar to bedload transport, than by relations linking the particle velocity linearly to excess shear velocity. Partial agreements with non‐dimensional results derived from the larger, non‐wadeable Mur River encourage the establishment of a generalised formula for the unsteady virtual velocity. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
Vertical sediment exchange is a fundamental component of bedload transport in gravel‐bed channels. This paper describes the characteristic depth of exchange achieved over a long flood series. Analysis is based on 11 recoveries of magnetically tagged gravels deployed in Carnation Creek, Canada, completed between 1990 and 2008. Vertical grain exchange mixes gravels throughout the streambed relatively rapidly. Within one to eight floods the mean burial depth approaches two times the surface layer thickness, quantified by the 90th percentile of the size distribution. Finer gravels are mixed more rapidly into the bed than coarser gravels. Both active and passive grain exchanges throughout most of the bed produce the overall vertical distribution of marked grains. Gravel exchanges exhibit fairly consistent patterns once tracers are well mixed by large floods. Results highlight the role of flood sequence in determining exchange depths, support the notion of an upper limit to exchange, and underscore the importance of passive grain exchange. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
This paper uses detailed mapping of eskers to address three questions which are important for reconstructing meltwater behaviour beneath contemporary and ancient ice masses: ‘What controls the morphology of simple and complex esker systems?’, ‘How do esker systems evolve through time?’ and ‘Are esker patterns compatible with groundwater controlled hydraulic spacing of esker tunnels?’. Esker crestlines and widths are mapped on the Breiðamerkurjökull foreland for eight time slices between 1945 and 2007, from high resolution (~50 cm) aerial photography, permitting their long‐term morphological evolution to be analysed in a high level of detail. We find that complex eskers develop where meltwater and sediment is abundant, such that sediment clogs channels, forming distributary eskers. Isolated eskers are simpler and smaller and reflect less abundant meltwater and sediment, which is unable to clog channels. Eskers may take several decades to emerge from outwash deposits containing buried ice and can increase or decrease in size when ice surrounding and underlying them melts out. It has been suggested that groundwater–channel coupling dictates the spacing between eskers at Breiðamerkurjökull. Our results do not dispute this, but suggest that the routing of sediment and meltwater through medial moraines is an additional important control on esker location and spacing. These results may be used to better understand the processes surrounding esker formation in a variety of geographical settings, enabling a more detailed understanding of the operation of meltwater drainage systems in sub‐marginal zones beneath glaciers and ice sheets. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The event‐ and physics‐based KINEROS2 runoff/erosion model for predicting overland flow generation and sediment production was applied to unpaved mountain roads. Field rainfall simulations conducted in northern Thailand provided independent data for model calibration and validation. Validation shows that KINEROS2 can be parameterized to simulate total discharge, sediment transport and sediment concentration on small‐scale road plots, for a range of slopes, during simulated rainfall events. The KINEROS2 model, however, did not accurately predict time‐dependent changes in sediment output and concentration. In particular, early flush peaks and the temporal decay in sediment output were not predicted, owing to the inability of KINEROS2 to model removal of a surface sediment layer of finite depth. After 15–20 min, sediment transport declines as the supply of loose superficial material becomes depleted. Modelled erosion response was improved by allowing road erodibility to vary during an event. Changing the model values of erosion detachment parameters in response to changes in surface sediment availability improved model accuracy of predicted sediment transport by 30–40%. A predictive relationship between road erodibility ‘states’ and road surface sediment depth is presented. This relationship allows implementation of the dynamic erodibility (DE) method to events where pre‐storm sediment depth can be estimated (e.g., from traffic usage variables). Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Remote mapping and measurement of surface processes at high spatial resolution is among the frontiers in Earth surface process research. Remote measurements that allow meter‐scale mapping of landforms and quantification of landscape change can revolutionize the study of landscape evolution on human timescales. At Mill Gulch in northern California, USA, an active earthflow was surveyed in 2003 and 2007 by airborne laser swath mapping (ALSM), enabling meter‐scale quantification of landscape change. We calculate four‐year volumetric flux from the earthflow and compare it to long‐term catchment average erosion rates from cosmogenic radionuclide inventories from adjacent watersheds. We also present detailed maps of changing features on the earthflow, from which we can derive velocity estimates and infer dominant process. These measurements rely on proper digital elevation model (DEM) generation and a simple surface‐matching technique to align the multitemporal data in a manner that eliminates systematic error in either dataset. The mean surface elevation of the earthflow and an opposite slope that was directly influenced by the earthflow decreased 14 ± 1 mm/yr from 2003 to 2007. By making the conservative assumption that these features were the dominant contributor of sediment flux from the entire Mill Gulch drainage basin during this time interval, we calculate a minimum catchment‐averaged erosion rate of 0·30 ± 0·02 mm/yr. Analysis of beryllium‐10 (10Be) concentrations in fluvial sand from nearby Russian Gulch and the South Fork Gualala River provide catchment averaged erosion rates of 0·21 ± 0·04 and 0·23 ± 0·03 mm/yr respectively. From translated landscape features, we can infer surface velocities ranging from 0·5 m/yr in the wide upper ‘source’ portion of the flow to 5 m/yr in the narrow middle ‘transport’ portion of the flow. This study re‐affirms the importance of mass wasting processes in the sediment budgets of uplifting weak lithologies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
瞬变电磁法中心回线装置资料解释方法的改进   总被引:11,自引:1,他引:10       下载免费PDF全文
中心回线装置是瞬变电磁勘探中最常用的装置之一.中心回线装置的视电阻率一般从回线中心点场的公式出发导出.在现场实际施工中,为提高工作效率,把发射回线中部三分之一的区域作为观测范围.通过对场分布特征的分析研究表明,与中心点相比,观测区边缘处的感应电动势数值偏离达15%~25%,这与广泛存在于华北型煤系中赋存深度为400~1000 m的陷落柱、导水小断层等引起的异常相比,已经不可忽略.大定源回线公式可以准确地表示任意场点的感应电动势,由此导出视电阻率无边缘效应影响;观测按照中心回线方式并保持在近区进行,可使感应电动势和视电阻率之间的转换简单而直接.理论和实际应用结果表明,这些措施进一步提高了瞬变电磁探测中心回线方法的探测精度.在有上覆低阻屏蔽层的情况下,对埋深500~700 m的陷落柱给出了明显的异常反映,并被井下掘进所验证.  相似文献   

20.
Multiple intertidal bars and troughs, often referred to as ‘ridges and runnels’, are significant features on many macrotidal sandy beaches. Along the coastline of England and Wales, they are particularly prevalent in the vicinity of estuaries, where the nearshore gradient is gentle and a large surplus of sediment is generally present. This paper examines the dynamics of such bar systems along the north Lincolnshire coast. A digital elevation model of the intertidal morphology obtained using LIDAR demonstrates that three to five intertidal bars are consistently present with a spacing of approximately 100 m. The largest and most pronounced bars (height = 0·5–0·8 m) are found around mean sea level, whereas the least developed bars (height = 0·2–0·5 m) occur in the lower intertidal zone. Annual aerial photographs of the intertidal bar morphology were inspected to try to track individual bars from year to year to derive bar migration rates; however, there is little resemblance between concurrent photographs, and ‘resetting’ of the intertidal profile occurs on an annual basis. Three‐dimensional beach surveys were conducted monthly at three locations along the north Lincolnshire coast over a one‐year period. The intertidal bar morphology responds strongly to the seasonal variation in the forcing conditions, and bars are least numerous and flattest during the more energetic winter months. Morphological changes over the monthly time scale are strongly affected by longshore sediment transport processes and the intertidal bar morphology can migrate along the beach at rates of up to 30 m per month. The behaviour of intertidal bars is complex and varies over a range of spatial and temporal scales in response to a combination of forcing factors (e.g. incident wave energy, different types of wave processes, longshore and cross‐shore sediment transport), relaxation time and morphodynamic feedback. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号