首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Optimal interpolation method is applied to Geosat altimetry data both to remove orbit error and to separate temporal mean sea surface dynamic topography (SSDT) from temporal fluctuations around the mean. Loss of long-wavelength oceanic signals at orbit error reduction procedure is smaller in this method than that in conventional collinear methods, but the areal average height over the study domain is still removed as the orbit error. The fluctuation SSDT is quantitatively evaluated by sea level data from tide gauge stations at Japanese islands. The correlation coefficient of the two sea-level variations is 0.83 when the loss of the areal average is compensated by the seasonal variation of the areal average height determined from the climatological monthly-mean SSDT. In addition, the improvement of the geoid model by combined use of Seasat altimetry data and hydrographic data is validated through the estimated temporal mean SSDT. In a local area where hydrographic data contemporary with the Seasat mission exist, the geoid model has been significantly improved so that the absolute SSDT can be determined from combination of the altimetry data and geoid model; the absolute SSDT describes the onset event of a quasi-stationary large meander of the Kuroshio south of Japan very well. Outside this local area, however, errors of several tens of centimeters still remain in the improved geoid model.  相似文献   

2.
The sea surface dynamic topography (the sea surface height relative to the geoid; hereafter abbreviated SSDT) can be divided into the temporal mean SSDT and the fluctuation SSDT around the mean. We use the optimal interpolation method to reduce the satellite radial orbit error and estimate the fluctuation SSDT southeast of Japan from Seasat altimetry data during the 17-day near-repeat mission. The fluctuation SSDT is further combined with the mean geopotential anomalies estimated from hydrographic data during the Seasat mission in order to give the approximated total SSDT, called here the composite SSDT (the approximated mean plus fluctuation SSDT's). The fluctuation SSDT is in accord with the low-frequency sea-level fluctuation recorded at tide gauge stations in the Japanese islands. The composite SSDT describes thoroughly variations of the location of the Kuroshio axis south of Japan determined on the basis of the GEK (Geomagnetic Electro-Kinematograph) surface velocities and the horizontal temperature distribution. The composite SSDT also agrees with oceanic variations east of Japan found in the temperature distribution at the depth of 200 m. These results confirm that the SSDT derived from altimetry data can provide fairly precise synoptic views of low-frequency oceanic phenomena.  相似文献   

3.
The Seasat altimeter data has been completely adjusted by a crossing arc technique to reduce the crossover discrepancies to approximately ±30 cm in five regional adjustments. This data was then used to create sea surface heights at 1° intersections in the ocean areas with respect to the GRS80 ellipsoid. These heights excluded the direct tidal effects but included the induced permanent deformation. A geoid corresponding to these sea surface heights was computed, based on the potential coefficients of the GEML2 gravity field up to degree 6, augmented by Rapp's coefficients up to degree 180. The differences between sea surface heights and the geoid were computed to give approximate estimates of sea surface topography. These estimates are dominated by errors in both sea surface heights and geoid undulations. To optimally determine sea surface topography a spherical harmonic analysis of raw estimates was carried out and the series was further truncated at degree 6, giving estimates with minimum wavelengths on the order of 6000 km. The direction of current flow can be computed on a global basis using the spherical harmonic expansion of the sea surface topography. Ths has been done, not only for Seasat/GEML2 estimates, but also using the recent dynamic topography estimates of Levitus. The results of the two solutions are very similar and agree well with the major circulation features of the oceans.  相似文献   

4.
Mesoscale eddies constitute the most energetic component of the variability of ocean currents. An attempt has been made for the detection of oceanic mesoscale eddy signatures over the Southern Indian Oceanic (SIO) regions using the dynamic topography derived from TOPEX/POSEIDON (T/P) altimeter data, by the signal processing technique, called matched filtering. After applying all the ocean and atmospheric corrections, data of a complete cycle of T/P over SIO has been used for detection of eddy signatures. The geoid undulations are removed from the data of corrected sea surface height from T/P and the resulting dynamic topographic data are passed through a matched filter designed to detect a generic eddy signature of Gaussian signal embedded in noise. The filter is optimized to detect eddies with amplitude 20 to 30 cm and diameters roughly 100?250 km. Out of all the analyzed data of T/P orbits over SIO a few examples are presented for brevity. Qualitative verification of eddies is done with some independent T/P sea level anomaly data over the region. The analysis shows that the matched filtering technique is most suitable for monitoring eddy signatures along the subsatellite track instantly over the remote and most hostile regions of the southern global oceans.  相似文献   

5.
本文通过动力海洋学的典型空间尺度与OEO-3,SEASAT,GEOSAT和TOPEX/Poseidon等卫星高度计测量高度的精度作比较,将星戴高度计应用对测轨精度的要求作了总结.对大多数海洋学研究来说、应用卫星高度计数据要求测轨精度达到数十厘米  相似文献   

6.
Sea surface height profiles derived from 2‐year, repeat track, Geosat altimeter data have been compared with a regional gravimetric geoid in the western North Sea, computed using a geopotential model and terrestrial gravity data. The comparison encompasses 18 Geosat profiles covering a 750 × 850 km area of the North Sea. After a second‐order polynomial was used to model the long‐wavelength differences which cannot be clearly separated over an area of this size, results show agreement to better than ±3 cm for wavelengths between approximately 20 and 750 km. In regions where terrestrial gravity data were not available to improve the geoid, similar comparisons with the OSU91A geopotential model alone show differences of up to ±6 cm. This illustrates the importance of incorporating local gravity data in regional geoid computations, and partly validates the regional gravimetric geoid solution and Geosat sea surface profiles in the western North Sea. It is concluded that, in marine areas where the sea surface topography is known to be small in magnitude, Geosat sea surface profiles can act as an independent control on gravimetric geoids in the medium‐wavelength range.  相似文献   

7.
Abstract

The ocean mean dynamic topography (MDT) is the surface representation of the ocean circulation. The MDT may be determined by the ocean approach, which involves temporal averaging of numerical ocean circulation model information, or by the geodetic approach, wherein the MDT is derived using the ellipsoidal height of the mean sea surface (MSS), or mean sea level (MSL) minus the geoid as the geoid. The ellipsoidal height of the MSS might be estimated either by satellite or coastal tide gauges by connecting the tide gauge datum to the Earth-centred reference frame. In this article we present a novel approach to improve the coastal MDT, where the solution is based on both satellite altimetry and tide gauge data using new set of 302 tide gauges with ellipsoidal heights through the SONEL network. The approach was evaluated for the Northeast Atlantic coast where a dense network of GNSS-surveyed tide gauges is available. The typical misfit between tide gauge and satellite or oceanographic MDT was found to be around 9?cm. This misfit was found to be mainly due to small scale geoid errors. Similarly, we found, that a single tide gauge places only weak constraints on the coastal dynamic topography.  相似文献   

8.
Altimeter measurements of sea‐level variability have errors due to the altimeter not repeatedly sampling the same point on the ocean surface. The errors are proportional to the local slope of the mean sea surface. Accurate removal of geoid error is essential if altimeter data are to be used to study the relationship between geostrophic turbulence and bathymetry. The error can be reduced by using an accurate model of the mean surface. We use the multiyear TOPEX altimeter data set to develop a model for the mean sea surface along the TOPEX/POSEIDON ground track by estimating the coefficients of a local plane centered on every 2 km x 7 km bin sampled by the altimeter. We have evaluated the ability of this model. compared against two global mean sea‐surface models, to reduce the error associated with steep gradients. The two global models are the Center for Space Research 1995 model and the Ohio State University 1995 model. The three models show similar variability over the oceans, and none shows the large residual errors that can be seen in collinear analysis near some seamounts and trenches. The standard deviation of the variability using the plane model, however, is consistently smaller in low‐variability, high‐geoid‐gradient areas, indicating a slightly better performance than the two global models.  相似文献   

9.
Eight years of sea surface height data derived from the TOPEX/Poseidon altimeter, are analyzed in order to identify long- and a-periodic behavior of the North Atlantic sea level. For easy interpolation, sea surface height data are converted into sea surface topography data using the geoid derived from EGM96 to degree 360. Principal Component Analysis is used to identify the most dominant spatial and temporal variations. In order to separate dominant periodic signals, a yearly and a half-yearly oscillation, as well as alias effects from imperfect ocean tide corrections, are estimated independently by a Harmonic Analysis and subtracted. The residuals are smoothed by a 90-day moving average filter and examined once again by a PCA, which identifies a low-frequency variation with a period of approximately 6-7 years and an amplitude of about 1 dm, as well as a large sea level change of partially more than ±1 dm within only few months. This sea level change can also be seen in yearly and seasonal sea level residuals. Furthermore, the analysis shows a significant sea level change in 1998 occurring almost over the whole North Atlantic, which is not clearly identified by the PCA. Similar results are obtained by analyzing sea surface temperature and sea level pressure data.  相似文献   

10.
A 1 ° × 1 ° global detailed gravimetric geoid has been computed, using a combination of the Goddard Space Flight Center (GSFC) GEM‐8 potential field model and a set of 38,406 1° × 1° mean surface free air anomalies. Numerous short wavelength features are shown in the geoid contour map, e.g., the steep gradients associated with oceanic trenches. Comparison of this geoid with geoceiver derived and astrogeodetic geoid heights in the United States resulted in an r.m.s. difference of about 1.7 m. Comparisons with three GEOS‐3 altimeter derived geoidal profiles revealed that for areas with good surface data coverage, the relative agreement is generally better than 5 m.  相似文献   

11.
Eight years of sea surface height data derived from the TOPEX/Poseidon altimeter, are analyzed in order to identify long- and a-periodic behavior of the North Atlantic sea level. For easy interpolation, sea surface height data are converted into sea surface topography data using the geoid derived from EGM96 to degree 360. Principal Component Analysis is used to identify the most dominant spatial and temporal variations. In order to separate dominant periodic signals, a yearly and a half-yearly oscillation, as well as alias effects from imperfect ocean tide corrections, are estimated independently by a Harmonic Analysis and subtracted. The residuals are smoothed by a 90-day moving average filter and examined once again by a PCA, which identifies a low-frequency variation with a period of approximately 6–7 years and an amplitude of about 1 dm, as well as a large sea level change of partially more than ±1 dm within only few months. This sea level change can also be seen in yearly and seasonal sea level residuals. Furthermore, the analysis shows a significant sea level change in 1998 occurring almost over the whole North Atlantic, which is not clearly identified by the PCA. Similar results are obtained by analyzing sea surface temperature and sea level pressure data.  相似文献   

12.
The primary experiment on the Geodynamics Experimental Ocean Satellite‐3 (GEOS‐3) is the radar altimeter. This experiment's major objective is to demonstrate the utility of measuring the geometry of the ocean surface, i.e., the geoid. Results obtained from this experiment so far indicate that the planned objectives of measuring the topography of the ocean surface with an absolute accuracy of ±5 m can be met and perhaps exceeded. The GEOS‐3 satellite altimeter measurements have an instrument precision in the range of ±25 cm to ±50 cm when the altimeter is operating in the “short pulse”; mode. After one year's operations of the altimeter, data from over 5,000 altimeter passes have been collected. With the mathematical models developed and the altimeter data presently available, mapping of local areas of ocean topography has been realized to the planned accuracy levels and better. This paper presents the basic data processing methods employed and some interesting results achieved with the early data. Plots of mean sea surface heights as inferred by the altimeter measurements are compared with a detailed 1o × 1° gravimetric geoid.  相似文献   

13.
This article describes the impact of satellite altimeter data on the simulations of sea level variability (SLV) by a nonlinear reduced gravity model of the entire Indian Ocean. The model has been forced by 6-hourly analyzed wind stress data containing SSM/I observations and has been able to produce realistic circulation features. However, SLV values observed by Topex/Poseidon altimeter do not fit these simulations because of imperfect initial data. Hence an attempt has been made to initialize the model using altimeter data. The initialized model-generated SLVvalues have been compared with SLV derived by altimeter for monsoon as well as nonmonsoon months of 1996. Experimental runs have been performed for 10 days, 20 days, and one month. It has been found that the initialized model results on the final day of these experiments are in very good agreement with altimeter data of the same day. It is thus possible, in principle, to hindcast and forecast sea level variations in the time scale of 10 days to one month with the availability of good quality wind data for forcing the model and altimeter observations of sea level for initializing it.  相似文献   

14.
This article describes the impact of satellite altimeter data on the simulations of sea level variability (SLV) by a nonlinear reduced gravity model of the entire Indian Ocean. The model has been forced by 6-hourly analyzed wind stress data containing SSM/I observations and has been able to produce realistic circulation features. However, SLV values observed by Topex/Poseidon altimeter do not fit these simulations because of imperfect initial data. Hence an attempt has been made to initialize the model using altimeter data. The initialized model-generated SLVvalues have been compared with SLV derived by altimeter for monsoon as well as nonmonsoon months of 1996. Experimental runs have been performed for 10 days, 20 days, and one month. It has been found that the initialized model results on the final day of these experiments are in very good agreement with altimeter data of the same day. It is thus possible, in principle, to hindcast and forecast sea level variations in the time scale of 10 days to one month with the availability of good quality wind data for forcing the model and altimeter observations of sea level for initializing it.  相似文献   

15.
This study concerns the determination of a regional geoid model in the North Atlantic area surrounding the Azores islands by combining multi-mission altimetry from the ERS (European Remote Sensing) satellites and surface gravity data. A high resolution mean sea surface, named AZOMSS99, has been derived using altimeter data from ERS-1 and ERS-2 35-day cycles, spanning a period of about four years, and from ERS-1 geodetic mission. Special attention has been paid to data processing of points around the islands due to land contamination on some of the geophysical corrections. A gravimetric geoid has been computed from all available surface gravity, including land and sea observations acquired during an observation campaign that took place in the Azores in October 1997 in the scope of a European and a Portuguese project. Free air gravity anomalies were derived by altimetric inversion of the mean sea surface heights. These were used to fill the large gaps in the surface gravity and combined solutions were computed using both types of data. The gravimetric and combined solutions have been compared with the mean sea surface and GPS (Global Positioning System)-levelling derived geoid undulations in five islands. It is shown that the inclusion of altimeter data improves geoid accuracy by about one order of magnitude. Combined geoid solutions have been obtained with an accuracy of better than one decimetre.  相似文献   

16.
This study concerns the determination of a regional geoid model in the North Atlantic area surrounding the Azores islands by combining multi-mission altimetry from the ERS (European Remote Sensing) satellites and surface gravity data. A high resolution mean sea surface, named AZOMSS99, has been derived using altimeter data from ERS-1 and ERS-2 35-day cycles, spanning a period of about four years, and from ERS-1 geodetic mission. Special attention has been paid to data processing of points around the islands due to land contamination on some of the geophysical corrections. A gravimetric geoid has been computed from all available surface gravity, including land and sea observations acquired during an observation campaign that took place in the Azores in October 1997 in the scope of a European and a Portuguese project. Free air gravity anomalies were derived by altimetric inversion of the mean sea surface heights. These were used to fill the large gaps in the surface gravity and combined solutions were computed using both types of data. The gravimetric and combined solutions have been compared with the mean sea surface and GPS (Global Positioning System)-levelling derived geoid undulations in five islands. It is shown that the inclusion of altimeter data improves geoid accuracy by about one order of magnitude. Combined geoid solutions have been obtained with an accuracy of better than one decimetre.  相似文献   

17.
为充分挖掘海洋重力数据在反演海底地形中的应用潜力,尝试探索利用大地水准面高反演海底地形的技术途径,并以夏威夷—皇帝海山链拐点所在海区作为反演试验区进行验证。首先采用Belikov列推法计算伴随(缔和)勒让德函数,利用EIGEN-6C4地球重力场模型解算获取了分辨率为1'的大地水准面高格网数值模型;然后通过综合分析反演比例函数和转换函数特点、研究海区大地水准面高与海底地形的相干特性以及大地水准面高本身尺度特征,获得了利用大地水准面高反演海底地形的频段范围;最终以试验海区大地水准面高为数据输入,构建了相应的海底地形模型(BNT模型),并与ETOPO1等海深模型进行比对分析。试验结果表明:BNT模型检核差值在一倍均方差范围检核点数量占比70.60%,相比正态分布更加集中;BNT模型检核精度低于ETOPO1等海深模型;海深模型检核精度随着水深增加不断提升,水深小于1 000 m时,海深模型相对误差出现较大发散现象;计算海域ETOPO1模型精度最高,GEBCO模型和DTU10模型检核精度相当。  相似文献   

18.
A 5’ detailed gravimetric geoid has been computed for the northwest Atlantic Ocean as ground truth for the GEOS‐3 satellite altimeter experiment. Comparisons of this geoid with satellite derived geoceiver station heights show an r.m.s. difference of 1.2 m. Initial comparisons with GEOS‐III altimeter derived geoid profiles have indicated a relative agreement of generally better than 2 m.  相似文献   

19.
Abstract

A set of time‐averaged sea surface heights at 1° intervals, derived from the adjusted SEASAT altimeter data, and the GEML2 gravity field are used to estimate the long‐wavelength stationary sea surface topography. In order to reduce the leakage of energy in the estimated sea surface topography, the GEML2 field is augmented by the Rapp81 gravity field to generate geoidal undulations with wavelengths consistent with the ones of sea surface heights. These undulations are subtracted from the sea surface heights, and the resulting differences are subjected to filtering in order to recover sea surface topography with minimum wavelengths of 6000 km and an estimated accuracy of 20–25 cm. These estimates agree well with oceanographic and other satellite‐derived results.

The direction of current flow can be computed on a global basis using the spherical harmonic expansion of sea surface topography. This is done not only for the SEASAT/GEML2 estimates, but also using the recent dynamic topography estimates of Levitus. The results of the two solutions are very similar and agree well with the major circulation features of the oceans.  相似文献   

20.
The degree to which satellite altimetry may extend its contributions to geophysics will depend on the accuracy of corrected altitudes, on the precision of orbit corrections, on exact geoid representation and on our ability to separate independent oceanic processes affecting sea surface elevations. The barotropic tide-namely the oceanic response to gravitational driving which maintains its phase lock with gravitational forces and which is always exactly predictable-constitutes a fundamental phenomenon in itself. Indirectly it tends to obscure in altimetric data other processes such as solid earth tides, large scale ocean circulation and climatic response of the ocean. The most realistic hope of obtaining the necessary predictive information on global oceanic tides resides in the construction of complete and accurate cotidal and corange maps. The importance of direct observations of open ocean tides in achieving this goal is stressed using an array of seafloor pressure data from the NE Pacific. Among more general results, the locations of long postulated semidiurnal amphidromes in the area are defined with an accuracy of one degree or less for M2 and S2. The importance of observations over a sufficient spatial coverage in tuning mathematical simulations of tides is illustrated. Ten new sets of tidal constants for the NE Pacific are tabulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号