首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Landslides commonly occurs in hilly areas and causes an enormous loss iof life and property every year. National highway-1D (NH-1D) is the only road link between the two districts (Kargil and Leh) of Ladakh region that connects these districts with Kashmir valley. The landslide failure record of the recent past along this sector of the highway is not available. The present study documents landslide susceptible zones and records occurrence of 60 landslides during the last 4 years showing an increasing trend in the occurrence of landslides over these years in this sector. The landslide susceptibility zonation map has been prepared based on the numerical rating of ten major factors viz. slope morphometry, lithology, structure, relative relief, land cover, landuse, rainfall, hydrological conditions, landslide incidences and Slope Erosion, categorised the area in different zones of instability based on the intensity of susceptibility. The landslide susceptibility map of the area encompassing 73.03 km2 is divided into 150 facets. Out of the total of 150 facets, 85 facets fall in low susceptibility zone covering 43.56 km2 which constitute about 59.65% of the total area under investigation with a record of 5 landslides; 40 facets fall in the moderate susceptibility zone covering 16.94km2 which constitutes about 23.19% of the study area with a record of 20 landslides; and 25 facets fall in the high susceptibility zone covering 12.53 km2 which constitute about 17.15% of the study area with a record of 35 landslides. Most of the facets which fall in HSZ are attributed to slope modification for road widening.  相似文献   

2.
Slope instability research and susceptibility mapping is a fundamental component of hazard management and an important basis for provision of measures aimed at decreasing the risk of living with landslides. On this basis, this paper presents the result of a comprehensive study on slope stability analyses and landslide susceptibility mapping carried out in part of Sado Island of Japan. Various types of landslides occurred in the island throughout history. Little is known about the triggering factors and severity of old landslides, but for many of the recent slope failures, the slope characteristics and stratigraphy are such that ground surfaces retain water perennially and landslides occur when additional moisture is induced during rainfall and snowmelt. A range of methods are available in literature for preparation of landslide susceptibility maps. In this study we used two methods namely, the analytical hierarchy process (AHP) and logistic regression, to produce and later compare two susceptibility maps. AHP is a semi-qualitative method, which involves a matrix-based pair-wise comparison of the contribution of different factors for landsliding. Logistic regression on the other hand promotes a multivariate statistical analysis with an objective to find the best-fitting model that describes the relationship between the presence or absence of landslides (dependent variable) and a set of causal factors (independent parameters). Elevation, lithology and slope gradient were casual factors in this study. The determinations of factor weights by AHP and logistic regression were preceded by the calculation of class weights (landslide densities) based on bivariate statistical analyses (BSA). The differences between the AHP derived susceptibility map and the logistic regression counterpart are relatively minor when broad-based classifications are considered. However, with an increase in the number of susceptibility classes, the logistic regression map gave more details but the one derived by AHP failed to do so. The reason is that the majority of pixels in the AHP map have high values, and an increase in the number of classes gives little change in the spatial distribution of susceptibility zones in the middle. To verify the practicality of the two susceptibility maps, both of them were compared with a landslide activity map containing 18 active landslide zones. The outcome was that the active landslide zones do not completely fit into the very high susceptibility class of both maps for various reasons. But 70% of these landslide zones fall into the high and very high susceptibility zones of the AHP map while this is 63% in the case of logistic regression. This indicates that despite the skewed distribution of susceptibility indices, the AHP map was better to capture the reality on the ground than the logistic regression equivalent.  相似文献   

3.
本文发展了一种基于分形统计的滑坡易发程度评价方法,该方法仅使用已有的滑坡数据,首先通过分形统计获得滑坡分布的分形丛集关系,再通过GIS的空间操作与分析生成滑坡易发程度区划图。提出一种对滑坡易发程度区划图的可信度和预测效果进行评价的方法。本文介绍了这些方法及其在浙江地区应用的结果。  相似文献   

4.
国道212线陇南段是我国地质灾害最发育的地区之一,绘制该区的滑坡危险等级地图对灾害管理和发展规划是极其必要的。基于滑坡的野外调查、机理研究和室内试验等工作,分析了滑坡与各种要素的相关性,选择控制滑坡的9个重要要素作为评价要素,利用GIS和二元统计的信息值模型和滑坡先验风险要素模型绘制了研究区的滑坡危险等级地图。最后,选用区内11个具有明显滑动位移的活动滑坡与滑坡危险等级地图比较,检验其可靠度。结果表明,活动的滑坡绝大部分都位于危险等级很高和高的范围内,说明两种模型的评价结果与研究区实际情况相吻合,同时也反映出信息值模型与实际情况更加相符。  相似文献   

5.
Globally, landslides cause hundreds of billions of dollars in damage and hundreds of thousands of deaths and injuries each year. A landslide susceptibility map describes areas where landslides are likely to occur in the future by correlating some of the principal factors that contribute to landslides with the past distribution of landslides. A case study is conducted in the mountainous northern Iran. In this study, a landslide susceptibility map of the study area was prepared using bivariate method with the help of the geographic information system. Area density (bivariate) method was used to weight landslide-influencing data layers. An overlay analysis is carried out by evaluating the layers obtained according to their weight and the landslide susceptibility map is produced. The study area was classified into five hazard classes: very low, low, moderate, high, and very high. The percentage distribution of landslide susceptibility degrees was calculated. It was found that about 26% of the study area is classified as very high and high hazard classes.  相似文献   

6.
Mapping landslide susceptibility in Travis County, Texas, USA   总被引:4,自引:0,他引:4  
A geographic information system (GIS) was used to construct a landslide hazard map for Travis County, Texas. The County is experiencing rapid growth, and development has encroached into unstable terrain that is vulnerable to landslides. Four layers of data were superimposed to create the landslide hazard map. Slope was given the most emphasis, followed by geology, vegetation, and proximity to faults. The final map shows areas of low, medium, and high landslide susceptibility. Areas of high susceptibility occupy stream and reservoir banks, rock escarpments, and agricultural land. The landslide hazard map can be a useful geologic criterion for land use planning. Planners can use the map to allocate appropriate land uses to unstable terrain, and to identify existing structures at risk from landslide activity. The methods presented in this paper can be adapted to other counties in the U.S. and elsewhere. Results of this study suggest that geographic information systems can effectively compile and overlay several data layers relevant to landslide hazards.  相似文献   

7.
Comparative evaluation of landslide susceptibility in Minamata area, Japan   总被引:6,自引:0,他引:6  
Landslides are unpredictable; however, the susceptibility of landslide occurrence can be assessed using qualitative and quantitative methods based on the technology of the Geographic Information Systems (GIS). A map of landslide inventory was obtained from the previous work in the Minamata area, the interpretation from aerial photographs taken in 1999 and 2002. A total of 160 landslides was identified in four periods. Following the construction of geospatial databases, including lithology, topography, soil deposits, land use, etc., the study documents the relationship between landslide hazard and the factors that affect the occurrence of landslides. Different methods, namely the logistic regression analysis and the information value model, were then adopted to produce susceptibility maps of landslide occurrence. After the application of each method, two resultant maps categorize the four classes of susceptibility as high, medium, low and very low. Both of them generated acceptable results as both classify the majority of the cells with landslide occurrence in high or medium susceptibility classes, which could be believed to be a success. By combining the hazard maps generated from both methods, the susceptibility was classified as high–medium and low–very low levels, in which the classification of high susceptibility level covers 6.5% of the area, while the areas predicted to be unstable, which are 50.5% of the total area, are classified as the low susceptibility level. However, comparing the results from both the approaches, 43% of the areas were misclassified, either from high–medium to low–very low or low–very low to high–medium classes. Due to the misclassification, 8% and 3.28% of all the areas, which should be stable or free of landsliding, were evaluated as high–medium susceptibility using the logistic regression analysis and the information value model, respectively. Moreover, in the case of the class rank change from high–medium susceptibility to low–very low, 35% and 39.72% of all mapping areas were predicted as stable using both the approaches, respectively, but in these areas landslides were likely to occur or were actually recognized.  相似文献   

8.
Landslides are one of the most frequent and common natural hazards in Malaysia. Preparation of landslide susceptibility maps is one of the first and most important steps in the landslide hazard mitigation. However, due to complex nature of landslides, producing a reliable susceptibility map is not easy. For this reason, a number of different approaches have been used, including direct and indirect heuristic approaches, deterministic, probabilistic, statistical, and data mining approaches. Moreover, these landslides can be systematically assessed and mapped through a traditional mapping framework using geoinformation technologies. Since the early 1990s, several mathematical models have been developed and applied to landslide hazard mapping using geographic information system (GIS). Among various approaches, fuzzy logic relation for mapping landslide susceptibility is one of the techniques that allows to describe the role of each predisposing factor (landslide-conditioning parameters) and their optimal combination. This paper presents a new attempt at landslide susceptibility mapping using fuzzy logic relations and their cross application of membership values to three study areas in Malaysia using a GIS. The possibility of capturing the judgment and the modeling of conditioning factors are the main advantages of using fuzzy logic. These models are capable to capture the conditioning factors directly affecting the landslides and also the inter-relationship among them. In the first stage of the study, a landslide inventory was complied for each of the three study areas using both field surveys and airphoto studies. Using total 12 topographic and lithological variables, landslide susceptibility models were developed using the fuzzy logic approach. Then the landslide inventory and the parameter maps were analyzed together using the fuzzy relations and the landslide susceptibility maps produced. Finally, the prediction performance of the susceptibility maps was checked by considering field-verified landslide locations in the studied areas. Further, the susceptibility maps were validated using the receiver-operating characteristics (ROC) success rate curves. The ROC curve technique is based on plotting model sensitivity—true positive fraction values calculated for different threshold values versus model specificity—true negative fraction values on a graph. The ROC curves were calculated for the landslide susceptibility maps obtained from the application and cross application of fuzzy logic relations. Qualitatively, the produced landslide susceptibility maps showed greater than 82% landslide susceptibility in all nine cases. The results indicated that, when compared with the landslide susceptibility maps, the landslides identified in the study areas were found to be located in the very high and high susceptibility zones. This shows that as far as the performance of the fuzzy logic relation approach is concerned, the results appeared to be quite satisfactory, the zones determined on the map being zones of relative susceptibility.  相似文献   

9.
Landslides cause heavy damage to property and infrastructure, in addition to being responsible for the loss of human lives in many parts of the Turkey. The paper presents GIS-based spatial data analysis for landslide susceptibility mapping in the regions of the Sultan Mountains, West of Akşehir, and central part of Turkey. Landslides occur frequently in the area and seriously affect local living conditions. Therefore, spatial analysis of landslide susceptibility in the Sultan Mountains is important. The relationships between landslide distributions with the 19 landslide affecting parameters were analysed using a Bayesian model. In the study area, 90 landslides were observed. The landslides were randomly subdivided into 80 training landslides and 10 test landslides. A landslide susceptibility map was produced by using the training landslides. The test landslides were used in the accuracy control of the produced landslide susceptibility map. Approximately 9% of the study area was classified as high susceptibility zone. Medium, low and very low susceptibility zones covered 8, 23 and 60% of the study area, respectively. Most of the locations of the observed landslides actually fall into moderate (17.78%) and high (77.78. %) susceptibility zones of the produced landslide susceptibility map. This validates the applicability of proposed methods, approaches and the classification scheme. The high susceptibility zone is along both sides of the Akşehir Fault and at the north-eastern slope of the Sultan Mountains. It was determined that the surface area of the Harlak and Deresenek formations, which have attained lithological characteristics of clayey limestone with a broken and separated base, and where area landslides occur, possesses an elevation of 1,100–1,600 m, a slope gradient of 25°–35° and a slope aspect of 22.5°–157.5° facing slopes.  相似文献   

10.
Landslides are very common natural problems in the Black Sea Region of Turkey due to the steep topography, improper use of land cover and adverse climatic conditions for landslides. In the western part of region, many studies have been carried out especially in the last decade for landslide susceptibility mapping using different evaluation methods such as deterministic approach, landslide distribution, qualitative, statistical and distribution-free analyses. The purpose of this study is to produce landslide susceptibility maps of a landslide-prone area (Findikli district, Rize) located at the eastern part of the Black Sea Region of Turkey by likelihood frequency ratio (LRM) model and weighted linear combination (WLC) model and to compare the results obtained. For this purpose, landslide inventory map of the area were prepared for the years of 1983 and 1995 by detailed field surveys and aerial-photography studies. Slope angle, slope aspect, lithology, distance from drainage lines, distance from roads and the land-cover of the study area are considered as the landslide-conditioning parameters. The differences between the susceptibility maps derived by the LRM and the WLC models are relatively minor when broad-based classifications are taken into account. However, the WLC map showed more details but the other map produced by LRM model produced weak results. The reason for this result is considered to be the fact that the majority of pixels in the LRM map have high values than the WLC-derived susceptibility map. In order to validate the two susceptibility maps, both of them were compared with the landslide inventory map. Although the landslides do not exist in the very high susceptibility class of the both maps, 79% of the landslides fall into the high and very high susceptibility zones of the WLC map while this is 49% for the LRM map. This shows that the WLC model exhibited higher performance than the LRM model.  相似文献   

11.
Preparation of landslide susceptibility maps is important for engineering geologists and geomorphologists. However, due to complex nature of landslides, producing a reliable susceptibility map is not easy. For this reason, many procedures have been used to produce such maps. In this study, a new attempt is tried to produce landslide susceptibility map of a part of West Black Sea Region of Turkey. To obtain the fuzzy relations for producing the susceptibility map, a landslide inventory database is compiled by both field surveys and airphoto studies. A total of 266 landslides are identified in the study area, and dominant mode of failure is rotational slide while the other mode of failures are soil flow and shallow translational slide. The landslide inventory and the parameter maps are analyzed together using a computer program (FULLSA) developed in this study. The computer program utilizes the fuzzy relations and produces the landslide susceptibility map automatically. According to this map, 9.6% of the study area is classified as very high susceptibility, 10.3% as high susceptibility, 8.9% as moderate susceptibility, 27.5% as low susceptibility and 43.8% as very low susceptibility or nonsusceptible areas. The prediction performance of the susceptibility map is checked by considering actual landslides in the study area. For this purpose, strength of the relation (rij) and the root mean square error (RMSE) values are calculated as 0.867 and 0.284, respectively. These values show that the produced landslide susceptibility map in the present study has a sufficient reliability. It is believed that the approach employed in this study mainly prevents the subjectivity sourced from the parameter selection and provides a support to improve the landslide susceptibility mapping studies.  相似文献   

12.
Landslide susceptibility mapping is among the useful tools applied in disaster management and planning development activities in mountainous areas. The susceptibility maps prepared in this research provide valuable information for landslide hazard management in Lashgarak region of Tehran. This study was conducted to, first, prepare landslide susceptibility maps for Lashgarak region and evaluate landslide effect on mainlines and, second, to analyze the main factors affecting landslide hazard increase in the study area in order to propose efficient strategies for landslide hazard mitigation. A GIS-based multi-criteria decision analysis model (fuzzy logic) is used in the present work for scientific evaluation of landslide susceptible areas in Lashgarak region. To this end, ArcGIS, PCIGeomatica, and IDIRISI software packages were used. Eight information layers were selected for information analysis: ground strength class, slope angle, terrain roughness, normalized difference moisture index, normalized difference vegetation index, distance from fault, distance from the river, and distance from the road. Next, eight different scenarios were created to determine landslide susceptibility of the study area using different operators (intersection (AND), union (OR), algebraic sum (SUM), multiplication (PRODUCT), and different fuzzy gamma values) of fuzzy overlay approach. After that, the performance of various fuzzy operators in landslide susceptibility mapping was empirically compared. The results revealed the excellent consistency of landslide susceptibility map prepared using the fuzzy union (OR) operator with landslide distribution map in the study area. Eventually, the accuracy of landslide susceptibility map prepared using the fuzzy union (OR) operator was evaluated using the frequency ratio diagram. The results showed that frequency values of the landslides gradually increase from “low susceptibility” to high “susceptibility” as 88.34% of the landslides are categorized into two “high” and “very high” susceptibility classes, implying the satisfactory consistency between the landslide susceptibility map prepared using fuzzy union (OR) operator and landslide distribution map.  相似文献   

13.
This paper deals with the landslide susceptibility zonation of Tevankarai Ar sub-watershed using weighted similar choice fuzzy method in a GIS environment. There has been a rapid increase in landslide occurrences in the Kodaikkanal town and area surrounding the town specially in the settlements around the town and road links leading to and from the town. This necessitates a detailed study of slope instability problems in this area. It is observed that these incidences occur frequently during the monsoon and summer showers. Rainfall is identified as the prime triggering factor. Eleven physical factors that cause instability are identified as causative factors from the field investigations and landslide occurrences. Land use pattern, slope gradient, curvature and aspect, weathering index which are evaluated from the weathering ratios of different chemical constituents of the three major lithological variations, soil type, hydraulic conductivity of soil and soil thickness, geomorphology, drainage, and lineament have been utilized to prepare the spatial variation. A weighted similar choice fuzzy model which ranks a set of alternatives by identifying the similarity between the outcome of alternatives and outcome of ideal alternatives is used to rank the causative factors. Each causative factor is classified into sub-categories and rated based on their effect on stimulating the landslide event using qualitative judgment derived from field studies and landslide history. The prepared thematic maps of causative factors are integrated, utilizing the GIS software Arcmap. The outcome has projected the low, moderate, high, and very high landslide susceptibility zones. The high-hazard and very high-hazard areas fall in the northwestern part characterized by croplands and agricultural plantations, while the moderate hazard zones are seen in prominent settlements and low-hazard zones are observed in the sparse settlements and zones of less agricultural activity. The model is verified using the relative landslide density (R) index, and the susceptibility map is found to be consistent with the mapped landslide incidences. The results from this study illustrate that the use of weighted similar choice fuzzy method is suitable for landslide susceptibility mapping on regional scale in growing hill towns as Kodaikkanal town.  相似文献   

14.
Landslides are one of the most frequent and common natural hazards in many parts of Himalaya. To reduce the potential risk, the landslide susceptibility maps are one of the first and most important steps in the landslide hazard mitigation. Earth observation satellite and geographical information system-based techniques have been used to derive and analyse various geo-environmental parameters significant to landslide hazards. In this study, a bivariate statistics method was used for spatial modelling of landslide susceptibility zones. For this purpose, thematic layers including landslide inventory, geology, slope angle, slope aspect, geomorphology, slope morphology, drainage density, lineament and land use/land cover were used. A large number of landslide occurrences have been observed in the upper Tons river valley area of Western Himalaya. The result has been used to spatially classify the study area into zones of very high, high, moderate, low and very low landslide susceptibility zones. About 72% of active landslides have been observed to occur in very high and high hazard zones. The result of the analysis was verified using the landslide location data. The validation result shows significant agreement between the susceptibility map and landslide location. The result can be used to reduce landslide hazards by proper planning.  相似文献   

15.
Landslides are natural geological disasters causing massive destructions and loss of lives, as well as severe damage to natural resources, so it is essential to delineate the area that probably will be affected by landslides. Landslide susceptibility mapping (LSM) is making increasing implications for GIS-based spatial analysis in combination with multi-criteria evaluation (MCE) methods. It is considered to be an effective tool to understand natural disasters related to mass movements and carry out an appropriate risk assessment. This study is based on an integrated approach of GIS and statistical modelling including fuzzy analytical hierarchy process (FAHP), weighted linear combination and MCE models. In the modelling process, eleven causative factors include slope aspect, slope, rainfall, geology, geomorphology, distance from lineament, distance from drainage networks, distance from the road, land use/land cover, soil erodibility and vegetation proportion were identified for landslide susceptibility mapping. These factors were identified based on the (1) literature review, (2) the expert knowledge, (3) field observation, (4) geophysical investigation, and (5) multivariate techniques. Initially, analytical hierarchy process linked with the fuzzy set theory is used in pairwise comparisons of LSM criteria for ranking purposes. Thereafter, fuzzy membership functions were carried out to determine the criteria weights used in the development of a landslide susceptibility map. These selected thematic maps were integrated using a weighted linear combination method to create the final landslide susceptibility map. Finally, a validation of the results was carried out using a sensitivity analysis based on receiver operator curves and an overlay method using the landslide inventory map. The study results show that the weighted overlay analysis method using the FAHP and eigenvector method is a reliable technique to map landslide susceptibility areas. The landslide susceptibility areas were classified into five categories, viz. very low susceptibility, low susceptibility, moderate susceptibility, high susceptibility, and very high susceptibility. The very high and high susceptibility zones account for 15.11% area coverage. The results are useful to get an impression of the sustainability of the watershed in terms of landsliding and therefore may help decision makers in future planning and mitigation of landslide impacts.  相似文献   

16.
Landslides in Jordan have caused numerous problems during the past 40 years. The most critical slides occurred during the period of 1991/1992 after exceptional heavy rain and snowfall. Many disastrous landslides occurred along the newly reconstructed international highway that links Amman, Jerash and Irbid. Causes for these slides are attributed mainly to the lack of a comprehensive overview and geotechnical understanding of the problem.Many investigators have been interested in this problem of finding an adequate solution to such landslides in Jordan either by using theoretical analysis or by using computer software to solve the slope instability problems. A detailed study was conducted at the Jordan University of Science and Technology to investigate the potential causes and measures for this problem. Seven landslides along the mountainous section of this international highway were reviewed. One of these landslides was thoroughly investigated using a three-dimensional computer program called JUST-SLOPE introduced at the Jordan University of Science and Technology campus. Results of this study indicate that landslides at this site could have been predicted had this technique been applied prior to the occurrence of this slide.  相似文献   

17.
The Calabria (Southern Italy) region is characterized by many geological hazards among which landslides, due to the geological, geomorphological, and climatic characteristics, constitute one of the major cause of significant and widespread damage. The present work aims to exploit a bivariate statistics-based approach for drafting a landslide susceptibility map in a specific scenario of the region (the Vitravo River catchment) to provide a useful and easy tool for future land planning. Landslides have been detected through air-photo interpretation and field surveys, by identifying both the landslide detachment zones (LDZ) and landslide bodies; a geospatial database of predisposing factors has been constructed using the ESRI ArcView 3.2 GIS. The landslide susceptibility has been assessed by computing the weighting values (Wi) for each class of the predisposing factors (lithology, proximity to fault and drainage line, land use, slope angle, aspect, plan curvature), thus evaluating the distribution of the landslide detachment zones within each class. The extracted predisposing factors maps have then been re-classified on the basis of the calculated weighting values (Wi) and by means of overlay processes. Finally, the landslide susceptibility map has been considered by five classes. It has been determined that a high percentage (61%) of the study area is characterized by a high to very high degree of susceptibility; clay and marly lithologies, and slope exceeding 20° in inclination would be much prone to landsliding. Furthermore, in order to ascertain the proposed landslide susceptibility estimate, a validation procedure has been carried out, by splitting the landslide detachment zones into two groups: a training and a validation set. By means of the training set, the susceptibility map has first been produced; then, it has been compared with the validation set. As a result, a great majority of LDZ-validation set (85%) would be located in highly and very highly susceptible areas. The predictive power of the model is considered reliable, since more than 50% of the LDZ fall into 20% of the most susceptible areas. The reliability of the susceptibility map is also suggested by computing the SCAI index, true positive and false positive rates; nevertheless, the most susceptible areas are overestimated. As a whole, the results indicate that landslide susceptibility assessment based on a bivariate statistics-based method in a GIS environment may be useful for land planning policy, especially when considering its cost/benefit ratio and the need of using an easy tool.  相似文献   

18.
Landslides the most common geo-hazard in hilly terrain are short lived phenomena but cause extraordinary landscape changes and destruction of life and property. The frequency and intensity of landslides occurrences along NH-21 during the rainy season not only disrupts traffic movement but also misbalance the agro-economic and developmental activities of the region frittering away thousand crores of rupees from the exchequer. An assessment of landslide susceptibility is, therefore, a prerequisite for sustainable development of the region. The present study deals with the preparation of macro-zonation maps of landslide susceptibility in an area of about 100 sq km on 1:50,000 scale across Garamaura-Swarghat section of National Highway-21. The map has been prepared by superimposing the terrain evaluation maps in a particular zone such as lithological map, structural map, slope morphometry map, relative relief map, land use and land cover map and hydrological condition map using landslide susceptibility evaluation factor rating scheme and calculating the total estimated susceptibility as per the guidelines of IS: 14496 (Part-2) 1998). Numerical weightages are assigned to the prime causative factors of slope instability such as lithology, structure, slope morphometery, relative relief, land use and groundwater conditions as per the scheme approved by Bureau of Indian Standard for the purpose of landslide susceptibility zonation. The area depicts zones of different instability. The identified susceptibility zones compared with landslide intensity in the area show some congruence with the weightages of the inputs. The incongruence in intensity and frequency of landslide occurrences and the inferred susceptibility zones of BIS scheme allow other geotechnical considerations and causative factors to be incorporated for the landslide susceptibility zonation.  相似文献   

19.
Landslide zonation studies emphasize on preparation of landslide hazard zonation maps considering major instability factors contributing to occurrence of landslides. This paper deals with geographic information system-based landslide hazard zonation in mid Himalayas of Himachal Pradesh from Mandi to Kullu by considering nine relevant instability factors to develop the hazard zonation map. Analytical hierarchy process was applied to assign relative weightages over all ranges of instability factors of the slopes in study area. To generate landslide hazard zonation map, layers in geographic information system were created corresponding to each instability factor. An inventory of existing major landslides in the study area was prepared and combined with the landslide hazard zonation map for validation purpose. The validation of the model was made using area under curve technique and reveals good agreement between the produced hazard map and previous landslide inventory with prediction accuracy of 79.08%. The landslide hazard zonation map was classified by natural break classifier into very low hazard, low hazard, moderate hazard, high hazard and very high landslide hazard classes in geographic information system depending upon the frequency of occurrence of landslides in each class. The resultant hazard zonation map shows that 14.30% of the area lies in very high hazard zone followed by 15.97% in high hazard zone. The proposed model provides the best-fit classification using hierarchical approach for the causative factors of landslides having complex structure. The developed hazard zonation map is useful for landslide preparedness, land-use planning, and social-economic and sustainable development of the region.  相似文献   

20.
Landslides are a major natural hazard in the Bamenda highlands of Cameroon, and their occurrence in this region has most often been studied using qualitative methods. The aim of this research is to quantitatively assess the spatial probability of landslides using GIS and the informative value model. Landslide inventory was done through literature review, aerial photo-interpretation, participatory GIS and field survey. Six geo-environmental factors including slope, curvature, aspect, land use, lithology and geomorphology were used as landslide conditioning (static) factors. The susceptibility of the area to future landslide events was assessed by making a correlation between past landslides and geo-environmental factors using the informative value model. The landslide inventory involving 110 landslides was divided into two equal groups using random division criterion and was used to train and validate the model. The analysis showed that slope and land use are the most important causal factors of landslides in the area. The susceptibility index map predicted most landslides to occur around the steep slopes of the Bamenda escarpment that is being used for multiple anthropic activities. The training model had a success rate of 87%, and the validation model had a prediction rate of 90%. The prediction rate curve shows that 44, 32, 18 and 6% of future landslides will occur on 3, 8, 21 and 68% of the study area. The model correctly classified 89% of unstable areas and 81% of the stable areas with an accuracy rate of 0.90. This quantitative result complement other qualitative assessment results that show the Bamenda escarpment zone as a high-risk area. However, the area susceptible to landslide in this study goes beyond what earlier studies had indicated as houses and other infrastructure were found on old landslide sites whose scars have been eroded by human activities. This new input thus improves the quality of information placed at the disposal of civil protection units and land use managers during decision making.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号