首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are serious concerns of rise in temperatures over snowy and glacierized Himalayan region that may eventually affect future river flows of Indus river system. It is therefore necessary to predict snow and glacier melt runoff to manage future water resource of Upper Indus Basin(UIB). The snowmelt runoff model(SRM) coupled with MODIS remote sensing data was employed in this study to predict daily discharges of Gilgit River in the Karakoram Range. The SRM was calibrated successfully and then simulation was made over four years i.e. 2007, 2008, 2009 and 2010 achieving coefficient of model efficiency of 0.96, 0.86, 0.9 and 0.94 respectively. The scenarios of precipitation and mean temperature developed from regional climate model PRECIS were used in SRM model to predict future flows of Gilgit River. The increase of 3 C in mean annual temperature by the end of 21 th century may result in increase of 35-40% in Gilgit River flows. The expected increase in the surface runoff from the snow and glacier melt demands better water conservation and management for irrigation and hydel-power generation in the Indus basin in future.  相似文献   

2.
The Indus flood in 2010 was one of the greatest river disasters in recent history, which affected more than 14 million people in Pakistan. Although excessive rainfall between July and September 2010 has been cited as the major causative factor for this disaster, the human interventions in the river system over the years made this disaster a catastrophe. Geomorphic analysis suggests that the Indus River has had a very dynamic regime in the past. However, the river has now been constrained by embankments on both sides, and several barrages have been constructed along the river. As a result, the river has been aggrading rapidly during the last few decades due to its exceptionally high sediment load particularly in reaches upstream of the barrages. This in turn has caused significant increase in cross-valley gradient leading to breaches upstream of the barrages and inundation of large areas. Our flow accumulation analysis using SRTM data not only supports this interpretation but also points out that there are several reaches along the Indus River, which are still vulnerable to such breaches and flooding. Even though the Indus flood in 2010 was characterized by exceptionally high discharges, our experience in working on Himalayan rivers and similar recent events in rivers in Nepal and India suggest that such events can occur at relatively low discharges. It is therefore of utmost importance to identify such areas and plan mitigation measures as soon as possible. We emphasize the role of geomorphology in flood analysis and management and urge the river managers to take urgent steps to incorporate the geomorphic understanding of Himalayan rivers in river management plans.  相似文献   

3.
喀喇昆仑公路沿线地表水理化特征分析   总被引:2,自引:0,他引:2  
研究喀喇昆仑公路沿线地表水环境基本特征,为公路改扩建施工中开展水环境保护提供支持.2008年9月-2009年10月在喀喇昆仑公路沿线的印度河、洪扎河和红其拉甫河采集地表径流样,分析了样品中pH值和悬移质浓度,现场监测了水体透明度.结果表明:所有样品的pH值介于6.7~7.5之间,悬移质浓度分布在0~1 841 mg.L-1之间,水体透明度在2~107 cm.公路沿线地表径流的pH值基本呈中性,pH值的变化受补给的冰川融水pH值的时空变化规律影响;地表径流中悬移质是影响水体透明度的主要因素.监测数据还显示,气温影响下的冰川融水径流形成的水文过程是悬移质时间变化的主要控制因素,3条河流中悬移质浓度存在明显的空间分布规律,其中红其拉甫河中上游河段水中悬移质浓度含量较低,是喀喇昆仑公路改扩建工程施工中水环境保护的重点河段.  相似文献   

4.
Flood risk assessment of River Indus of Pakistan   总被引:1,自引:1,他引:0  
Annual flood peak discharges is widely used in risk assessment. Major sources of flooding in Pakistan are River Jhelum, River Chenab, River Kabul, and upper and lower parts of River Indus. These rivers are major tributaries of the River Indus System which is one of the most important systems of the world and the greatest system of Pakistan. River Indus is the longest river of Pakistan containing seven gauge stations and several barrages, and it plays a vital role in the irrigation system and power generation for the country. This paper estimates the risk of flood in River Indus using historical data of maximum peak discharges. On the basis of our analysis, we find out which dam/barrage reservoir need to be updated in capacity, and whether there are more dams/barrages needed.  相似文献   

5.
Snowcover dynamics and associated accumulation and depletion of snowcover along with its spatial and temporal scale mainly constitute hydrological phenomena of the given basin and are mostly controlled by the local climate variables. Snow accumulation and melting time and duration determine the cyclic volume of water resources and downstream availability. In this study, snowcover area (SCA) was extracted from remotely sensed Moderate Resolution Imaging Spectroradiometer (MODIS) snow products (MOD10A2) for the period 2000–2016. Data for hydro-meteorological parameters was obtained from relevant departments acquired through their field stations. The analysis of 16-year satellite data shows that there is a slight increase in cryospheric area at high altitude. In Astore basin, the study concluded that 15–20% of the basin area is covered by glacier and snowcover may reach around 90–95% of the basin area due to accumulation of seasonal snow from the westerly wind circulation. Analysis of hydro-meteorological parameters showed significant correlation between temperatures (Tmax, Tmin) and river runoff while no significant correlation was observed between river runoff and rainfall. Similarly, significant inverse correlation was found between river runoff and Astore mean snowcover. At sub-altitudinal zone level (zones 1, 2, 3), river runoff has significant correlation with snowcover. Analysis of 20-year climate data along with river runoff depicts that river runoff is a general phenomenon of snowmelt when minimum temperature starts to rise above 4 °C during mid of April. The study highlights the importance and interdependence of meteorological parameters and snowcover dynamics in determining the hydrological characteristics of Astore Basin.  相似文献   

6.
艾比湖水面近50a变化成因分析   总被引:21,自引:2,他引:19  
20世纪90年代以来,艾比湖水面面积持续增大,湖区生态环境明显改善,与60、70年代水面面积急剧缩小、湖区生态环境严重恶化形成鲜明对比.针对艾比湖水面面积近50a变化过程,利用入湖径流及有关水文、气象资料,分析河流丰枯变化对入湖径流的影响、农业引水量与降水的关系,研究了艾比湖水面面积近50a变化成因.  相似文献   

7.
张福义 《水文》1999,(2):7-12
江河洪水预报流域水量分析法具有概念明确、分析计算严谨、预报精度较高且仅应用江河水文站实测流量资料等特点,对于水文站数多、流量资料系列长的大江大河尤为适用。初次应用于淮河干流上游,取得了一定的经验。这一方法的应用,将会对我国大江大河防 及水资源利用起到良好的作用。  相似文献   

8.
塔里木河流域气候与径流变化及生态修复   总被引:5,自引:2,他引:3  
邓铭江 《冰川冻土》2006,28(5):694-702
从20世纪90年代中期开始,塔里木河流域气温上升、降水增加,阿克苏河、开都河等主要河流几乎同步进入持续的丰水周期时段,为塔里木河流域生态修复创造了绝好的“天时”和历史性机遇.这种大区域的气候异常变化现象引起了国内外广大学者的广泛关注,区域气候异常变化是全球气温上升影响盆地气候向温湿转型,还是一个世纪性的水文周期变化现象,一时间成为了学术界的热点议题.系统分析了塔里木河流域山区水文气象站近50 a来的气温、降水、河川径流以及塔里木河来水量变化,并系统评价了利用开都河丰水期的有利时机,向塔里木河下游应急输水及其生态修复情况.  相似文献   

9.
The article presents results of long-term monitoring, detailed studies and numerical simulation of hydrological hazards at the mouths of the Northern Dvina and the Pechora rivers. The Northern Dvina River discharges into the White Sea and the Pechora River flows into the Barents Sea. They are major rivers in northern European Russia. The main hydrological hazards at the mouths of these rivers include dangerous ice phenomena, inundations from both pure maximum stream flow and peak discharges with ice jams, surge-induced flooding, wind-induced down-surges, low-water periods and seawater intrusion into the delta branches. These hazards repeatedly caused significant socioeconomic loss and environmental damage to the riparian areas. Causes and characteristics of hydrological hazards have been evaluated and considered with respect to features, pattern and factors of their long-term, seasonal and spatial variability using statistic methods, remote sensing data and numerical simulation. Furthermore, the impact of regional climate change and economic activities is discussed. As a result, detailed information about the Northern Dvina river mouth is presented. It included the structure and the efficiency of measure for preventing ice jam formation and protecting from river discharge, ice jam and surge-induced inundations. The article also included fundamental and updated data on the structure, parameters and hydrological regime of the Northern Dvina and the Pechora river mouths and specifics of their changes in the twentieth and early twenty-first centuries.  相似文献   

10.
采用统计学方法及集合经验模态分解、小波分析、水文模型等多种方法,在对气象水文、湖泊岩芯、树木年轮、气候模式数据进行深入分析的基础上,研究了西南河流源区径流变化规律与历史丰枯规律及其驱动机制,分析了未来气候变化影响下的径流演变趋势。结果表明:三江源地区的径流近50 a整体表现为上升趋势,雅鲁藏布江流域除尼洋河外的其他区域年径流量整体呈不显著下降趋势,气候变化是导致三江源、雅鲁藏布江和怒江流域径流变化的主要原因,其中降水是引起径流变化最关键的因子;主要河流径流不同时间尺度的丰枯演变规律为,雅鲁藏布江中游全新世洪水事件呈现出早晚全新世频繁、中全新世相对较少的特征,近500 a怒江流域重建径流序列存在10个丰水期和10个枯水期,丰枯序列变化主要受季风环流和厄尔尼诺-南方涛动(ENSO)活动的影响;在未来15~60 a,全球持续增温将使西南河流源区平均年径流深相比近30 a增加6%~14%,而极端径流呈现出“干更干、湿更湿”的变化特征,同时生态因子对径流变化的影响不可忽视。  相似文献   

11.
鄱阳湖调蓄能力受“五河”(赣江、抚河、信江、饶河、修水,以下简称五河)及长江干流的双重影响,三峡水库运用后,干流水文情势变化影响鄱阳湖与长江之间的水量交换。基于实测资料统计和湖口出流影响因素分析,建立了一种新的鄱阳湖出流及临界调蓄水位的计算公式,进而对三峡水库运用前后鄱阳湖各月调蓄水量的变化情况进行了定量分析。研究结果表明,长江干流和五河来流通过改变星湖落差和湖口水位来影响湖口出流及湖泊调蓄水量,但影响过程及影响量有所差异,若湖口水位不变,五河入流每增加1000m^3/s,湖口出流约增加304m^3/s,九江流量每增加1000m^3/s,湖口出流约减小723m^3/s。三峡水库运用会改变湖泊调蓄水量,年内各月相比,9月鄱阳湖水量减小约49.4%,5月鄱阳湖水量增加约47.7%。  相似文献   

12.
Climate change is expected to have a significant impact on the Himalayan region, which may ultimately affect the water security and agriculture productivity in the region. Investigations of hydrologic regimes and their linkage to climatic trends are therefore gaining importance to reduce vulnerability of growing implications in the region. In the present study, the eWater source software implementation of GR4JSG snow melt model was used for snow melt runoff modeling of the Astore river basin, western Himalayas. The model calibration and validation indicated a close agreement between the simulated and observed discharge data. The scenario of 0.9 °C increase in temperature indicated 33% rise in the river discharge, while an increase of 10% in precipitation may exaggerate the river flows by 15%. The scenario of 100% increase in glaciated area showed 41% increase in the Astore river discharge. On the other hand, reduction of 50% glacier cover may result in 34% decline in the river discharge, while 0% glacier coverage may reduce the river discharges by 49% from that of the base year 2014. It is essential to develop a long-term water resource monitoring process and adapt water management systems taking into account the socio-economic and ecological complexities of the region.  相似文献   

13.
The Western Ghats plays a pivotal role in determining the hydrological and hydroclimatic regime of Peninsular India. The mountainous catchments of the Ghats are the primary contributors of flow in the rivers that sustains the life and agricultural productivity in the area. Although many studies have been conducted in the past decades to understand long term trends in the meteorological and hydrological variables of major river basins, not much attention have been made to unfold the relationship existing among rainfall and river hydrology of natural drainages on either side of the Western Ghats which host one of the unique biodiversity hotspots across the world. Therefore, an attempt has been made in this paper to examine the short term (last three decades) changes in the rainfall pattern and its influence on the hydrological characteristics of some of the important rivers draining the southern Western Ghats as a case study. The short term, annual and seasonal trends in the rainfall, and its variability and discharge were analyzed using Mann-Kendall test and Sen’s estimator of slope. The study showed a decreasing trend in rainfall in the southwest monsoon while a reverse trend is noticed in northeast monsoon. Correspondingly, the discharge of the west and east flowing rivers also showed a declining trend in the southwest monsoon season. The runoff coefficient also followed the trends in the discharge. The runoff coefficient of the Periyar river showed a decreasing trend, whereas the Cauvery river exhibited an increasing trend. A high-resolution analysis of rainfall data revealed that the number of moderate rainfall events showed a decreasing trend throughout the southern Western Ghats, whereas the high intensity rainfall events showed an opposite trend. The decline in groundwater level in the areas which recorded an increase in high intensity rainfall events and decrease in moderate rainfall events showed that the groundwater recharge process is significantly affected by changes in the rainfall pattern of the area.  相似文献   

14.
We investigated the geochemical characteristics of major, trace and rare earth elements and Sr–Nd isotope patterns of bed sediments from the headwaters and upper reaches of the six large rivers draining the Tibetan Plateau (the Jinsha River—Yangtze, Lancang River—Mekong, Nujiang River—Salween, Huang He—Yellow, Indus, and Yarlung Tsangpo—Brahmaputra). By using Ca/Al versus Mg/Al, La/Sc versus Co/Th, and 87Sr/86Sr versus εNd (0) binary differentiation diagrams of provenance, some typical contributors to the different catchment sediments can be identified. In the Three-River (the Jinsha, Lancang, and Nujiang Rivers) tectonomagmatic belt, acidic–intermediate-acidic volcanic rocks are very important provenance of sediments. Carbonate rocks and Permian Emeishan basalts are dominant in the Jinsha River. The Yellow River sediments have similar geochemical characteristics with loess in catchments. The Indus and Yarlung Tsangpo Rivers sediments are mainly from ultra-K volcanic rocks and Cenozoic granitoids widely distributed in the Indus–Yarlung suture. The intensity of chemical weathering in these river catchments is evaluated by calculating the chemical indices of alteration (CIA) of sediments and comparing them with bedrocks. The CIA values of the six river sediments are from 46.5 to 69.6, closing to those of bedrocks in the corresponding catchment, which indicates relatively weak chemical weathering intensity. Lithology, climate, and topography affect the chemical weathering intensity in these river catchments.  相似文献   

15.
中国主要江河径流变化成因定量分析   总被引:1,自引:0,他引:1       下载免费PDF全文
变化环境下中国主要江河实测径流量发生了较为明显的变化,科学理清径流变化原因是流域水资源评价和管理的重要基础工作。基于中国七大江河代表性水文站1956-2018年的实测径流量资料,诊断了变化环境下水文序列的变异性特征;采用水文模拟途径,定量评估了不同驱动要素对径流变化的影响。结果表明:①淮河、长江和珠江实测径流量变异性特征不明显,相比而言,北方主要江河实测年径流量系列存在较为明显的突变性,但最显著的变异点发生时间存在差异,变异前后降水径流关系发生较大变化。②RCCC-WBM模型能够较好模拟中国南方湿润区和北方干旱区江河天然径流量过程,该模型可以用来还原人类活动影响期间的天然径流量。③总体来看,人类活动对中国北方江河径流量的影响大于气候变化的影响,气候变化是中国淮河及其以南江河径流变化的主要原因。  相似文献   

16.
谢建丽  刘圆圆 《水文》2012,32(3):83-87
为掌握甘肃省河流特征与径流及水文现象之间的关系,根据Horton理论,运用地理信息技术对境内河流进行4级划分、特征定性分析及定量计算。结果表明,河道等级与相应面积序列等级服从有序性表现,河流的平均宽度和形状系数也有明显的地域和区域特性。  相似文献   

17.
This paper presents an application of the TOPEX/Poseidon (T/P) satellite altimetry data to estimate river discharge at three sites along the Amazon River. We discuss the methodology to establish empirical relationships between satellite-derived water levels and daily estimations of river discharges based on rating curves and in situ level measurements at gauging stations. Three sites are chosen: Manacapuru (River Solimões), Jatuarana (nearby the confluence of the Solimões and Rio Negro rivers) and Óbidos (Amazon River). We then reconstruct the satellite-based river discharge over a 10-year time span (1992–2002). Comparison between satellite-derived and river discharge at the gauging stations shows that the T/P data can successfully be used for hydrological studies of large rivers, in providing in particular discharge estimates when in situ data are not available. To cite this article: E.A. Zakharova et al., C. R. Geoscience 338 (2006).  相似文献   

18.
In the Hazara arc region of northern Pakistan, some of the active basements structures buried below a thick, detached sedimentary layer are inferred from the distribution of lineaments and the drainage patterns, as viewed in Landsat satellite imagery and from river profiles.A prominent set of NW-trending lineaments seen on satellite imagery, coincides approximately with the southwest or updip side of the Indus—Kohistan seismic zone (IKSZ) —the most active basement structure of the region, even though this structure is buried beneath and decoupled from a 12 km thick sedimentary layer. The IKSZ has been interpreted as an extension of the Himalayan Basement Thrust, and is also associated with a prominent topographic “step”.Knickpoints on major rivers in the region lie on or north of the IKSZ. All Indus River tributaries, examined north of the IKSZ, show prominent knickpoints, while two tributaries draining south of the IKSZ have no knickpoints. These results suggest ongoing uplift above and north of the IKSZ, and are consistent with the tectonic model obtained from the seismic data.Another prominent lineament set is detected along the north—south section of the Indus River. This set is probably related to the Indus River horst—anticline and associated reentrant.One of the two highest lineament concentrations occurs at the intersection between the NW-trending IKSZ lineament and the N-trending Indus River lineament. The other is along the west bank of the Indus Valley, 25 km north of Tarbela Dam.A topographic ridge (Swabi—Nowshera ridge) appears to be forming along the west side of the Indus River, in the Peshawar Basin. The rising ridge is ponding the Kabul River upstream of Nowshera, where the drainage is braided.  相似文献   

19.
Trace element chemistry of major rivers in Orissa State, India   总被引:1,自引:1,他引:1  
 Geochemical analyses of surface waters from rivers flowing through Orissa State, India, indicated that trace element concentrations were extremely variable and consistently higher than world river average. The Brahmani River was the most solute-rich river studied, followed by the Baitarani and Mahanadi Rivers. Although all three rivers drain similar geology, the Brahmani River catchment is heavily industrialized, and water samples collected upstream and downstream from industries indicated that anthropogenic activity directly influenced its chemical composition. Samples collected from several towns, in all three river systems, did not invariably show similar patterns, with various elements having higher dissolved concentrations upstream. Because the concentration of total solids increased downstream, this implied that some components of the sewage had effectively sequestered available elements from solution and converted them to particulate material. Although the impact of pollution is clearly recognizable in water samples collected in proximity to the anthropogenic source, there are only slight elemental accumulations in the lower reaches of the Mahanadi River, with no accumulation in the Brahmani River. Apparently for these large rivers, discharged effluent becomes rapidly diluted, while complexation and sedimentation further removes trace elements from the water column. However, in the less voluminous Baitarani River, elementar enrichment near the river's mouth suggests that in this secondary river, where dilution effects are less, the concerns over regional water quality may be more prevalent. Received: 1 April 1995 · Accepted: 30 August 1995  相似文献   

20.
Evaporation and recharge are important hydrological processes in the water cycle. However, accurately quantifying these two processes of river remains to be difficult due to their spatial heterogeneity and the limitations of traditional methods. In this study, a more reliable method of stable isotopes of δ 18O and δ 2H based on the Rayleigh distillation equation and mass conservation was used to estimate the evaporation and recharge of the rivers in the lower reaches of the Yellow River, North China Plain. Comprehensive sampling campaigns including 30 surface water samples from 10 rivers, 33 groundwater samples from domestic and observation wells, and two Yellow River water samples were conducted. The results showed that the evaporation proportion of the rivers based on δ 18O and δ 2H both averaged 14.4%. The evaporation proportions in each river did not completely follow a linear increasing trend along the flow path. This phenomenon could be mainly explained by the different proportions of recharge from groundwater and Yellow River water. With closer to the Yellow river, evaporation of the rivers decreased while the recharge by the Yellow River increased. Regression equations based on δ 18O, δ 2H, and their average revealed that the evaporation proportion respectively increased by 1.02, 0.79, and 0.90% with the increase in the distance to the Yellow River per 10 km. On the contrary, the recharge proportion decreased by 7.68, 5.51, and 6.59%, respectively. In addition, using δ 18O rather than δ 2H was more reliable in studying the spatial influence of the Yellow River on evaporation and recharge. Sensitivity analysis showed that the evaporation model was most sensitive to isotopic composition, rather than to air temperature or relative humidity. The results of this study provide insights into the determination of river hydrological processes and the management of water resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号