首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
罗照华 《地学前缘》2020,27(5):61-69
火成岩中可以包含多种晶体群这一发现具有重要意义,使得成因矿物学重新成为揭示岩浆系统演化的基本指导思想。但是,这种重要性在许多文献中都没有得到反映,其典型实例就是镁铁质层状侵入体中堆晶岩的成因。争论在于堆晶矿物是循环晶还是母岩浆的液相线相。因此,本文致力于探讨四川攀西地区镁铁质层状侵入体中堆晶岩的形成过程,重申成因矿物学的重要意义。显微镜观察表明,堆晶单斜辉石富含Fe-Ti氧化物出溶叶片(含叶片辉石),表明其形成环境明显不同于与斜长石呈共结关系的单斜辉石(无叶片辉石);无叶片辉石和斜长石中的橄榄石包裹体呈浑圆状,表明了橄榄石与结晶环境间的热力学不平衡。橄榄石与熔体间Fe-Mg分配关系分析表明,根据母岩浆成分推测的橄榄石Fo值远低于岩体中观测橄榄石化学成分变化范围(Fo61-Fo81)的高限,表明至少部分橄榄石不是寄主侵入体的液相线相。橄榄石的Mg#值(100×Mg/(Mg+Fe))与微量元素(特别是Ni)的相关关系表明存在多种橄榄石晶体群,它们形成于不同的热力学环境中。晶体沉降过程分析表明,寄主岩浆析出的晶体几乎不可能发生快速重力沉降来形成堆晶岩。所有这些证据都表明,形成堆晶岩的矿物主要来自岩浆系统深部不同的岩浆房中,是被岩浆携带输运到终端岩浆房的循环晶。  相似文献   

2.
We report in situ ion microprobe analyses of the oxygen isotopic composition of the major silicate phases (olivine, low-Ca pyroxene, silica, and mesostasis) of 37 magnesian porphyritic (type I) chondrules from CV (Vigarano USNM 477-2, Vigarano UH5, Mokoia, and Efremovka) and CR (EET 92042, EET 92147, EET 87770, El Djouf 001, MAC 87320, and GRA 95229) carbonaceous chondrites. In spite of significant variations of the modal proportions of major mineral phases in CR and CV chondrules, the same isotopic characteristics are observed: (i) olivines are isotopically homogeneous at the ‰ level within a chondrule although they may vary significantly from one chondrule to another, (ii) low-Ca pyroxenes are also isotopically homogeneous but systematically 16O-depleted relative to olivines of the same chondrule, and (iii) all chondrule minerals analyzed show 16O-enrichments relative to the terrestrial mass fractionation line, enrichments that decrease from olivine (±spinel) to low-Ca pyroxene and to silica and mesostasis. The observation that, in most of the type I chondrules studied, the coexisting olivine and pyroxene crystals and glassy mesostasis have different oxygen isotopic compositions implies that the olivine and pyroxene grains are not co-magmatic and that the glassy mesostasis is not the parent liquid of the olivine. The δ18O and δ17O values of pyroxene and olivine appear to be strongly correlated for all the studied CR and CV chondrules according to:
  相似文献   

3.
Melt inclusions in olivine and pyroxene phenocrysts in kersantite and camptonite at Chhaktalao in Madhya Pradesh, India are mainly of the evolved type forming daughter minerals of olivine, pyroxene, plagioclase, spinel, mica, titanomagnetite and sulphides. Heating studies exhibit a temperature range from 1215° to 1245°C for the melt inclusions in olivine in camptonite and 1220–1245°C for olivine in kersantite. The temperature for melt inclusions in pyroxene ranged from 1000° to 1150°C in camptonite and 850–1100°C for pyroxene in kersantite. The bubble inside these melt inclusions is mainly CO2. The Th°C of CO2 into liquid phase occurred between 26° and 31°C in olivine and 25–30°C in pyroxene from kersantite and camptonite. The maximum density estimated is 0.72 g/cm3 and the minimum is 0.45 g/cm3. The depth of entrapment of the melt inclusion is estimated between 10–15 km. The pressure of entrapment of melt inclusion in olvine is 4.6 kbar where as that in pyroxene is 3.7 kbar. The lamprophyres in the Chhaktalao area are considered to be derived from low depth and low pressure region, possibly within spinel lherzolite zone.  相似文献   

4.
The chemical composition of the pyroxenes and olivines of 12 basaltic rocks and 5 lherzolite nodules was determined quantitatively by electron micro-probe analysis. The composition of the pyroxenes depends on the type of basalt in which they occur. Tholeiitic basalts with normative quartz contain three pyroxenes: orthorombic pyroxenes, pigeonites and augites. All pyroxene phases are zoned and do not show any exsolution. Their Ti and Al contents (Ca-Tschermaks and Ti-augite molecules) are small. All pyroxene phases were formed under disequilibrium with each other and with the melt because of rapid quenching. The sequence of crystallization: orthopyroxene—pigeonite—augite could be established by their Cr content.The alkali olivine basalts undersatured in SiO2 and the olivine nephelinites are characterized by Ti and Al-rich clinopyroxenes. The distribution of Ti and Al in the pyroxenes of the alkali olivine basalts shows a differentiation trend from the cores of the phenocrysts to their outer zones and to the crystals of the ground mass. Thereby the Ca-Tschermaks molecule is being replaced more and more by the Ti-augite molecule. The Ti content of the pyroxenes of the olivine nephelinites decreases in the last stage of differentiation because simultaneously increasing amounts of titaniferous magnetite crystallize.The pyroxenes of lherzolite peridotite nodules are characterized by high Al and low Ti contents which differ according to the type of basalt (alkali olivine basalt or olivine nephelinite) in which the nodules occur. The homogeneous distribution of the elements within the single grains indicates crystallization under equlibrium conditions. The conditions of their formation are comparable to those of Al-pyroxene peridotites in the upper mantle. The composition of pyroxenes of early accumulates of alkali basaltic melts differ from those of peridotite nodules. Therefore lherzolite nodules can be taken as residues of deeper peridotite masses.  相似文献   

5.
Chromite is the only common meteoritic mineral surviving long-term exposure on Earth, however, the present study of relict chromite from numerous Ordovician (470 Ma) fossil meteorites and micrometeorites from Sweden, reveals that when encapsulated in chromite, other minerals can survive for hundreds of millions of years maintaining their primary composition. The most common minerals identified, in the form of small (<1-10 μm) anhedral inclusions, are olivine and pyroxene. In addition, sporadic merrillite and plagioclase were found.Analyses of recent meteorites, holding both inclusions in chromite and corresponding matrix minerals, show that for olivine and pyroxene inclusions, sub-solidus re-equilibration between inclusion and host chromite during entrapment has led to an increase in chromium in the former. In the case of olivine, the re-equilibration has also affected the fayalite (Fa) content, lowering it with an average of 14% in inclusions. For Ca-poor pyroxene the ferrosilite (Fs) content is more or less identical in inclusions and matrix. By these studies an analogue to the commonly applied classification system for ordinary chondritic matrix, based on Fa in olivine and Fs in Ca-poor pyroxene, can be established also for inclusions in chromite. All olivine and Ca-poor pyroxene inclusions (>1.5 μm) in chromite from the Ordovician fossil chondritic material plot within the L-chondrite field, which is in accordance with previous classifications. The concordance in classification together with the fact that inclusions are relatively common makes them an accurate and useful tool in the classification of extraterrestrial material that lacks matrix silicates, such as fossil meteorites and sediment-dispersed chromite grains originating primarily from decomposed micrometeorites but also from larger impacts.  相似文献   

6.
Analysing vertical and lateral distribution of minerals within an impact crater on lunar surface would aid in understanding the crustal compositions to a larger extent and provides clue about geological evolution of the Moon. The Chandrayaan-1 Moon Mineralogy Mapper (M3) and Lunar Reconnaissance Orbiter Camera (LROC) data have high spectral and spatial resolutions, which help in identifying the mineral compositions and morphological features of impact crater. Here we analyse mineral compositions and their correlations with crater morphology using M3 and LROC satellite data of Eijkman impact cater in SouthPole Atiken (SPA) basin. The result shows that low-Ca pyroxene (LCP) dominant rocks are identified on Central Peak (CP), Crater Floor (CF), Crater Wall (CW) and Crater Rim (CR). An olivine dominant rock is detected on the CW. Fe-Mg-spinel lithological unit is observed on the CF. The results implicate that, (i) Low-Ca pyroxene minerals could be from the lower crust during SPA main event; (ii) Presence of olivine and Fe-Mg-spinel lithology on the surface could be a later stage mafic intrusions or the lower-crustal material exposed on the surface due to major impacts.  相似文献   

7.
The results of SIMS and EPMA studies on the silicate minerals and bulk compositions (SEM-EDS) of porphyritic and nonporphyritic chondrules from Elenovka and Knyahinya meteorites are reported. The trace element composition of silicate minerals (olivine, low-Са pyroxene) in equilibrated ordinary chondrites (EOC) has not been affected considerably by thermal metamorphism on the chondritic parent bodies. Therefore, equilibrated chondrites can be used for chondrule-forming processes studies. Low-Са pyroxene in nonporphyritic chondrules contains higher REE, Ba, Sr concentrations than that in porphyritic chondrules at similar trace element concentrations in the olivine of chondrules. The data obtained indicate that the formation of non-porphyritic chondrules was triggered by an increase in the cooling rate of chondrules upon the formation of pyroxene, rather than a difference in the initial conditions of chondrule formation. Higher refractory incompatible element (Nb, LREE) concentrations in the olivine of chondrules than those in the olivine of the matrix and contrasting trace element (Zr, Sr, Cr, REE) concentrations in the low-Са pyroxene of the chondrules and the matrix suggest that the matrix and chondrules of the meteorites formed in one reservoir under different physico-chemical conditions (density, redox state, rotation speed, homogeneity, temperature, shocks, electrical discharge, etc.).  相似文献   

8.
Experimental Petrology of Melilite Nephelinites   总被引:3,自引:1,他引:3  
Experimental study of natural melilite nephelinite lavas ofintermediate K/Na ratio at low pressure (fo2 reveals the presenceof a peritectic ‘point’ of distributary type (1090?C)for liquids saturated with leucite, nepheline, and spinel. Withdecreasing temperature on the olivine + melilite cotectic, botholivine and melilite react with such liquids to produce high-calciumpyroxene at the peritectic. Both the olivine + high-calciumpyroxene and melilite + high-calcium pyroxene cotectics arestable at temperatures below the peritectic. Olivines coexistingwith such liquids are much more magnesian than those in comparabletholeiitic liquids. The olivine-liquid Fe-Mg distribution coefficient is a monotonically increasing function of silica activity over the composition range spannedby melilite nephelinite, ugandite, alkali basalt, and tholeiitebasalt liquids. The analogous Fe-Mg distribution coefficientfor melilite and liquid is effectively constant , while that for high-calcium pyroxene and liquidis highly dependent on the chemistry of high-calcium pyroxene(cf., Sack & Carmichael, 1984). Pseudoternary liquidus projectionsof multiply saturated liquids coexisting with nepheline, leucite,and spinel (?olivine?high-calcium pyroxene?melilite) have beenprepared to facilitate graphical analysis of the evolution oflava compositions during hypabyssal cooling. Major element chemicalanalyses and petrographic features of lavas from Mt. Nyiragongo,East Africa and Oahu, Hawaii (e.g., Denaeyer et al., 1965; Wilkinson& Stolz, 1983) confirm the validity of these diagrams andthe systematics established from the experimental data. *Reprint requests to R.O. Sack  相似文献   

9.
A characteristic feature of ureilite meteorites is reduction of FeO. But the reduction is usually confined to the rims of olivine. In the LAR 04315, LAP 03587 and Almahata Sitta ureilites, pyroxene was extensively reduced by impact smelting. In LAR 04315, the impact caused nearly all of the original pigeonite to melt or otherwise become sufficiently structurally compromised to allow smelting, and yet a minor proportion of the pyroxene escaped smelting and survived with its original composition (En74.1Wo10.2). Olivine mosaicism confirms that LAR 04315 experienced a major shock event. The smelted pyroxenes also show a distinctive patchiness in their interference colors (although each grain’s basic optical continuity, often including twinning, is still discernible). They also have reduced compositions, are ubiquitously porous (∼15%), and contain sprinklings of Fe-metal and felsic glass. For the most part the olivine underwent only very slight reduction. Much of the (small) pyroxene component of LAP 03587 shows the same oddly porous texture. LAR 04315 also contains large traces of silica and felsic glass (with a typical composition of, in wt%, 61 SiO2, 23 Al2O3, 11 CaO, 3.7 Na2O) glass; these two phases together form selvages that line the walls of many of the largest voids in the rock. Silica is a by-product of pyroxene smelting. The felsic glass probably derives largely from interstitial basaltic melt that predated the impact. However, the comparatively stiff surrounding/included silica may have promoted unusually high melt retention within LAR 04315 through the smelting episode (one aspect of which was a major stream-out, through the same large voids, of COx gas). The impact-smelted pyroxene of LAP 03587 is enigmatic because this ureilite also features little-shocked euhedral graphite laths and no olivine mosaicism. The fine-grained ureilitic component of Almahata Sitta appears to have likewise formed by impact smelting, but with more extensive melting of pyroxene (especially a Ca-rich pyroxene component), more pulverization and melting of olivine, and more displacement of both. However, in places the original coarse-equant ureilite texture is still discernible in relict form. Ordinarily, an impact shock melts olivine before, or at least no later than, pyroxene. But in the case of LAR 04315 and LAP 03587, the great shock event evidently occurred when the material was already anatectic or very nearly so; and thus the difference in melting temperature between pyroxene and olivine, ∼300 degrees lower for pyroxene, was decisive. If literature inferences of extremely fast cooling rates, implying shallow burial depths, are accurate, the proportion of COx gas generated by ureilite smelting exceeded by a very large factor (of order 103 but possibly much greater) the volume represented as porosity in the final ureilites. The outflow of so much gas may have, by near-surface explosive expansion and jetting, enhanced the thoroughness of the impact-triggered catastrophic impact disruption of the parent asteroid.  相似文献   

10.
Olivine exposures at the central peak of Copernicus crater of the Earth's Moon have been confirmed by telescope observations and Clementine spectra data.Using these exposures as training sites,this stu...  相似文献   

11.
异常消光是一种在幔源晶体中常可观察到的物性改变现象,然而它与晶体的真实结构之间的内在联系却至今仍未被认识清楚。本项工作试图用一种灵敏的微区结构探测新技术——显微激光喇曼谱方法研究幔源晶体中由构造作用导致的异常消光现象的结构本质。实验结果说明:上地幔高温蠕变作用对橄榄石及辉石主要感应了晶体内微区晶轴取向的变化,还未能产生明显的结构相变;不同的异常消光现象反映晶轴扭转的单位大小不同,并主要依赖于矿物晶体本身的结构特性。  相似文献   

12.
We have used trace element partitioning data available in the literature to investigate nonideality of the cations of Yb, Sm, Gd, Ca, Mn, Sc, Ni, and Al in silicate melt, olivine, and low-Ca pyroxene. Results are consistent with ordering of Mg and Fe around trace cations in olivine and pyroxene. On the basis of these data, we suggest there is an increasing tendency for Fe to congregate in the vincinity of the trace cation as the size of the trace cation increases. These results are important both in achieving a better understanding of trace element behavior in crystals and in constraining the temperature and compositional dependence of trace element partitioning.  相似文献   

13.
Partition coefficients for iron-rich olivine and pyroxene, sanidine, nepheline and apatite are reported from peralkaline trachytic to phonolitic dyke rocks and the agpaitic Ilímaussaq intrusion. Partition coefficients for many elements in olivine and pyroxene decrease with increasing peralkalinity and undersaturation of the magma, i.e. with decreasing polymerisation. The REE partition coefficients for olivine and pyroxene also show dependence on the mineral chemistry, i.e. the iron content. Probably due to the larger lattice sites in the iron end-members the heavy REEs enter the small six-coordinated lattice sites with increasing ease as the iron content of the mineral increases. La and Ce partition coefficients for apatite increase with increasing peralkalinity; this condition seems to stabilise a Na-REE-phosphate component in the mineral.  相似文献   

14.
The recently discovered metal-rich carbonaceous chondrite Isheyevo consists of Fe, Ni-metal grains, chondrules, heavily hydrated matrix lumps and rare refractory inclusions. It contains several lithologies with mineralogical characteristics intermediate between the CH and CB carbonaceous chondrites; the contacts between the lithologies are often gradual. Here we report the mineralogy and petrography of chondrules in the metal-rich (70 vol%) and metal-poor (20 vol%) lithologies. The chondrules show large variations in textures [cryptocrystalline, skeletal olivine, barred olivine, porphyritic olivine, porphyritic olivine-pyroxene, porphyritic pyroxene], mineralogy and bulk chemistry (magnesian, ferrous, aluminum-rich, silica-rich). The porphyritic magnesian (Type I) and ferrous (Type II) chondrules, as well as silica- and Al-rich plagioclase-bearing chondrules are texturally and mineralogically similar to those in other chondrite groups and probably formed by melting of mineralogically diverse precursor materials. We note, however, that in contrast to porphyritic chondrules in other chondrite groups, those in Isheyevo show little evidence for multiple melting events; e.g., relict grains are rare and igneous rims or independent compound chondrules have not been found. The magnesian cryptocrystalline and skeletal olivine chondrules are chemically and mineralogically similar to those in the CH and CB carbonaceous chondrites Hammadah al Hamra 237, Queen Alexandra Range 94411 (QUE94411) and MacAlpine Hills 02675 (MAC02675), possibly indicating a common origin from a vapor–melt plume produced by a giant impact between planetary embryos; the interchondrule metal grains, many of which are chemically zoned, probably formed during the same event. The magnesian cryptocrystalline chondrules have olivine–pyroxene normative compositions and are generally highly depleted in Ca, Al, Ti, Mn and Na; they occasionally occur inside chemically zoned Fe, Ni-metal grains. The skeletal olivine chondrules consist of skeletal forsteritic olivine grains overgrown by Al-rich (up to 20 wt% Al2O3) low-Ca and high-Ca pyroxene, and interstitial anorthite-rich mesostasis. Since chondrules with such characteristics are absent in ordinary, enstatite and other carbonaceous chondrite groups, the impact-related chondrule-forming mechanism could be unique for the CH and CB chondrites. We conclude that Isheyevo and probably other CH chondrites contain chondrules of several generations, which may have formed at different times, places and by different mechanisms, and subsequently accreted together with the heavily hydrated matrix lumps and refractory inclusions into a CH parent body. Short-lived isotope chronology, oxygen isotope and trace element studies of the Isheyevo chondrules can provide a possible test of this hypothesis.  相似文献   

15.
16.
The Wanapitei Complex (6 km×2.5 km), lying 0.4 km southeast of the Grenville Front, consists of a northwestern zone of gabbro and folded injection breccia and a southeastern layer of intensely folded hornblendeplagioclase gneiss. Disseminated Ni-Cu sulphides are unevenly distributed in a zone between the injection breccia and the folded gneiss.Rocks of the mineralized zone occur in southeastern and northeastern areas. The former area consists of hornblende norite, the major host rock of the sulphides, and olivine norite. Steeply-dipping cross-bedded primary layers and chemical trends indicate the top faces southeast. In the latter area olivine norite, hornblende norite, and hornblende gabbro grade eastward into recrystallized rocks and breccia. The olivine norites are characterized by corona reaction rims. Reactions are: olivine+plagioclase bronzite+diopside-spinel; olivine+pyroxene bronzite; and pyroxene+plagioclase diopside-spinel. Molecular proportion ratio variation diagrams suggest that rocks evolved from a common parent magma that underwent fractionation dominated by olivine and plagioclase. Sulphide mineralization (pyrrhotite, chalcopyrite, pentlandite, pyrite) is interstitial to the silicates and appears to be of primary magmatic origin.Northeasterly-trending shear zones, felsic dikes, and matic dikes are metamorphosed to the same degree as the rocks they cut (amphibolite facies). The sequence of events for the mineralized zone are: intrusion deep in the crust; tilting; brecciation; shearing; felsic and mafic dike emplacement; metamorphism; and injection of granite pegmatite dikes.Deceased (8-16-1986)  相似文献   

17.
对甘肃龙首山超基性岩带含矿岩体的主造岩矿物———橄榄石、辉石,进行了矿物化学特征分析 ;比较了金川岩体与外围岩体在矿物化学特征方面的异同。通过研究 ,龙首山超基性岩带的岩体中 ,五号异常岩体与金川岩体极为相似 ,有望在深部寻找到金川式铜镍硫化物矿床  相似文献   

18.
西南天山哈拉达拉岩体的锆石SHRIMP年代学及地球化学研究   总被引:15,自引:6,他引:9  
薛云兴  朱永峰 《岩石学报》2009,25(6):1353-1363
西南天山哈拉达拉侵入体由橄长岩、橄榄辉长岩和辉长岩组成,橄长岩和橄榄辉长岩具有典型的堆晶结构,堆晶矿物以斜长石和橄榄石为主。辉石、角闪石和金云母主要为堆晶间隙矿物。辉长岩发育辉长—辉绿结构。结晶分异作用在岩浆演化过程中起重要作用。对从辉长岩中分选出来的锆石进行的SHRIMP年代学研究表明,辉长岩形成于308.3±1.8Ma (MSWD=0.86,n=15)。哈拉达拉岩体稀土元素配分模式与E-MORB相似,具有高Rb、Cs、Ba及Sr的特点,87Sr/86Sr初始比值0.7040~0.7050。这些特征表明,岩浆源区具有富集地幔的特征(古南天山洋俯冲流体交代形成了富集地幔)。根据平坦的稀土元素配分模式以及Gd、Sm、Nb、Zr等微量元素的地球化学行为判别,岩浆源区岩石为含角闪石的尖晶石二辉橄榄岩。批式熔融模拟计算显示,地幔岩10%~15%的部分熔融能够形成哈拉达拉岩体的母岩浆。母岩浆通过48%~50%的结晶分异作用则能够形成哈拉达拉岩体。早期结晶的橄榄石和斜长石通过堆晶作用形成橄长岩和橄榄辉长岩,剩余岩浆结晶形成辉长岩。  相似文献   

19.
目前关于内蒙古东乌旗晚古生代花岗岩中辉石橄榄包体的精确年代学及其构造意义不清,直接制约了该区晚古生代地幔性质及构造演化的探讨.对东乌旗新发现的辉石橄榄岩进行了岩相学、全岩地球化学和锆石U-Pb定年研究.结果表明,辉石橄榄岩主要由橄榄石、角闪石、斜方辉石及少量斜长石、黑云母、单斜辉石组成;锆石U-Pb年龄为317.8±1.6 Ma,属晚石炭世.地球化学数据显示,岩石SiO2含量为40.28%~44.50%、MgO含量为23.42%~29.44%、Na2O+K2O含量为1.00%~2.12%(小于3.5%),具有低m/f比值(3.13~3.86)和高FeOT含量(11.18%~14.70%)、高Mg#值(75.60~79.26),属铁质超镁铁岩和拉斑玄武岩系列.岩石稀土总量较高(∑REE=31.98×10-6~72.60×10-6),轻稀土(LREE)相对于重稀土(HREE)富集,(La/Yb)N=3.56~7.72,Eu异常不明显(δEu=0.79~1.65),球粒陨石标准化稀土元素配分模式表现为右倾型.岩石富集大离子亲石元素Rb、Sr、K等,相对亏损高场强元素Nb、Ta,具明显的Nb、Ta、Ti负异常;其形成于受俯冲流体改造的岩石圈地幔的减薄作用,并且岩浆在演化过程中遭受了地壳物质的同化混染作用.   相似文献   

20.
Three genetically unrelated magma suites are found in the extrusivesequences of the Troodos ophiolite, Cyprus. A stratigraphicallylower pillow lava suite contains andesite and dacite glassesand shows the crystallization order plagioclase; augite, orthopyroxene;titanomagnetite (with the pyroxenes appearing almost simultaneously).These lavas can in part be correlated chemically and mineralogicallywith the sheeted dikes and the upper part of the gabbro complexof the ophiolite. The second magma suite is represented in astratigraphically upper extrusive suite and contains basalticandesite and andesite glasses with the crystallizaton orderchromite; olivine; Ca-rich pyroxene; plagioclase. This magmasuite can be correlated chemically and mineralogically withparts of the ophiolitic ultramafic and mafic cumulate sequence,which has the crystallization order olivine; Ca-rich pyroxene;orthopyroxene; plagioclase. The third magma suite is representedby basaltic andesite lavas along the Arakapas fault zone andshows a boninitic crystallization order olivine; orthopyroxene;Ca-rich pyroxene; plagioclase. One-atmosphere, anhydrous phaseequilibria experiments on a lava from the second suite indicateplagioclase crystallization from 1225?C, pigeonite from 1200?C,and augite from 1165?C. These experimental data contrast withthe crystallization order suggested by the lavas and the associatedcumulates. The observed crystallization orders and the presenceof magmatic water in the fresh glasses of all suites are consistentwith evolution under relatively high partial water pressures.In particular, high PH2O (1–3 kb) can explain the lateappearances of plagioclase and Ca-poor pyroxene in the majorityof the basaltic andesite lavas as the effects of suppressedcrystallization temperatures and shifting of cotectic relations.The detailed crystallization orders are probably controlledby relatively minor differences in the normative compositionsof the parental magmas. The basaltic andesite lavas are likelyto reach augite saturation before Ca-poor pyroxene saturation,whereas the Arakapas fault zone lavas, which have relativelyless normative diopside and more quartz, reached the Ca-poorpyroxene-olivine reaction surface and crystallized Ca-poor pyroxeneafter olivine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号