首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
近几年的一系列分析研究表明,ENSO与异常东亚冬季风之间有相互影响,持续的强(弱)东亚冬季风通过引起赤道西太平洋地区的西(东)风异常对El Niño/La Niña的发生起着重要作用;赤道太平洋次表层海温异常(SOTA)的年际变化(循环)与ENSO发生有密切关系;ENSO的真正源在西太平洋暖池,暖池正(负)SOTA沿赤道温跃层东传到东太平洋,便导致El Niño/La Niña的爆发;在暖池正(负)SOTA沿赤道东传的同时,有负(正)SOTA沿10°N和10°S纬度带向西传播,从而构成SOTA的循环;热带太平洋SOTA循环的驱动者是赤道西太平洋的异常纬向风。进而可以认为:ENSO实质上是主要由异常东亚季风引起的赤道西太平洋异常纬向风所驱动的热带太平洋次表层海温距平的年际循环。  相似文献   

2.
非线性模糊识别及其在海温异常检测中的应用   总被引:5,自引:0,他引:5  
基于模糊推理和非线性模糊识别原理,讨论了从实际信号中检测识别主要影响因子,进而滤除干扰的方法,进行了相应的去噪试验。试验结果表明:由于模糊系统具有非线性、容错性和自适应学习等特性,因此,能够较为有效地辨识和检测出复杂非线性信号中的主要影响因子及其贡献大小。作为应用,研究了从观测资料中辩识El Niño/La Niña主要影响因子的诊断检测过程,并对 20世纪70年代以来出现的典型El Niño/La Niña事件中信风因子的影响作用进行了诊断检测和模糊识别,分析发现,70年代的几次ElNiño事件主要是由赤道西太平洋西风异常所触发,而80年代的几次El Niño事件(尤其是1982/1983年暖水事件)则主要是由赤道西太平洋与赤道东太平洋的信风活动异常共同所致,前者触发激励在先,后者巩固加强在后。  相似文献   

3.
The spatial sampling offered by TOPEX and Jason series of satellite radar altimeters and its continuity during the last twenty years are major assets to provide an improved vision of the global mean sea level (GMSL). The objective of this paper is to examine the recent GMSL variations (1993–2012) and to investigate the correlation between the GMSL and ENSO (El Niño-southern oscillation) episodes. For this purpose, a mean sea level anomalies time series, obtained from TOPEX, Jason-1 and Jason-2 measurements, is used to determine the trend of GMSL changes by using a simplified form of an unobserved components model (namely UCM). Then, to investigate the impact of the ENSO phenomenon on the GMSL changes, we considered the sea surface temperature anomalies (SSTA) index over the Niño3 region (5N–5S 150W–90W). Cross wavelet transform and wavelet coherence analysis are performed to expose common power between the GMSL changes and the SSTA index and their relative phase in the time–frequency space. The results indicate that there are in the estimated GMSL's trend a number of fluctuations over short periods that are least partly related to the El Niño/La Niña episodes. Cross wavelet transform and wavelet coherence analysis indicate that a significant correlation between GMSL and ENSO occurred during 1997–1998, 2006–2007, 2009–2010 El Niño events and 2007–2008 and 2010–2011 La Niña ones. All these areas show in-phase relationship, suggesting that GMSL and SSTA index vary synchronously.  相似文献   

4.
Explosive volcanic eruptions are known to be a leading cause of natural climate change. There has been a growing recognition that there is a measurable climate system response even to moderate-sized volcanic eruptions. In this study, we investigated the hindcast skills of the Pacific Sea Surface Temperatures (SSTs) using the hindcast experiments based on the near-term climate prediction system DecPreS developed by the Institute of Atmospheric Physics (IAP)(hereafter DP-EnOI-IAU experiments). The DP-EnOI-IAU experiments were run for initial years from 1960 to 2005. These hindcasts took into account observed stratospheric aerosol concentrations that included the four large tropical volcanic eruptions during that period. The time evolution over the entire hindcast period for skill in predicting the patterns of the 3~7 year prediction averages for Pacific SSTs showed that there was statistically significant skill for most years except for a dramatic drop in skill during the 1980s and 1990s. Decadal hindcast skill is reduced if the post-eruption model response deviates the internal El Niño variability in the observations. The simulations showed a post-eruption SST of a La Niña-like pattern in the third northern winter after the 1982 El Chichon eruption and a El Niño-like pattern after the 1991 Pinatubo eruption, which were opposite in sign to what was in the observations. This lead to the loss of hindcast skill for years in the 1980s and 1990s affected by the eruptions. Agung (1963) happened to have post-eruption Pacific SSTs more similar to the observations and thus did not degrade prediction skill in the hindcasts.  相似文献   

5.
The interannual variability of near-coastal eastern North Pacific tropical cyclones is described using a data set of cyclone tracks constructed from U.S. and Mexican oceanic and atmospheric reports for the period 1951-2006. Near-coastal cyclone counts are enumerated monthly, allowing us to distinguish interannual variability during different phases of the May-November tropical cyclone season. In these data more tropical cyclones affect the Pacific coast in May-July, the early months of the tropical cyclone season, during La Niña years, when equatorial Pacific sea surface temperatures are anomalously cool, than during El Niño years. The difference in early season cyclone counts between La Niña and El Niño years was particularly pronounced during the mid-twentieth century epoch when cool equatorial temperatures were enhanced as described by an index of the Pacific Decadal Oscillation. Composite maps from years with high and low near-coastal cyclone counts show that the atmospheric circulation anomalies associated with cool sea surface temperatures in the eastern equatorial Pacific are consistent with preferential steering of tropical cyclones northeastward toward the west coast of Mexico.  相似文献   

6.

We analyze autocorrelations and power spectra of the time series of monthly mean data characterizing sea surface temperature anomalies in the equatorial Pacific in the years 1920–2013 and show that the rhythms of El Niño–Southern Oscillation can be interpreted as the responses of the climate system to the external quasi-periodic forcing generated by the motions of the Earth’s pole. We conclude that the ENSO phenomenon has no prediction limits.

  相似文献   

7.
鲍颖  兰健  王毅 《地球科学进展》2008,23(10):1027-1036
基于NOAA OISST.V2月平均SST资料和FSU月平均风应力资料对南海的SST和风场异常进行了分析,发现:南海对1997/1998年El Nio事件响应最为强烈,并在1997/1998年冬季和次年的夏季SST存在2个异常高峰值,风速存在2个异常减小的极值。为研究南海环流在1997/1998年的异常变化,利用ECOM水动力模型计算了1995—2000年的南海环流场,分析了1998年1月和8月南海水位和环流的异常分布,二者均存在显著的异常:①1月,整个南海海盆为正的水位异常,流场为反气旋异常环流,冬季控制整个南海海盆的气旋式环流减弱;②8月,南海海盆水位为正异常,特别是越南东部海区出现较强的正水位异常,南海南部的高水位中心扩大北移;异常流场表现为南部为气旋式异常环流,北部为反气旋的异常环流,且在越南东部海区形成非常强的反气旋异常环流中心,使得控制南海南部的反气旋环流和北部的气旋环流均减弱。风应力的分析表明,风应力旋度的异常变化是南海环流年际异常变化的主要因素。  相似文献   

8.
It has been shown that large-scale weather patterns in both the tropical South Pacific (El Niño-Southern Oscillation, or ENSO, events) and the North Pacific (Pacific-North American, or PNA, patterns) have strong teleconnection effects on the air, ice, and ocean environments of the Bering Sea. This signal apparently comes via the atmosphere and not the ocean. The connection between variability of the Bering Sea and the ENSO and PNA appears to be the winter position of the Aleutian Low. Interannual variability in air temperatures, ice cover, and surface winds in the Bering Sea generally are in phase with each other, whereas sea-surface temperatures (SST) tend to lag these variables by 1–3 months. These Bering Sea time-series are significantly correlated with the Southern Oscillation Index (SOI) time-series (an indicator of ENSO events) when the Bering sea data are lagged behind the SOI for up to 18 months. The correlations suggest that warming in the Bering Sea follows negative anomalies in the SOI (i.e., El Niño events). Cooling in the Bering Sea tends to follow positive anomalies (i.e., precursors of El Niños) in the SOI. Maximal correlations for the PNA also lag the SOI by a mouth or two.Analyses of variance indicate that the SOI can explain 30–40% of the variability in the Bering Sea. Stepwise multiple regressions can explain up to 54% of the variation in air temperatures, up to 39% of the variation in sea ice cover, and up to 46% of the variation in SST in the Bering Sea. PNA and SOI were significant variables only in the equation for air temperatures, indicating a close relationship between them and the atmosphere in the Bering Sea and suggesting that energy is transmitted to the water and ice via the atmosphere. The three variables airtemps, ice, and SST were significant each time they were used as independent variables, indicating a rapid and strong feedback relationship among them.Three ENSO events have occurred since the mid-1970s, but none have been typical. There have been either two positive SOI anomalies preceding an El Niño or there have been none preceding an El Niño. When there has been a positive anomaly, ice cover has been above normal, but neither a positive anomaly nor above-normal ice has occurred in the past two ENSO events. An ice retreat has occurred any time there has been an ENSO event, except in the case of the great El Niño of 1982–1983; the anomalous position of the Aleutian Low at that time explains the lack of response of the ice. Finally, one ice retreat occurred that was unrelated to an ENSO event, but was related to a PNA event.  相似文献   

9.
Thunderstorms are of much importance in tropics, as this region is considered to have central role in the convective overturn of the atmosphere and play an important role in rainfall activity. It is well known that El Niño and La Niña are well associated with significant climate anomalies at many places around the globe. Therefore, an attempt is made in this study to analyze variability in thunderstorm days and rainfall activity over Indian region and its association with El Niño and La Niña using data of thunderstorm day’s for 64 stations well distributed all over India for the period 1981–2005 (25 years). It is seen that thunderstorm activity is higher and much variable during pre-monsoon (MAM) and southwest monsoon (JJAS) than the rest of the year. Positive correlation coefficients (CCs) are seen between thunderstorms and rainfall except for the month of June during which the onset of the southwest monsoon sets over the country. CCs during winter months are highly correlated. Composite anomalies in thunderstorms during El Niño and La Niña years suggest that ENSO conditions altered the patterns of thunderstorm activity over the country. Positive anomalies are seen during pre-monsoon (MAM) and southwest monsoon months (JAS) during La Niña years. Opposite features are seen in southwest monsoon during El Niño periods, but El Niño favors thunderstorm activity during pre-monsoon months. There is a clear contrast between the role of ENSO during southwest monsoon and post-monsoon on thunderstorm activity over the country. Time series of thunderstorms and precipitation show strong association with similarities in their year-to-year variation over the country.  相似文献   

10.
The impact of Southern Oscillation on thecyclogenesis over the Bay of Bengal duringthe summer monsoon has been investigated.The analysis of correlation coefficients(CCs) between the frequency of monsoondepressions and the Southern OscillationIndex (SOI) reveals that more depressionsform during July and August of El Niñoyears. Due to this, the seasonal frequencyof monsoon depressions remains little higherduring El Niño epochs even though thecorrelations for June and September are notsignificant. The CCs for July and August aresignificant at the 99% level.The El Niño-Southern Oscillation (ENSO)is known to affect Indian MonsoonRainfall (IMR) adversely. The enhancedcyclogenesis over the Bay of Bengal duringJuly and August is an impact of ENSO whichneeds to be examined closely. Increasedcyclogenesis over the Bay of Bengal may bereducing the deficiency in IMR duringEl Niño years by producing more rainfallover the eastern parts of India duringJuly and August. Thus there is a considerablespatial variation in the impact of ENSOon the monsoon rainfall over India and El Niñoneed not necessarily imply a monsoonfailure everywhere in India.The area of formation of monsoon depressionsshifts eastward during El Niño years.Warmer sea surface temperature (SST) anomaliesprevail over northwest and adjoiningwestcentral Bay of Bengal during premonsoon andmonsoon seasons of El Niño years.May minus March SOI can provide useful predictionsof monsoon depression frequencyduring July and August.  相似文献   

11.
Ocean Assimilation System (OAS) is an important component for decadal prediction experiment, providing initial conditions. Evaluating the atmosphere response in OAS can provide reference for analyzing results from decadal prediction. We analyzed the interdecadal change in relation between the East Asian Summer Monsoon (EASM) and El Niño/Southern Oscillation (ENSO) in the previous winter based on an OAS on the coupled climate model FGOALS-s2. It shows that two factors impact the performance: ① interdecadal change of Ssea Surface Temperature (SST) pattern in the summer Indo-Pacific Basin related with ENSO in previous winter and ② bias in model response of the western North Pacific anticyclone to tropical SST anomalies. The anticyclone shows steady relation with the warm eastern Indian Ocean. When ENSO’s impact on the summer Indian Ocean is strengthened around the end of 1970s, the OAS can reproduce the strengthened EASM-ENSO relation. However, the trend of intensified EASM-ENSO relation in the OAS is still significant after the mid-1990s due to the stronger link between the anticyclone and the northeastern Indian Ocean, differing with the observation which shows a weakened effect of the Indian Ocean on the anticyclone. In addition, the bias in response to the SST anomalies in the central Pacific also partly contributes to the failure in reproducing the weakening EASM-ENSO relation after the mid-1990s. It implies that prediction skill of interdecadal ENSO impact on the tropical Indo-Pacific SST and response bias of model to SST anomalies may to some extent limit the capability to predict the interdecadal change in the EASM-ENSO relation.  相似文献   

12.
The temporal resolution of marine proxy data is limited by analytically required sample size. We present in-situ reflectance spectroscopy techniques (usually applied in remote sensing) to analyse the organic fraction of marine and terrestrial sediment. From absorption band depths, photosynthesis pigment variations are derived for sediments from the upwelling region off Peru, where productivity is related to the annual variability of El Niño strength. Quantitative estimations of diagenetic photosynthesis pigments derived from absorption band analysis in reflectance spectra are highly correlated to organic carbon content. The ratio of pigment fractions is related to chlorine concentration and reflects organic matter preservation and deep-water ventilation changes. The import of terrigenous mineroclastics (TM) by local rivers is semi-quantitatively documented in the spectrum continuum. TM is inversely varying with organic matter preservation and chlorine concentration.  相似文献   

13.
During study of the physical nature and potential precursor features of the El Ni?o phenomenon in the Pacific, it was found that a negative large-scale temperature anomaly on the Indian Ocean surface may be one of its significant precursors. This anomaly appears prior to the occurrence of El Ni?o and is accompanied by growth in atmospheric pressure. It gradually extends eastwards along the equator until the zone of planetary convection in the area of the Indonesian Region. The west wind that emerges on the eastern peripherals of the mentioned pressure anomaly leads to reversal of the Pacific segment of the Walker equatorial atmospheric circulation and to a subsequent change in the zonal thermal dipole polarity in the tropical zone of the Pacific (the latter means culmination of the El Ni?o phenomenon). In addition to the mentioned thermobaric anomaly in the Indian Ocean, other obvious signs of large-scale pressure anomalies have been found in the global atmospheric pressure field; these anomalies may be interpreted as manifestations of the intradecadal global oscillation in the dynamics of the modern climatic system. It is suggested that the whole known complex of events related to the El Ni?o phenomenon in the Pacific is a consequence and a regional link of the planetary structure of this global atmospheric phenomenon.  相似文献   

14.
Estuarine salinity distributions reflect a dynamic balance between the processes that control estuarine circulation. At seasonal and longer time scales, freshwater inputs into estuaries represent the primary control on salinity distribution and estuarine circulation. El Niño-Southern Oscillation (ENSO) conditions influence seasonal rainfall and stream discharge patterns in the Tampa Bay, Florida region. The resulting variability in freshwater input to Tampa Bay influences its seasonal salinity distribution. During El Niño events, ENSO sea surface temperature anomalies (SSTAs) are significantly and inversely correlated with salinity in the bay during winter and spring. These patterns reflect the elevated rainfall over the drainage basin and the resulting elevated stream discharge and runoff, which depress salinity levels. Spatially, the correlations are strongest at the head of the bay, especially in bay sections with long residence times. During La Niña conditions, significant inverse correlations between ENSO SSTAs and salinity occur during spring. Dry conditions and depressed stream discharge characterize La Niña winters and springs, and the higher salinity levels during La Niña springs reflect the lower freshwater input levels.  相似文献   

15.
The primary geoindicators appropriate for monitoring environmental changes in the humid tropics are transitory surface water levels, shoreline position, wetlands distribution, coral reefs, landforms, and sediment sequence and composition. Lateral zonations and temporal successions of vegetation also can be used as geoindicators of riverine and shoreline changes. All of these coastal geoindicators are sensitive to regional tectonic processes and anthropogenic alterations and they typically reflect significant changes in coastal conditions such as fluvial processes, coastal energy, water quality, relative sea level, and sediment supply. Where humid tropical coasts coincide with active tectonic margins, indicators of seismic activity are critical to understanding coastal changes associated with co-seismic subsidence or uplift, tsunamis, and liquefaction of coastal sediments. Coastal landforms and sedimentary deposits that record late Quaternary environmental changes include perched fluvial and marine terraces, delta-plain morphologies, crevasse-splay deposits, peats and other paleosols, beach ridges, mud capes, and mud volcanoes. Although these features and deposits typically reflect environmental changes spanning more than 100 years, they are relevant to modern processes, management of coastal lands and resources, and prediction of future conditions. In some regions of the humid tropics, large coastal areas are unaffected by hurricanes or typhoons. Nevertheless, these tropical coasts are vulnerable to other non-storm processes, such as El Niño events, tsunamis, and monsoons that increase water levels, and cause widespread flooding and beach erosion. The environmental and political significance of coastal geoindicators increases when they are integrated and applied to issues of human safety and health such as hazards mapping, risk assessment, and dispersion of contaminated sediments. However, to be relevant, those socio-environmental applications demand accurate predictions of future trends and rates of change.  相似文献   

16.
Pham  Dat T.  Switzer  Adam D.  Huerta  Gabriel  Meltzner  Aron J.  Nguyen  Huan M.  Hill  Emma M. 《Natural Hazards》2019,98(3):969-1001

With sea levels projected to rise as a result of climate change, it is imperative to understand not only long-term average trends, but also the spatial and temporal patterns of extreme sea level. In this study, we use a comprehensive set of 30 tide gauges spanning 1954–2014 to characterize the spatial and temporal variations of extreme sea level around the low-lying and densely populated margins of the South China Sea. We also explore the long-term evolution of extreme sea level by applying a dynamic linear model for the generalized extreme value distribution (DLM-GEV), which can be used for assessing the changes in extreme sea levels with time. Our results show that the sea-level maxima distributions range from ~?90 to 400 cm and occur seasonally across the South China Sea. In general, the sea-level maxima at northern tide gauges are approximately 25–30% higher than those in the south and are highest in summer as tropical cyclone-induced surges dominate the northern signal. In contrast, the smaller signal in the south is dominated by monsoonal winds in the winter. The trends of extreme high percentiles of sea-level values are broadly consistent with the changes in mean sea level. The DLM-GEV model characterizes the interannual variability of extreme sea level, and hence, the 50-year return levels at most tide gauges. We find small but statistically significant correlations between extreme sea level and both the Pacific Decadal Oscillation and El Niño/Southern Oscillation. Our study provides new insight into the dynamic relationships between extreme sea level, mean sea level and the tidal cycle in the South China Sea, which can contribute to preparing for coastal risks at multi-decadal timescales.

  相似文献   

17.
The objective of research done in this study is to examine the variability of the length of day (LOD) and to investigate its correlation with ENSO (El Niño-Southern oscillation) episodes. For this purpose, the LOD time series (1962–2015), from the International Earth Rotation and Reference Systems Service (IERS), is investigated using the Singular Spectrum Analysis (SSA) technique. The results show that the LOD time series is very complex and is composed of several components: the long-term trend explains 95.97% of the original series, the annual harmonic 1.76% and the semi-annual 1.35%. Considering sea surface temperature anomalies (SSTA) index over the Niño3, Niño4 and Niño3.4 regions, Southern Oscillation Index (SOI) and Multivariate ENSO Index (MEI), the residuals signal, that represents only 0.92% of the initial LOD series, indicate a significant correlation with ENSO occurred during 1965–66, 1972–73, 1982–83 and 1997–98 El Niño events and 1970–71, 1973–74, 1988–89, 2007–08, 2010–11 La Niña ones. This is a pertinent result that suggests that LOD variability is at least partly related to ENSO phenomena.  相似文献   

18.
Chemical proxies are useful analogs for reconstructing physical properties of sea water, such as sea surface temperature (SST) and sea surface salinity (SSS). Time series of these inferred properties would allow for reconstructions of past El Niño–Southern Oscillation (ENSO) events, where no instrumental records exist. In this study, a monthly oxygen isotope record from a Porites coral is used to explain how past ENSO events are recorded in the coral skeletons. The sample covers a 12 year period and was collected from Nanwan Bay, Taiwan. During El Niño events the coral skeleton is shown to produce a δ18O–SST correlation with a slope of −0.12 ± 0.04‰ °C−1. During other times, this value is significantly different, with a slope of −0.21 ± 0.04‰ °C−1. Coral that grew during El Niño summers have δ18O values which are enriched by ∼0.2‰, relative to other times. A possible mechanism to explain this difference may be enhanced penetration of Kuroshio Current waters into the South China Sea during summer. The observed contrast in the correlation of δ18O–SST variability in this sample supports the influence of El Niño in eastern Asia.  相似文献   

19.
The 1982–1983 El Niño event afforded the opportunity to develop criteria for the recognition of ancient El Niños using mollusks from archaeological sites along coastal South America. A combination of growth increment and stable isotope analyses indicated that elevated sea surface temperatures during large scale El Niños leave a record decodable from the growth patterns of selected bivalve shells. The intertidal venerid Chione subrugosa displayed a pronounced break in the valve margin profile following the 1982-1983 event but provided an inconsistent stable isotope pattern. The subtidal carditid Trachycardium procerum, on the other hand, preserved a discernible and diagnostic growth interruption as well as an expected trend in stable isotope indicators of salinity and temperature change. We conclude that some of the major culturally disruptive El Niño events can be recognized in the geoarchaeological record by these techniques, especially if ancillary information, such as faunal distribution patterns, are also considered. Perhaps the most serious constraint upon application of this approach involves microstratigraphic resolution of shell midden deposits. Stratigraphic sampling of midden material should be accompanied, if possible, by sampling of proximal natural strata. The chances of discovery of major El Niño perturbations in the geoarchaeological record of shell middens is enhanced by the catastrophic nature of such events and by the indication that major El Niños have a high probability of being closely spaced in time.  相似文献   

20.
A comparison between TRMM PR rainfall estimates and rain gauge data from ANEEL and combined gauge/satellite data from GPCP over South America (SA) is made. In general, the annual and seasonal regional characteristics of rainfall over SA are qualitatively well reproduced by TRMM PR and GPCP. It is found that over most of SA GPCP exceeds TRMM PR rainfall. The largest positive differences between GPCP and TRMM PR data occur in the north SA, northwestern and central Amazonia. However, there are regions where GPCP rainfall is lower than TRMM PR, particularly in the Pacific coastal regions and in southern Brazil. We suggest that the cause for the positive differences GPCP minus TRMM PR rainfall are related to the fact that satellite observations based on infrared radiation and outgoing longwave radiance sensors overestimate convective rainfall in GPCP and the cause for the negative differences are due to the random errors in TRMM PR. Rainfall differences in the latter phases of the 1997/98 El Niño and 1998/99 La Niña are analyzed. The results showed that the rainfall anomalies are generally higher in GPCP than in TRMM PR, however, as in the mean annual case, there are regions where the rainfall in GPCP is lower than in TRMM PR. The higher positive (negative) differences between the rainfall anomalies in GPCP and TRMM PR, which occur in the central Amazonia (southern Brazil), are reduced (increased) in the El Niño event. This is due to the fact that during the El Niño episode the rainfall decreases in the central Amazonia and increases in the southern Brazil. Consequently, the overestimation of the convective rainfall by GPCP is reduced and the overestimation of the rainfall by TRMM PR is increased in these two regions, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号