首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Preferential suprapermafrost groundwater flow was observed in deepened channels lying between raised frost mounds. Here, saturated hydraulic conductivity, k, ranged from 90 to 1000 m/day but was only 0·1–1·0 m/day in the mound centres. A high proportion of fines occurs in the frost mound centre due to particle sorting, while channels contain gravels. Three approaches of areal weighting of k and groundwater flow, Q s, across a wetland–upland boundary were explored. When percentage area covered by channels, mounds or gravel was considered, estimates of water flow on a daily and seasonal basis fell by 30 to 50 per cent. This study is of relevance to northern scientists who require reliable estimates of groundwater flow across patterned ground landscapes. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
Previous studies of alluvial rivers have shown that channel patterns form a continuum controlled by interactions among factors such as gradient, discharge, sediment size, and bank strength. Data from channels in the permanent wetlands of the Okavango Delta add to these ?ndings by focusing on pattern transitions in channels with banks formed by sedges and grasses that are rooted in peat and underlain by unconsolidated sediment. Channels are well de?ned, and transport ?ne–medium sand as bedload between the vertical, vegetation‐lined banks. Water depths, velocities, grain sizes, and bankline vegetation do not vary signi?cantly or systematically downstream, but the permeable banks allow water to leak from the channels, contributing to an overall downstream decrease in discharge and width. In addition, as the Okavango River ?ows from the <12 km wide ‘Panhandle’ and splits into distributaries in the broader ‘Fan’, valley gradient steepens by c. 60 per cent. These downstream changes result in channel pattern adjustments. In the Panhandle, the Okavango River is a relatively wide (c. 30–100 m), actively meandering, sinuous channel (P > 2·0), but further downstream in the Fan, the narrower (<40 m) distributaries follow laterally stable, less sinuous (‘straight’) courses (P < 1·75). Some channel pattern discrimination diagrams based on simple indices of gradient, discharge, sediment size or stream power are inadequate for analysing the meandering–straight transition in the Okavango but Parker's (1976) approach, based on ratios of depth–width and slope–Froude number, accurately characterizes the transition. Our ?eld observations, combined with the results from previous experimental studies, suggest that in relatively wide channels (w/d > 10), thalweg meandering results in scour of the unconsolidated sediment at the bank base, leading to undermining and collapse of the vegetation, and to slow meander migration. However, as channels narrow downstream (w/d < 10) with discharge losses, proportionally increasing sidewall drag exerted by bankline vegetation suppresses thalweg meandering and bank scour, and channels follow stable, less sinuous courses. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
Elastic behaviour of North Sea chalk: A well-log study   总被引:1,自引:1,他引:0  
We present two different elastic models for, respectively, cemented and uncemented North Sea chalk well‐log data. We find that low Biot coefficients correlate with anomalously low cementation factors from resistivity measurements at low porosity and we interpret this as an indication of cementation. In contrast, higher Biot coefficients and correspondingly higher cementation factors characterize uncemented chalk for the same (low) porosity. Accordingly, the Poisson's ratio–porosity relationship for cemented chalk is different from that of uncemented chalk. We have tested the application of the self‐consistent approximation, which here represents the unrelaxed scenario where the pore spaces of the rock are assumed to be isolated, and the Gassmann theory, which assumes that pore spaces are connected, as tools for predicting the effect of hydrocarbons from the elastic properties of brine‐saturated North Sea reservoir chalk. In the acoustic impedance–Poisson's ratio plane, we forecast variations in porosity and hydrocarbon saturation from their influence on the elastic behaviour of the chalk. The Gassmann model and the self‐consistent approximation give roughly similar predictions of the effect of fluid on acoustic impedance and Poisson's ratio, but we find that the high‐frequency self‐consistent approach gives a somewhat smaller predicted fluid‐saturation effect on Poisson's ratio than the low‐frequency Gassmann model. The Gassmann prediction for the near and potentially invaded zone corresponds more closely to logging data than the Gassmann prediction for the far, virgin zone. We thus conclude that the Gassmann approach predicts hydrocarbons accurately in chalk in the sonic‐frequency domain, but the fluid effects as recorded by the acoustic tool are significantly affected by invasion of mud filtrate. The amplitude‐versus‐angle (AVA) response for the general North Sea sequence of shale overlying chalk is predicted as a function of porosity and pore‐fill. The AVA response of both cemented and uncemented chalk generally shows a declining reflectivity coefficient versus offset and a decreasing normal‐incidence reflectivity with increasing porosity. However, for the uncemented model, a phase reversal will appear at a relatively lower porosity compared to the cemented model.  相似文献   

4.
This paper investigates the relative merits and effectiveness of cross‐hole resistivity tomography using different electrode configurations for four popular electrode arrays: pole–pole, pole–bipole, bipole–pole and bipole–bipole. By examination of two synthetic models (a dipping conductive strip and a dislocated fault), it is shown that besides the popular pole–pole array, some specified three‐ and four‐electrode configurations, such as pole–bipole AMN, bipole–pole AMB and bipole–bipole AMBN with their multispacing cross‐hole profiling and scanning surveys, are useful for cross‐hole resistivity tomography. These configurations, compared with the pole–pole array, may reduce or eliminate the effect of remote electrodes (systematic error) and yield satisfactory images with 20% noise‐contaminated data. It is also shown that the configurations which have either both current electrodes or both potential electrodes in the same borehole, i.e. pole–bipole AMN, bipole–pole ABM and bipole–bipole ABMN, have a singularity problem in data acquisition, namely low readings of the potential or potential difference in cross‐hole surveying, so that the data are easily obscured by background noise and yield images inferior to those from other configurations.  相似文献   

5.
Elastic rock properties can be estimated from prestack seismic data using amplitude variation with offset analysis. P‐wave, S‐wave and density ‘reflectivities’, or contrasts, can be inverted from angle‐band stacks. The ‘reflectivities’ are then inverted to absolute acoustic impedance, shear impedance and density. These rock properties can be used to map reservoir parameters through all stages of field development and production. When P‐wave contrast is small, or gas clouds obscure reservoir zones, multicomponent ocean‐bottom recording of converted‐waves (P to S or Ps) data provides reliable mapping of reservoir boundaries. Angle‐band stacks of multicomponent P‐wave (Pz) and Ps data can also be inverted jointly. In this paper Aki‐Richards equations are used without simplifications to invert angle‐band stacks to ‘reflectivities’. This enables the use of reflection seismic data beyond 30° of incident angles compared to the conventional amplitude variation with offset analysis. It, in turn, provides better shear impedance and density estimates. An important input to amplitude variation with offset analysis is the Vs/Vp ratio. Conventional methods use a constant or a time‐varying Vs/Vp model. Here, a time‐ and space‐varying model is used during the computation of the ‘reflectivities’. The Vs/Vp model is generated using well log data and picked horizons. For multicomponent data applications, the latter model can also be generated from processing Vs/Vp models and available well data. Reservoir rock properties such as λρ, μρ, Poisson's ratio and bulk modulus can be computed from acoustic impedance, shear impedance and density for pore fill and lithology identification. λ and μ are the Lamé constants and ρ is density. These estimations can also be used for a more efficient log property mapping. Vp/Vs ratio or Poisson's ratio, λρ and weighted stacks, such as the one computed from λρ and λ/μ, are good gas/oil and oil/water contact indicators, i.e., pore fill indicators, while μρ mainly indicates lithology. μρ is also affected by pressure changes. Results from a multicomponent data set are used to illustrate mapping of gas, oil and water saturation and lithology in a Tertiary sand/shale setting. Whilst initial log crossplot analysis suggested that pore fill discrimination may be possible, the inversion was not successful in revealing fluid effects. However, rock properties computed from acoustic impedance, shear impedance and density estimates provided good lithology indicators; pore fill identification was less successful. Neural network analysis using computed rock properties provided good indication of sand/shale distribution away from the existing wells and complemented the results depicted from individual rock property inversions.  相似文献   

6.
Results are presented from a numerical simulation of three‐dimensional flow hydraulics around a mid‐channel bar carried out using the FLUENT/UNS computational fluid dynamics (CFD) software package. FLUENT/UNS solves the three‐dimensional Reynolds‐averaged form of the Navier–Stokes equations. Turbulence closure is achieved using a RNG k–ϵ model. Simulated flow velocities are compared with measured two‐dimensional velocities (downstream and cross‐stream) obtained using an electromagnetic current meter (ECM). The results of the simulation are qualitatively consistent with the flow structures observed in the field. Quantitative comparison of the simulated and measured velocity magnitudes indicates a strong positive correlation between the two (r=0·88) and a mean difference of 0·09 m s−1. Deviations between simulated and measured velocities may be identified that are both random and systematic. The former may reflect a number of factors including subgrid‐scale natural spatial variability in flow velocities associated with local bed structures and measurement uncertainty resulting from problems of ECM orientation. Model mesh configuration, roughness parameterization and inlet boundary condition uncertainty may each contribute to systematic differences between simulated and measured flow velocities. These results illustrate the potential for using CFD software to simulate flow hydraulics in natural channels with complex configurations. They also highlight the need for detailed spatially distributed datasets of three‐dimensional flow variables to establish the accuracy and applicability of CFD software. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
Palaeoflood reconstructions based on stage evidence are typically conducted in data‐poor field settings. Few opportunities exist to calibrate the hydraulic models used to estimate discharge from this evidence. Consequently, an important hydraulic model parameter, the roughness coefficient (e.g. Manning's n), is typically estimated by a range of approximate techniques, such as ‘visual estimation’ and semi‐empirical equations. These techniques contribute uncertainty to resulting discharge estimates, especially where the study reach exhibits sensitivity in the discharge–Manning's n relation. We study this uncertainty within a hydraulic model for a large flood of known discharge on the Mae Chaem River, northern Thailand. Comparison of the ‘calibrated’ Manning's n with that obtained from semi‐empirical equations indicates that these underestimate roughness. Substantial roughness elements in the extra‐channel zone, inundated during large events, contribute significant additional sources of flow resistance that are captured neither by the semi‐empirical equations, nor by existing models predicting stage–roughness variations. This bedrock channel exhibits a complex discharge–Manning's n relation, and reliable estimates of the former are dependent upon realistic assignment of the latter. Our study demonstrates that a large recent flood can provide a valuable opportunity to constrain this parameter, and this is illustrated when we model a palaeoflood event in the same reach, and subsequently examine the magnitude–return period consequences of discharge uncertainty within a flood frequency analysis, which contributes its own source of uncertainty. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Supraglacial rivers on the Greenland Ice Sheet (GrIS) transport large volumes of surface meltwater toward the ocean, yet have received relatively little direct research. This study presents field observations of channel width, depth, velocity, and water surface slope for nine supraglacial channels on the south‐western GrIS collected between July 23 and August 20, 2012. Field sites are located up to 74 km inland and span 494–1485 m elevation, and contain measured discharges larger than any previous in situ study: from 0.006 to 23.12 m3/s in channels 0.20 to 20.62 m wide. All channels were deeply incised with near vertical banks, and hydraulic geometry results indicate that supraglacial channels primarily accommodate greater discharges by increasing velocity. Smaller streams had steeper water surface slopes (0.74–8.83%) than typical in terrestrial settings, yielding correspondingly high velocities (0.40–2.60 m/s) and Froude numbers (0.45–3.11) with supercritical flow observed in 54% of measurements. Derived Manning's n values were larger and more variable than anticipated from channels of uniform substrate, ranging from 0.009 to 0.154 with a mean value of 0.035 ± 0.027 despite the absence of sediment, debris, or other roughness elements. Ubiquitous micro‐depressions in shallow sections of the channel bed may explain some of these roughness values. However, we find that other, unobserved sources of flow resistance likely contributed to these elevated Manning's n values: future work should explicitly consider additional sources of flow resistance beyond bed roughness in supraglacial channels. We conclude that hydraulic modeling for these channels must allow for both subcritical and supercritical flow, and most importantly must refrain from assuming that all ice‐substrate channels exhibit similar hydraulic behavior, especially for Froude numbers and Manning's n. Finally, this study highlights that further theoretical and empirical work on supraglacial channel hydraulics is necessary before broad scale understanding of ice sheet hydrology can be achieved. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

‘‘Helicity'’ density Hu · ω and other pseudo-scalar fields such as P ≡ ω · Vlnρ (which is related to Ertel potential vorticity) are useful quantities in theoretical fluid dynamics and magneto-fluid dynamics. Here u denotes the Eulerian flow velocity relative to the chosen frame of reference, ω ≡ V × u is the corresponding relative vorticity and ρ the mass density of the fluid. A general expression is readily obtained for ?H/?t (where t denotes time) in terms of P and the ‘‘superhelicity'’ density S ≡ ω · V × ω which, in fluids of low viscosity, has its highest values in boundary layers. One need for such a relationship became evident during an attempt to interpret the findings of laboratory experiments on thermal convection in rotating fluids in containers of various geometrical shapes and topological characteristics.

In electrodynamics an analogous expression can be found relating the time rate of change of ‘‘magnetic helicity'’ A · B to ‘‘magnetic superhelicity'’ B · ? × B (where B · ? × A is the magnetic field) and a scalar quantity analogous to P which involves non-Ohmic contributions to the relationship between the electric current density and the electric field.  相似文献   

10.
The effect of large roughness elements on sand transport efficiency was evaluated on a coastal sand sheet by measuring sand flux with two types of sand traps [Big Spring Number Eight (BSNE) and the Cox Sand Catcher (CSC)] at 30 positions through a 100 m‐long × 50 m‐wide roughness array comprised of 210 elements each with the dimensions 1·17 m long × 0·4 m high × 0·6 m wide. The 210 elements were used to create a roughness density (λ) of 0·022 (λ = n bh/S, where n is the number of elements, b the element breadth, h the element height, and S is the area of the surface that contains all the elements) in an area of 5000 m2. The mean normalized saltation flux (NSF) values (NSF = outgoing sand flux/incoming sand flux) at the furthest downwind distance for the two trap types were 0·44 and 0·41, respectively. This is in excellent agreement with an empirical model prediction of 0·5. The reduction in saltation flux is similar to an earlier separate study for an equivalent λ composed of elements of similar height (0·36 m), even though the roughness element forms were different (rectangular in this study as opposed to circular) as were the horizontal porosity of the arrays (49% versus 16%). This corroborates earlier results that roughness element height is a critical parameter that enhances reduction in sand transport by wind for similar λ configurations. The available data suggest the form of the relationship between transport reduction efficiency and height is likely a power relationship with two limiting conditions: (1) for elements ≤ 0·1 m high the effect is minimized, and (2) as element height matches and then exceeds the maximum height of the saltation layer (≥ 1 m), the effect will stabilize near a maximum of NSF ≈ 0·32. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The general nature of bulk flow within bedrock single‐channel reaches has been considered by several studies recently. However, the flow structure of a bedrock‐constrained, large river with a multiple channel network has not been investigated previously. The multiple channel network of the Siphandone wetlands in Laos, a section of the Mekong River, was modelled using a steady one‐dimensional hydraulic model. The river network is characterized by a spatially‐varying channel‐form leading to significant changes in the bulk flow properties between and along the channels. The challenge to model the bulk flow in such a remote region was the lack of ideal boundary conditions. The flow models considered both low flow, high inbank and overbank flows and were calibrated using SPOT satellite sensor imagery and limited field data concerning water levels. The application of the model highlighted flow characteristics of a large multi‐channel network and also further indicated the field data that would be required to properly characterize the flow field empirically. Important results included the observation that adjacent channels within the network had different water surface slopes for the same moments in time; thus calibration data for modelling similar systems needs to account for these significant local differences. Further, the in‐channel hydraulic roughness coefficient strongly varied from one cross‐section to the next (Manning's ‘n’ range: 0·01 to 0·10). These differences were amplified during low flow but persisted in muted form during high discharges. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Hydrological processes within riparian environments worldwide are impacted when introduced species invade. Monitoring and management at substantial expense, are subsequently required to combat deleterious effects on the environment and stream hydrology. Willow species (Salicaceae: Salix spp.) introduced into Australia have spread throughout many riparian systems causing adverse environmental impacts, with high rates of water extraction when located within stream beds (in‐stream willows) thus altering hydrology. Strategies exist to manage willows; however, simpler, more cost‐effective methods are required to map and monitor spatial and temporal distributions. A method is presented to discriminate willow stands from surrounding native riparian vegetation using a single, very high 2 m resolution multispectral WorldView‐2 satellite image. A combination of spectral bands ‘coastal blue’ (400–450 nm), ‘red’ (630–690 nm), ‘red edge’ (705–745 nm) and ‘near infrared2’ (860–1040 nm), minimum noise fraction transformation, median filtering and maximum likelihood supervised classification provided the highest discriminatory power within a 25 km2 study area. Of the spectral bands, coastal blue, red edge and near infrared2 are new bands that are not available in other multispectral sensors. These bands proved critical to the success of discriminating willows from other land cover categories (overall accuracy of 97%). Stream channels were defined by incorporating a LiDAR‐derived digital elevation model to discriminate between willows on stream banks and within stream beds. Canopy area estimates of in‐stream willows, coupled with water savings estimates from willow removal, suggest removal of 10.4 ha of Salix fragilis canopy from within river channels in the study area will potentially return 41 ML year?1 to the environment. The method presented improves our understanding of willow impacts on hydrology and aids decisions regarding willow removal for water resource management. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
A series of time‐lapse seismic cross‐well and single‐well experiments were conducted in a diatomite reservoir to monitor the injection of CO2 into a hydrofracture zone, based on P‐ and S‐wave data. A high‐frequency piezo‐electric P‐wave source and an orbital‐vibrator S‐wave source were used to generate waves that were recorded by hydrophones as well as 3‐component geophones. During the first phase the set of seismic experiments was conducted after the injection of water into the hydrofractured zone. The set of seismic experiments was repeated after a time period of seven months during which CO2 was injected into the hydrofractured zone. The questions to be answered ranged from the detectability of the geological structure in the diatomic reservoir to the detectability of CO2 within the hydrofracture. Furthermore, it was intended to determine which experiment (cross‐well or single‐well) is best suited to resolve these features. During the pre‐injection experiment, the P‐wave velocities exhibited relatively low values between 1700 and 1900 m/s, which decreased to 1600–1800 m/s during the post‐injection phase (?5%). The analysis of the pre‐injection S‐wave data revealed slow S‐wave velocities between 600 and 800 m/s, while the post‐injection data revealed velocities between 500 and 700 m/s (?6%). These velocity estimates produced high Poisson's ratios between 0.36 and 0.46 for this highly porous (~50%) material. Differencing post‐ and pre‐injection data revealed an increase in Poisson's ratio of up to 5%. Both velocity and Poisson's ratio estimates indicate the dissolution of CO2 in the liquid phase of the reservoir accompanied by an increase in pore pressure. The single‐well data supported the findings of the cross‐well experiments. P‐ and S‐wave velocities as well as Poisson's ratios were comparable to the estimates of the cross‐well data. The cross‐well experiment did not detect the presence of the hydrofracture but appeared to be sensitive to overall changes in the reservoir and possibly the presence of a fault. In contrast, the single‐well reflection data revealed an arrival that could indicate the presence of the hydrofracture between the source and receiver wells, while it did not detect the presence of the fault, possibly due to out‐of‐plane reflections.  相似文献   

14.
Reynolds shear stress (RS = –uw′) and sand transport patterns over a vegetated foredune are explored using three‐dimensional velocity data from ultrasonic anemometers (at 0 · 2 and 1 · 2 m) and sand transport intensity from laser particle counters (at 0 · 014 m). A mid‐latitude cyclone on 3–4 May 2010 generated storm‐force winds (exceeding 20 m s–1) that shifted from offshore to obliquely alongshore. Quadrant analysis was used to characterize the spatial variation of RS quadrant components (Q1 through Q4) and their relative contributions were parameterized using the flow exuberance relation, EXFL = (Q1 + Q3)/(Q2 + Q4). The magnitudes of RS and sand transport varied somewhat independently over the dune as controlled by topographic forcing effects on flow dynamics. A ‘flow exuberance effect’ was evident such that Q2 (ejection‐like) and Q4 (sweep‐like) quadrants (that contribute positively to RS) dominated on the beach, dune toe, and lower stoss, whereas Q1 and Q3 (that contribute negatively to RS) dominated near the crest. This exuberance effect was not expressed, however, in sand transport patterns. Instead, Q1 and Q4, with above‐average streamwise velocity fluctuations (+u′), were most frequently associated with sand transport. Q4 activity corresponded with most sand transport at the beach, toe, and stoss locations (52, 60, 100%). At the crest, 25 to 86% of transport was associated with Q1 while Q4 corresponded with most of the remaining transport (13 to 59%). Thus, the relationship between sand transport and RS is not as straightforward as in traditional equations that relate flux to stress in increasing fashion. Generally, RS was poorly associated with sand transport partly because Q1 and Q4 contributions offset each other in RS calculations. Thus, large amounts of transport can occur with small RS. Turbulent kinetic energy or Reynolds normal stresses (u2, w2) may provide stronger associations with sand transport over dunes, although challenges exist on how to normalize and compare these quantities. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Small‐scale aerial photographs and high‐resolution satellite images, available for Ethiopia since the second half of the twentieth century as for most countries, allow only the length of gullies to be determined. Understanding the development of gully volumes therefore requires that empirical relations between gully volume (V) and length (L) are established in the field. So far, such V–L relations have been proposed for a limited number of gullies/environments and were especially developed for ephemeral gullies. In this study, V–L relations were established for permanent gullies in northern Ethiopia, having a total length of 152 km. In order to take the regional variability in environmental characteristics into account, factors that control gully cross‐sectional morphology were studied from 811 cross‐sections. This indicated that the lithology and the presence of check dams or low‐active channels were the most important controls of gully cross‐sectional shape and size. Cross‐sectional size could be fairly well predicted by their drainage area. The V–L relation for the complete dataset was V = 0 · 562 L 1·381 (n = 33, r2 = 0 · 94, with 34 · 9% of the network having check dams and/or being low‐active). Producing such relations for the different lithologies and percentages of the gully network having check dams and/or being low‐active allows historical gully development from historical remote sensing data to be assessed. In addition, gully volume was also related to its catchments area (A) and catchment slope gradient (Sc). This study demonstrates that V–L and V–A × Sc relations can be very suitable for planners to assess gully volume, but that the establishment of such relations is necessarily region‐specific. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Seismic properties of isotropic elastic formations are characterized by the three parameters: acoustic impedance, Poisson's ratio and density. Whilst the first two are usually well estimated by analysing the amplitude variation with angle (AVA) of reflected P‐P waves, density is known to be poorly resolved. However, density estimates would be useful in many situations encountered in oil and gas exploration, in particular, for minimizing risks in looking ahead while drilling. We design a borehole seismic experiment to investigate the reliability of AVA extracted density. Receivers are located downhole near the targeted reflectors and record reflected P‐P and converted P‐S waves. A non‐linear, wide‐angle‐based Bayesian inversion is then used to access the a posteriori probability distributions associated with the estimation of the three isotropic elastic parameters. The analysis of these distributions suggests that the angular variation of reflected P‐S amplitudes provides additional substantial information for estimating density, thus reducing the estimate uncertainty variance by more than one order of magnitude, compared to using only reflected P‐waves.  相似文献   

17.
Resistance to flow at low to moderate stream discharge was examined in five small (12–77 km2 drainage area) tributaries of Chilliwack River, British Columbia, more than half of which exhibit planar bed morphology. The resulting data set is composed of eight to 12 individual estimates of the total resistance to flow at 61 cross sections located in 13 separate reaches of five tributaries to the main river. This new data set includes 625 individual estimates of resistance to flow at low to moderate river stage. Resistance to flow in these conditions is high, highly variable and strongly dependent on stage. The Darcy–Weisbach resistance factor (ff) varies over six orders of magnitude (0·29–12 700) and Manning's n varies over three orders of magnitude (0·047–7·95). Despite this extreme range, both power equations at the individual cross sections and Keulegan equations for reach‐averaged values describe the hydraulic relations well. Roughness is divided into grain and form (considered as all non‐grain sources) components. Form roughness is the dominant component, accounting for about 90% of the total roughness of the system (i.e., form roughness is on average 8.6 times as great as grain roughness). Of the various quantitative and qualitative form‐roughness indicators observed, only the sorting coefficient (σ = D84/D50) correlates well with form roughness. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Tidal sand waves are dynamic bedforms found in coastal shelf seas. Moreover, these areas are inhabited by numerous benthic species, of which the spatial distribution is linked to the morphological structure of sand waves. In particular, the tube-building worm Lanice conchilegais of interest as this organism forms small mounds on the seabed, which provide shelter to other organisms. We investigate how the interactions between small-scale mounds (height ∼dm) and large-scale sand waves (height ∼m) shape the bed of the marine environment. To this end, we present a two-way coupled process-based model of sand waves and tube-building worm patches in Delft3D. The population density evolves according to a general law of logistic growth, with the bed shear stress controlling the carrying capacity. Worm patches are randomly seeded and the tubes are mimicked by small cylinders that influence flow and turbulence, thereby altering sediment dynamics. Model results relate the patches with the highest worm densities to the sand wave troughs, which qualitatively agrees with field observations. Furthermore, the L. conchilegatubes trigger the formation of sandy mounds on the seabed. Because of the population density distribution, the mounds in the troughs can be several centimetres higher than on the crests. Regarding sand wave morphology, the combination of patches and mounds are found to shorten the time-to-equilibrium. Also, if the initial bed comprised small sinusoidal sand waves, the equilibrium wave height decreased with a few decimetres compared to the situation without worm patches. As the timescale of mound formation (years) is shorter than that of sand wave evolution (decades), the mounds induce (and accelerate) sand wave growth on a similar spatial scale to the mounds. Initially, this leads to shorter sand waves than they would be in an abiotic environment. However, near equilibrium the wavelengths tend towards their abiotic counterparts again. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

19.
Accurate knowledge of the surface roughness and the resultant wind speed are important for many applications, such as climatic models, wind power meteorology, agriculture and erosion hazards, especially on sand dunes in arid and semi‐arid environments, where vegetation cover is scarce. In this study we aimed at quantifying the effects of vegetation cover and topography on surface roughness over a stabilizing dune field on the southern coast of Israel. Forty‐six wind measurements were made at various distances from the coastline, ranging from 10 to 2800 m, and z0 values were calculated from the wind measurements based on the ratio between the wind gust and the average wind speed. We estimated vegetation cover using the soil adjusted vegetation index (SAVI) from Landsat satellite images for the upwind sector at various lengths, ranging from 15 to 400 m, and based on digital elevation models and differential GPS field measurements we calculated the topographic variable of the relative heights of the stations. z0 values were positively correlated with the winter SAVI values (r = 0·87 at an upwind length of 200 m) and negatively correlated with the relative height (r = ?0·68 at an upwind length of 200–400 m for the inland dune stations). Using these variables we were able to create a map of estimated z0 values having an accuracy of over 64%. Such maps provide a better understanding of the spatial variability in both wind speed and sand movement over coastal dune areas. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
The present work deals with storm classification, using the Storm Power Index, and beach morphological response to storm events in the Gulf of Cadiz (SW Spain). Over the 1958–2001 period, 377 events divided into five classes ranging from ‘weak’ to ‘extreme’ were characterized. Classes I (weak) and II (moderate) accounted for 60% and 23% of events, respectively. Class III (significant), were 9% of the recorded events and Classes IV (severe) and V (extreme) accounted for 5% and 2%, respectively. The probability of storm occurrence per year ranged from 93% for Class I to 15% for Class V. In order to characterize beach response to storm events, 214 beach profiles carried out with a monthly periodicity over the 1996–1998 period along the Chipiona‐Rota littoral were analysed, as well as published data. Different beach types were observed: (i) ‘Intermediate’ beaches underwent important vertical relief changes ranging from 0.3 m to 1.33 m associated with average slope changes from tan β = 0.06 to tan β = 0.03; (ii) the ‘dissipative’ beaches were characterized by smaller and homogeneous foreshore vertical changes, from c. 0.36 m to 0.65 m, according to the parallel retreat mechanism characterized by small slope variations (from tan β = 0.025 to tan β = 0.035); and (iii) ‘intermediate with rock shore platform’ experienced small morphological and foreshore slope variations, related to both beach pivoting and parallel retreat mechanisms. The most important morphological changes were due to the impact of usually ‘weak’ and ‘moderate’ events during October and November that produced berm erosion and upper foreshore lowering, and the impact of ‘severe’, ‘significant’ and ‘extreme’ events in December and January which produced dune escarpment, overwash and/or damage to coastal structures. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号