首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Near-fault ground motions containing high energy and large amplitude velocity pulses may cause severe damage to structures. The most widely used intensity measure (IM) is the elastic spectral acceleration at the fundamental period of the structure (Sa(T1)); however, Sa(T1) is not a sufficient IM with respect to the effects of the pulse-like ground motions on structural response. For near-fault ground motions, including pulse-like and non–pulse-like time histories, we propose a vector-valued IM consisting of a new IM called instantaneous power (IP(T1)) and the Sa(T1). The IP(T1) is defined as the maximum power of the bandpass-filtered velocity time series over a time interval of 0.5T1. The IP(T1) is period-dependent because the velocity time series is filtered over a period range (0.2T1-3T1). This allows the IP(T1) to represent the power of the near-fault ground motions relevant to the response of the structure. Using two-dimensional models of the 2- and 9-story steel-frame buildings, we show that the proposed [Sa(T1), IP(T1)] vector IM gives more accurate estimates of the maximum inter-story drift and collapse capacity responses from near-fault ground motions than using the vector IM consisting of the Sa(T1), the presence of the velocity pulse, and the period of the velocity pulse. Moreover, for the structures considered, for a given Sa(T1), the IP(T1) is more strongly correlated with structural damage from near-fault ground motions than the combination of the velocity pulse and pulse period.  相似文献   

2.
3.
A novel ground motion selection and modifications method to perform response history analysis of structures is presented in this paper. Currently, the accessibility of ground motion information permits the analysis of structures using real ground motion data. Predicting the dynamic behavior of structures is a primary objective; therefore, the selection of a set of ground motions that shows a reduction in the variability of the structural response and accuracy in preserving the median demand is a challenging task. The new selection and scaling procedure emerges from comparing a set of horizontal ground motions at various ranges of frequency. In this study, the conditional mean spectrum and the design response spectrum are used as target spectra, and the records that give an applicable and compelling contribution to the hazard are considered. It is possible to obtain a set of ground motions with similar seismic severity by matching the target spectrum at the period of interest T ref , where the scaled spectrum should have an equivalent Housner intensity in the period range 0.2T ref –2T ref . The horizontal components for every band of frequency is obtained using a specific index that depends on the energy-frequency trend’s shape as well as on its scattering degree around the mean value. This allows obtaining a set of spectrum-compatible records with almost identical severity and low dispersion of the structural response parameters. The methodology has been tested showing a significant effectiveness in terms of low variability of parameters and accuracy in preserving the median demand for a given hazard scenario.  相似文献   

4.
This paper presents a new clustering procedure based on K-means and self-organizing map (SOM) network algorithms for classification of earthquake ground-motion records. Six scalar indicators are used in data analysis for describing the frequency content features of earthquake ground motions, named as the average spectral period (T avg ), the mean period (T m ), the smoothed spectral predominant period (T 0), the characteristic period (T 4.3), the predominant period based on velocity spectrum (T gSv ), and the shape factor (Ω). Different clustering validity indexes were applied to determine the best estimates of the number of clusters on real and synthetic data. Results showed the high performance of proposed procedure to reveal salient features of complex seismic data. The comparison between the results of clustering analyses recommend the smoothed spectral predominant period as an effective indicator to describe ground-motion classes. The results also showed that K-means algorithm has better performance than SOM algorithm in identification and classification procedure of ground-motion records.  相似文献   

5.
Seismic observations exhibit the presence of abnormal b-values prior to numerous earthquakes. The time interval from the appearance of abnormal b-values to the occurrence of mainshock is called the precursor time. There are two kinds of precursor times in use: the first one denoted by T is the time interval from the moment when the b-value starts to increase from the normal one to the abnormal one to the occurrence time of the forthcoming mainshock, and the second one denoted by T p is the time interval from the moment when the abnormal b-value reaches the peak one to the occurrence time of the forthcoming mainshock. Let T* be the waiting time from the moment when the abnormal b-value returned to the normal one to the occurrence time of the forthcoming mainshock. The precursor time, T (usually in days), has been found to be related to the magnitude, M, of the mainshock expected in a linear form as log(T)?=?q?+?rM where q and r are the coefficient and slope, respectively. In this study, the values of T, T p , and T* of 45 earthquakes with 3?≤?M?≤?9 occurred in various tectonic regions are compiled from or measured from the temporal variations in b-values given in numerous source materials. The relationships of T and T p , respectively, versus M are inferred from compiled data. The difference between the values of T and T p decreases with increasing M. In addition, the plots of T*/T versus M, T* versus T, and T* versus T-T* will be made and related equations between two quantities will be inferred from given data.  相似文献   

6.
A wide variety of near-fault strong ground motion records were collected from various tectonic environments worldwide and were used to study the peak value ratio and response spectrum ratio of the vertical to horizontal component of ground motion, focusing on the effect of earthquake magnitude, site conditions, pulse duration, and statistical component. The results show that both the peak value ratio and response spectrum ratio are larger than the 2/3 value prescribed in existing seismic codes, and the relationship between the vertical and horizontal ground motions is comparatively intricate. In addition, the effect of the near-fault ground motions on bridge performance is analyzed, considering both the material nonlinear characteristics and the P~? effect.  相似文献   

7.
It is proposed to evaluate two theoretical characteristics, i.e., BOD (biochemical oxygen demand) and k 0 (the coefficient of oxidation rate by new formulas based on two experimental variables: BOD T and BOD2T (biochemical oxygen consumption in two periods T and 2T day, respectively). The formulation and an analytical solution are given for a direct problem describing the process of biochemical oxidation of organic matter (OM) in a water volume in the absence of aeration (e.g., in a water body under ice or in a sealed flask used to measure biochemical oxygen consumption). The problem is solved based on the closed (modified) Streeter–Phelps system. Unlike the classical Streeter–Phelps system, the closed system excludes physically incorrect solutions (e.g., negative concentrations of dissolved oxygen (DO)) [4]. The solution of the direct problem is used to formulate an inverse problem, whose solution is given in the form of formulas for evaluating BOD and k 0. These formulas are used to compile tables to illustrate the essence of the proposed method.  相似文献   

8.
Using bathymetry and altimetric gravity anomalies, a 1° 9 1° lithospheric effective elastic thickness(Te) model over the Louisville Ridge and its adjacent regions is calculated using the moving window admittance technique. For comparison, three bathymetry models are used: general bathymetric charts of the oceans, SIO V15.1,and BAT_VGG. The results show that BAT_VGG is more suitable for calculating T e than the other two models. T e along the Louisville Ridge was re-evaluated. The southeast of the ridge has a medium Te of 10–20 km, while Te increases dramatically seaward of the Tonga-Kermadec trench as a result of the collision of the Pacific and IndoAustralian plates.  相似文献   

9.
Properties of seismoelectric waves in relation to natural earthquakes have been investigated. The electromagnetic disturbances were analyzed to test the hypothesis that pulse-like electric variations are directly related to microcracks as source. Because variation is very difficult to detect, there have been few quantitative field investigations. We used selected events with clear S and P phases from the data catalog obtained before the Tohoku earthquake in 2011. The electric strength of the fast P wave (Pf), S wave (S), and electromagnetic wave (EM) associated with formation of cracks of tensile mode were estimated. The co-seismic electric signal accompanied by the S wave has the largest strength, well above the noise level, and the EM wave has the lowest strength. Analytical estimation of the ratio of the strengths of the Pf and EM phases to that of the S phase by use of Pride’s equations gave results partially in agreement with observation (the order was Apf > As > Aem). The strength of the observed electromagnetic mode is approximately two orders of magnitude larger than that estimated from the theory. We suggest this greater strength can be attributed to the converted modes at layer contracts or to the effect of the boundary between free atmosphere and crust. Overall agreement between observations and theoretical estimates suggests that electromagnetic anomalies, crustal deformation, and groundwater changes can be investigated on the basis of the unified equations for the coupled electromagnetics, acoustics, and hydrodynamics of porous media.  相似文献   

10.
A decision support process is presented to accommodate selecting and scaling of earthquake motions as required for the time domain analysis of structures. Code-compatible suites of seismic motions are provided being, at the same time, prequalified through a multi-criterion approach to induce response parameters with reduced variability. The latter is imperative to increase the reliability of the average response values, normally required for the code-prescribed design verification of structures. Structural attributes like the dynamic characteristics as well as criteria related to variability of seismic motions and their compliance with a target spectrum are quantified through a newly introduced index, δ svsc , which aims to prioritize motions suites for response history analysis. To demonstrate the applicability of the procedure presented, the structural model of a multi-story building was subjected to numerous suites of motions that were highly ranked according to both the proposed approach (δ svsc ) and the conventional one (δ conv ), that is commonly used for earthquake records selection and scaling. The findings from numerous linear response history analyses reveal the superiority of the proposed multi-criterion approach, as it extensively reduces the intra-suite structural response variability and consequently, increases the reliability of the design values. The relation between the target reliability in assessing structural response and the size of the suite of motions selected was also investigated, further demonstrating the efficiency of the proposed selection procedure to achieve higher response reliability levels with smaller samples of ground motion.  相似文献   

11.
To study the prospective areas of upcoming strong-to-major earthquakes, i.e., M w  ≥ 6.0, a catalog of seismicity in the vicinity of the Thailand-Laos-Myanmar border region was generated and then investigated statistically. Based on the successful investigations of previous works, the seismicity rate change (Z value) technique was applied in this study. According to the completeness earthquake dataset, eight available case studies of strong-to-major earthquakes were investigated retrospectively. After iterative tests of the characteristic parameters concerning the number of earthquakes (N) and time window (T w ), the values of 50 and 1.2 years, respectively, were found to reveal an anomalous high Z-value peak (seismic quiescence) prior to the occurrence of six out of the eight major earthquake events studied. In addition, the location of the Z-value anomalies conformed fairly well to the epicenters of those earthquakes. Based on the investigation of correlation coefficient and the stochastic test of the Z values, the parameters used here (N = 50 events and T w  = 1.2 years) were suitable to determine the precursory Z value and not random phenomena. The Z values of this study and the frequency-magnitude distribution b values of a previous work both highlighted the same prospective areas that might generate an upcoming major earthquake: (i) some areas in the northern part of Laos and (ii) the eastern part of Myanmar.  相似文献   

12.
The homologues temperature of a crystalline material is defined as T/T_m, where T is temperature and T_m is the melting(solidus) temperature in Kelvin. It has been widely used to compare the creep strength of crystalline materials. The melting temperature of olivine system,(Mg,Fe)_2SiO_4, decreases with increasing iron content and water content, and increases with confining pressure. At high pressure, phase transition will lead to a sharp change in the melting curve of olivine. After calibrating previous melting experiments on fayalite(Fe_2SiO_4), the triple point of fayalite-Fe_2SiO_4 spinel-liquid is determined to be at 6.4 GPa and 1793 K. Using the generalized means, the solidus and liquidus of dry olivine are described as a function of iron content and pressure up to 6.4 GPa. The change of T/T_m of olivine with depth allows us to compare the strength of the upper mantle with different thermal states and olivine composition. The transition from semi-brittle to ductile deformation in the upper mantle occurs at a depth where T/T_m of olivine equals 0.5. The lithospheric mantle beneath cratons shows much smaller T/T_m of olivine than orogens and extensional basins until the lithosphere-asthenosphere boundary where T/T_m 0.66, suggesting a stronger lithosphere beneath cratons. In addition, T/T_m is used to analyze deformation experiments on olivine. The results indicate that the effect of water on fabric transitions in olivine is closely related with pressure. The hydrogen-weakening effect and its relationship with T/T_m of olivine need further investigation. Below 6.4 GPa(200 km), T/T_m of olivine controls the transition of dislocation glide from [100] slip to [001] slip. Under the strain rate of 10~(-12)–10~(-15) s~(-1) and low stress in the upper mantle, the [100](010) slip system(A-type fabric) becomes dominant when T/T_m 0.55–0.60. When T/T_m 0.55–0.60, [001] slip is easier and low T/T_m favors the operation of [001](100) slip system(C-type fabric). This is consistent with the widely observed A-type olivine fabric in naturally deformed peridotites, and the C-type olivine fabric in peridotites that experienced deep subduction in ultrahigh-pressure metamorphic terranes. However, the B-type fabric will develop under high stress and relatively low T/T_m. Therefore, the homologues temperature of olivine established a bridge to extrapolate deformation experiments to rheology of the upper mantle. Seismic anisotropy of the upper mantle beneath cratons should be simulated using a four-layer model with the relic A-type fabric in the upper lithospheric mantle, the B-type fabric in the middle layer, the newly formed A- or B-type fabric near the lithosphere-asthenosphere boundary, and the asthenosphere dominated by diffusion creep below the Lehmann discontinuity. Knowledge about transition mechanisms of olivine fabrics is critical for tracing the water distribution and mantle flow from seismic anisotropy.  相似文献   

13.
We study the frictional and viscous effects on earthquake nucleation, especially for the nucleation phase, based on a one-degree-of-freedom spring-slider model with friction and viscosity. The frictional and viscous effects are specified by the characteristic displacement, U c, and viscosity coefficient, η, respectively. Simulation results show that friction and viscosity can both lengthen the natural period of the system and viscosity increases the duration time of motion of the slider. Higher viscosity causes a smaller amplitude of lower velocity motion than lower viscosity. A change of either U c (under large η) or η (under large U c) from a large value (U ch for U c and η h for η) to a small one (U cl for U c and η l for η) in two stages during sliding can result in a clear nucleation phase prior to the P-wave. The differences δU c = U ch ? U cl and δη = η h ? η l are two important factors in producing a nucleation phase. The difference between the nucleation phase and the P-wave increases with either δU c or δη. Like seismic observations, the peak amplitude of P-wave, which is associated with the earthquake magnitude, is independent upon the duration time of nucleation phase. A mechanism specified with a change of either η or U c from a larger value to a smaller one due to temporal variations in pore fluid pressure and temperature in the fault zone based on radiation efficiency is proposed to explain the simulation results and observations.  相似文献   

14.
Two time scales are distinguished in the geomagnetotail dynamics. The small scale (T 1) corresponds to disturbances propagating in the tail lobes, which have a relatively strong magnetic field and low plasma density. The larger scale (T 2) corresponds to plasma motions in the plasma sheet and has a relatively weak magnetic field and a relatively higher density. A disturbance, which is initiated by a localized burst of magnetic reconnection and appears in the geomagnetotail on the time scale T 1, generates the upset of equilibrium in the plasma sheet zones with intermediate spatial dimensions (about R E). The theoretical considerations and numerical simulation indicate that the relaxation process, which subsequently proceeds on the larger time scale (T 2), results in the appearance of extremely thin embedded current sheets and in the generation of fast plasma flows. This process gives an effective mechanism by which the magnetic energy stored in the geomagnetotail is transformed into the plasma flow kinetic energy. Such fast flows can also generate eddy plasma motions on smaller spatial scales. On the one hand, fast MHD components of this process carry a disturbance in other plasma sheet zones, where new magnetic reconnection bursts can originate at a large distance from the zone of an initial nonlinear disturbance. As a result, new recurrent processes of relaxation originate on the T 2 time scale. Alternation originating in such a way is apparently the characteristic feature of eddy disturbances actually observed in the plasma sheet.  相似文献   

15.
The 2017 Guptkashi earthquake occurred in a segment of the Himalayan arc with high potential for a strong earthquake in the near future. In this context, a careful analysis of the earthquake is important as it may shed light on source and ground motion characteristics during future earthquakes. Using the earthquake recording on a single broadband strong-motion seismograph installed at the epicenter, we estimate the earthquake’s location (30.546° N, 79.063° E), depth (H?=?19 km), the seismic moment (M0?=?1.12×1017 Nm, M w 5.3), the focal mechanism (φ?=?280°, δ?=?14°, λ?=?84°), the source radius (a?=?1.3 km), and the static stress drop (Δσ s ~22 MPa). The event occurred just above the Main Himalayan Thrust. S-wave spectra of the earthquake at hard sites in the arc are well approximated (assuming ω?2 source model) by attenuation parameters Q(f)?=?500f0.9, κ?=?0.04 s, and fmax?=?infinite, and a stress drop of Δσ?=?70 MPa. Observed and computed peak ground motions, using stochastic method along with parameters inferred from spectral analysis, agree well with each other. These attenuation parameters are also reasonable for the observed spectra and/or peak ground motion parameters in the arc at distances ≤?200 km during five other earthquakes in the region (4.6?≤?M w ?≤?6.9). The estimated stress drop of the six events ranges from 20 to 120 MPa. Our analysis suggests that attenuation parameters given above may be used for ground motion estimation at hard sites in the Himalayan arc via the stochastic method.  相似文献   

16.
The electric field generation at the front of the current pulse, which originates in a coronal magnetic loop owing to the development of the Rayleigh–Taylor magnetic instability at loop footpoints, has been considered. During the τAl/V A ≈ 5?25 s time (where l is the plasma plume height entering a magnetic loop as a result of the Rayleigh–Taylor instability), a disturbance related to the magnetic field tension B ?(r,t), “escapes” the instability region with the Alfvén velocity in this case. As a result, an electric current pulse Iz(z ? V A t), at the front of which an induction magnetic field E z, which is directed along the magnetic tube axis and can therefore accelerate particles, starts propagating along a magnetic loop with a characteristic scale of Δξ ≈ l. In the case of sufficiently large currents, when B ? 2/8π > p, an electric current pulse propagates nonlinearly, and a relatively large longitudinal electric field originates E z ≈ 2I z 3 V A/c 4a2Bz 2l, which can be larger than the Dreicer field, depending on the electric current value.  相似文献   

17.
We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing regional seismic hazard maps based on morphostructural analysis, pattern recognition, and the Unified Scaling Law for Earthquakes (USLE), which generalizes the Gutenberg-Richter relationship making use of naturally fractal distribution of earthquake sources of different size in a seismic region. The USLE stands for an empirical relationship log10N(M, L)?=?A?+?B·(5 – M)?+?C·log10L, where N(M, L) is the expected annual number of earthquakes of a certain magnitude M within a seismically prone area of linear dimension L. We use parameters A, B, and C of USLE to estimate, first, the expected maximum magnitude in a time interval at seismically prone nodes of the morphostructural scheme of the region under study, then map the corresponding expected ground shaking parameters (e.g., peak ground acceleration, PGA, or macro-seismic intensity). After a rigorous verification against the available seismic evidences in the past (usually, the observed instrumental PGA or the historically reported macro-seismic intensity), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures (e.g., those based on census of population, buildings inventory). The methodology of seismic hazard and risk assessment is illustrated by application to the territory of Greater Caucasus and Crimea.  相似文献   

18.
One of the crucial components in seismic hazard analysis is the estimation of the maximum earthquake magnitude and associated uncertainty. In the present study, the uncertainty related to the maximum expected magnitude μ is determined in terms of confidence intervals for an imposed level of confidence. Previous work by Salamat et al. (Pure Appl Geophys 174:763-777, 2017) shows the divergence of the confidence interval of the maximum possible magnitude mmax for high levels of confidence in six seismotectonic zones of Iran. In this work, the maximum expected earthquake magnitude μ is calculated in a predefined finite time interval and imposed level of confidence. For this, we use a conceptual model based on a doubly truncated Gutenberg-Richter law for magnitudes with constant b-value and calculate the posterior distribution of μ for the time interval Tf in future. We assume a stationary Poisson process in time and a Gutenberg-Richter relation for magnitudes. The upper bound of the magnitude confidence interval is calculated for different time intervals of 30, 50, and 100 years and imposed levels of confidence α?=?0.5, 0.1, 0.05, and 0.01. The posterior distribution of waiting times Tf to the next earthquake with a given magnitude equal to 6.5, 7.0, and 7.5 are calculated in each zone. In order to find the influence of declustering, we use the original and declustered version of the catalog. The earthquake catalog of the territory of Iran and surroundings are subdivided into six seismotectonic zones Alborz, Azerbaijan, Central Iran, Zagros, Kopet Dagh, and Makran. We assume the maximum possible magnitude mmax?=?8.5 and calculate the upper bound of the confidence interval of μ in each zone. The results indicate that for short time intervals equal to 30 and 50 years and imposed levels of confidence 1???α?=?0.95 and 0.90, the probability distribution of μ is around μ?=?7.16???8.23 in all seismic zones.  相似文献   

19.
This paper investigated the effects of basin geometry and material property on the response of 2D trapezoidal sediment-filled basin to incident plane SH waves. Ten basin configurations with different geometries were developed, and then their seismic responses to both Ricker wavelets and seismic records were simulated by using an explicit finite difference scheme. The definition of deep/shallow basin, the precondition for the observation of prominent surface waves and the influential area of edge effects of the shallow basin were discussed quantitatively in this study. The followings were concluded: in the common velocity contrast range (v s1/v s2 < 10), the fundamental frequency a basin with W/H > 3.0 can be estimated approximately by 1D theory. The complexity of peak ground acceleration distribution pattern, the width of the most affected section as well as the amplitude of ground motion in the Edge Region increase with incident frequency. Prominent surface waves can only be observed when the incident wavelength is shorter than the critical wavelength λ c . The interaction between incident wave and basin dynamic property plays a dominant role on the peak ground acceleration amplitude while the interaction between incident wave and geometry plays a more significant role on the peak ground acceleration distribution. For very shallow basin, different areas along the basin width are affected to different extents. Only a limited area close to the basin edge is influenced significantly. It is more feasible to propose spectral aggravation factor for different surface zones respectively than a uniform constant as a tool to calibrate the 1D-based design spectrum so as to take the basin effects into account.  相似文献   

20.
We studied the effects of expected end-of-the-century pCO2 (1000 ppm) on the photosynthetic performance of a coastal marine cyanobacterium Synechococcus sp. PCC7002 during the lag, exponential, and stationary growth phases. Elevated pCO2 significantly stimulated growth, and enhanced the maximum cell density during the stationary phase. Under ambient pCO2 conditions, the lag phase lasted for 6 days, while elevated pCO2 shortened the lag phase to two days and extended the exponential phase by four days. The elevated pCO2 increased photosynthesis levels during the lag and exponential phases, but reduced them during the stationary phase. Moreover, the elevated pCO2 reduced the saturated growth light (Ik) and increased the light utilization efficiency (α) during the exponential and stationary phases, and elevated the phycobilisome:chlorophyll a (Chl a) ratio. Furthermore, the elevated pCO2 reduced the particulate organic carbon (POC):Chl a and particulate organic nitrogen (PON):Chl a ratios during the lag and stationary phases, but enhanced them during the exponential phase. Overall, Synechococcus showed differential physiological responses to elevated pCO2 during different growth phases, thus providing insight into previous studies that focused on only the exponential phase, which may have biased the results relative to the effects of elevated pCO2 in ecology or aquaculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号