首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Chandra and XMM–Newton have resolved the     X-ray background (XRB) into point sources. Many of the fainter sources are obscured active galactic nuclei (AGN) with column densities in the range of     , some of which have quasar-like luminosities. According to obscuration models, the XRB above 8 keV is dominated by emission from Compton-thick AGN, with column densities exceeding     . Here, we consider whether Compton-thick quasars are detectable by Chandra and XMM–Newton by their direct (i.e. not scattered) X-ray emission. Detectability is optimized if the objects individually have a high luminosity and high redshift, so that the direct emission has a significant flux in the observed band. Using a simple galaxy formation model incorporating accreting black holes, in which quasars build most of their mass in a Compton-thick manner before expelling the obscuring matter, we predict that moderately deep 100-ks Chandra and XMM–Newton exposures may contain a handful of detectable Compton-thick quasars. Deep Ms or more Chandra images should contain     distant, optically faint, Compton-thick sources. In passing we show that radiation pressure can be as effective in expelling the obscuring gas as quasars winds, and yields a black hole mass proportional to the velocity dispersion of the host bulge to the fourth power.  相似文献   

2.
Hard X-ray selection is the most efficient way to discriminate between accretion-powered sources, such as active galactic nuclei (AGN), and sources dominated by starlight. Hard X-rays are also less affected than other bands by obscuration. We have therefore carried out the BeppoSAX High Energy Large Area Survey (HELLAS) in the largely unexplored 5–10 keV band, finding 180 sources in ∼50 deg2 of sky with flux≳5×10−14 erg cm−2 s−1. After correction for the non-uniform sky coverage this corresponds to resolving about 30 per cent of the hard cosmic X-ray background (XRB). Here we report on a first optical spectroscopic identification campaign, finding 12 AGN out of 14 X-ray error boxes studied. Seven AGN show evidence for obscuration in X-ray and optical bands, a fraction higher than in previous ROSAT or ASCA – ROSAT surveys (at 95–99 and 90 per cent confidence levels respectively), thus supporting the scenario in which a significant fraction of the XRB is created by obscured AGN.  相似文献   

3.
We report on the extreme behaviour of the high-redshift blazar GB B1428+4217 at   z = 4.72  . A continued programme of radio measurements has revealed an exceptional flare in the light curve, with the 15.2-GHz flux density rising by a factor of ∼3 from ∼140 to ∼430  mJy in a rest-frame time-scale of only ∼4 months – much larger than any previous flares observed in this source. In addition to new measurements of the 1.4–43  GHz radio spectrum, we also present the analysis and results of a target-of-opportunity X-ray observation using XMM–Newton , made close to the peak in radio flux. Although the X-ray data do not show a flare in the high-energy light curve, we are able to confirm the X-ray spectral variability hinted at in previous observations. GB B1428+4217 is one of several high-redshift radio-loud quasars that display a low-energy break in the X-ray spectrum, probably due to the presence of excess absorption in the source. X-ray spectral analysis of the latest XMM–Newton data is shown to be consistent with the warm-absorption scenario which we have hypothesized previously. Warm absorption is also consistent with the observed X-ray spectral variability of the source, in which the spectral changes can be successfully accounted-for with a fixed column density of material in which the ionization state is correlated with hardness of the underlying power-law emission.  相似文献   

4.
We present results from XMM–Newton observations of the obscured quasi-stellar object 1SAX J1218.9+2958. We find that the previously reported optical and soft X-ray counterpart positions are incorrect. However, we confirm the spectroscopic redshift of 0.176. The optical counterpart has a K magnitude of 13.5 and an R – K colour of 5.0 and is therefore a bright extremely red object. The X-ray spectrum is well described by a power law  (Γ= 2.0 ± 0.2)  absorbed by an intrinsic neutral column density of  8.2+1.1−0.7× 1022 cm−2  . We find that any scattered emission contributes at most 0.5 per cent to the total X-ray flux. From the optical/near-infrared colour we estimate that the active nucleus must contribute at least 50 per cent of the total flux in the K band and that the ratio of extinction to X-ray absorption is 0.1–0.7 times that expected from a Galactic dust–gas ratio and extinction curve. If 1SAX J1218.9+2958 were 100 times less luminous it would be indistinguishable from the population responsible for most of the 2–10 keV X-ray background. This has important implications for the optical/infrared properties of faint absorbed X-ray sources.  相似文献   

5.
We have used very deep XMM–Newton observations of the Chandra Deep Field -South to examine the spectral properties of the faint active galactic nucleus (AGN) population. Crucially, redshift measurements are available for 84 per cent (259/309) of the XMM–Newton sample. We have calculated the absorption and intrinsic luminosities of the sample using an extensive Monte Carlo technique incorporating the specifics of the XMM–Newton observations. 23 sources are found to have substantial absorption and intrinsic X-ray luminosities greater than 1044 erg s−1, putting them in the 'type-2' QSO regime. We compare the redshift, luminosity and absorption distributions of our sample to the predictions of a range of AGN population models. In contrast to recent findings from ultradeep Chandra surveys, we find that there is little evidence that the absorption distribution is dependent on either redshift or intrinsic X-ray luminosity. The pattern of absorption in our sample is best reproduced by models in which ∼75 per cent of the AGN population is heavily absorbed at all luminosities and redshifts.  相似文献   

6.
We present results from a new XMM–Newton observation of the high-redshift quasar RX J1028.6 – 0844 at a redshift of 4.276. The soft X-ray spectral flattening, as reported by a previous study with ASCA , is confirmed to be present, with, however, a reduced column density when modelled by absorption. The inferred column density for absorption intrinsic to the quasar is  2.1(+0.4−0.3) × 1022  cm−2  for cold matter, and higher for ionized gas. The spectral flattening shows remarkable similarity with that of two similar object, namely GB 1428 + 4217 and PMN J0525 − 3343. The results improve upon those obtained from a previous short-exposure observation for RX J1028.6 – 0844 with XMM–Newton . A comparative study of the two XMM–Newton observations reveals a change in the power-law photon index from  Γ≃ 1.3  to 1.5 on time-scales of about one year. A tentative excess emission feature in the rest-frame 5–10 keV band is suggested, which is similar to that marginally suggested for GB 1428 + 4217.  相似文献   

7.
We present a sample of 21 ROSAT bright active galactic nuclei (AGNs), representing a range of spectral classes, and selected for follow-up snapshot observations with XMM–Newton . The typical exposure was between 5 and 10 ks. The objects were primarily selected on the bases of X-ray brightness and not on hardness ratio; thus the sample cannot be strictly defined as a 'soft'sample. One of the main outcomes from the XMM–Newton observations was that all of the AGN, including 11 type 1.8–2 objects, required low levels of intrinsic absorption  ( N H≲ 1021 cm−2)  . The low absorption in type 2 systems is a challenge to account for in the standard orientation-based unification model, and we discuss possible physical and geometrical models which could elucidate the problem. Moreover, there does not appear to be any relation between the strength and shape of the soft excess, and the spectral classification of the AGN in this sample. We further identify a number of AGN which deserve deeper observations or further analysis: for example, the low-ionization nuclear emission regions (LINERs) NGC 5005 and NGC 7331, where optically thin thermal and extended emission is detected, and the narrow-line Seyfert 1 II Zw 177, which shows a broad emission feature at ∼ 5.8 keV.  相似文献   

8.
We present the first imaging X-ray observation of the highly inclined  ( i = 78°)  Sab Seyfert 2 galaxy NGC 6810 using XMM–Newton , which reveals soft X-ray emission that extends out to a projected height of ∼7 kpc away from the plane of the galaxy. The soft X-ray emission beyond the optical disc of the galaxy is most plausibly extraplanar, although it could instead come from large galactic radius. This extended X-ray emission is spatially associated with diffuse Hα emission, in particular with a prominent 5-kpc-long Hα filament on the north-west of the disc. A fraction ≲35 per cent of the total soft X-ray emission of the galaxy arises from projected heights  | z | ≥ 2 kpc  . Within the optical disc of the galaxy the soft X-ray emission is associated with the star-forming regions visible in ground-based Hα and XMM–Newton optical monitor near-UV imaging. The temperature, supersolar α-element-to-iron abundance ratio, soft X-ray/Hα correlation, and X-ray to far-infrared (FIR) flux ratio of NGC 6810 are all consistent with local starbursts with winds, although the large base radius of the outflow would make NGC 6810 one of the few 'disc-wide' superwinds currently known. Hard X-ray emission from NGC 6810 is weak, and the total   E = 2–10 keV  luminosity and spectral shape are consistent with the expected level of X-ray binary emission from the old and young stellar populations. The X-ray observations provide no evidence of any active galactic nucleus activity. We find that the optical, IR and radio properties of NGC 6810 are all consistent with a starburst galaxy, and that the old classification of this galaxy as a Seyfert 2 galaxy is probably incorrect.  相似文献   

9.
We report on partially overlapping XMM–Newton (∼260 ks) and Suzaku (∼100 ks) observations of the iron K band in the nearby, bright type 1 Seyfert galaxy Mrk 509. The source shows a resolved neutral Fe K line, most probably produced in the outer part of the accretion disc. Moreover, the source shows further emission bluewards of the 6.4 keV line due to ionized material. This emission is well reproduced by a broad line produced in the accretion disc, while it cannot be easily described by scattering or emission from photoionized gas at rest. The summed spectrum of all XMM–Newton observations shows the presence of a narrow absorption line at 7.3 keV produced by highly ionized outflowing material. A spectral variability study of the XMM–Newton data shows an indication for an excess of variability at 6.6–6.7 keV. These variations may be produced in the red wing of the broad ionized line or by variation of a further absorption structure. The Suzaku data indicate that the neutral Fe K α line intensity is consistent with being constant on long time-scales (of a few years), and they also confirm as most likely the interpretation of the excess blueshifted emission in terms of a broad ionized Fe line. The average Suzaku spectrum differs from the XMM–Newton one in the disappearance of the 7.3 keV absorption line and around 6.7 keV, where the XMM–Newton data alone suggested variability.  相似文献   

10.
We have monitored the Seyfert galaxy NGC 3227 with the Rossi X-ray Timing Explorer ( RXTE ) since 1999 January. During late 2000 and early 2001 we observed an unusual hardening of the 2–10 keV X-ray spectrum which lasted several months. The spectral hardening was not accompanied by any correlated variation in flux above 8 keV. We therefore interpret the spectral change as transient absorption by a gas cloud of column density 2.6 × 1023 cm−2 crossing the line of sight to the X-ray source. A spectrum obtained by XMM–Newton during an early phase of the hard-spectrum event confirms the obscuration model and shows that the absorbing cloud is only weakly ionized. The XMM–Newton spectrum also shows that ∼10 per cent of the X-ray flux is not obscured, but this unabsorbed component is not significantly variable and may be scattered radiation from a large-scale scattering medium. Applying the spectral constraints on the cloud ionization parameter and assuming that the cloud follows a Keplerian orbit, we constrain the location of the cloud to be   R ∼ 10–100  light-days from the central X-ray source, and its density to be   n H∼ 108 cm−3  , implying that we have witnessed the eclipse of the X-ray source by a broad line region cloud.  相似文献   

11.
We use simple energetic arguments to estimate the contribution of massive X-ray binaries and supernova remnants to the cosmic X-ray background (XRB) at energies in excess of 2 keV. Recent surveys have shown that active galactic nuclei (AGN) probably account for most of the hard XRB ( E >2 keV), but there have been many suggestions that star-forming galaxies could emerge at fainter fluxes and perhaps account for a significant fraction of the soft and hard X-ray energy density. Assuming that the formation rate of massive X-ray binaries (MXRBs) traces the global star-formation rate, we find that their integrated contribution to the hard XRB can be estimated and is shown to be small (at less than the 1 per cent level). Similarly, the integrated flux of supernovae (SN) is also shown to be insignificant, or at most comparable to MXRBs. AGN therefore remain the most viable candidates for producing the hard XRB, unless additional processes can be shown to dominate the global hard X-ray emission in distant starburst galaxies.  相似文献   

12.
We have surveyed 188 ROSAT Position Sensitive Proportional Counter (PSPC) fields for X-ray sources with hard spectra ( α <0.5); such sources must be major contributors to the X-ray background at faint fluxes. In this paper we present optical identifications for 62 of these sources: 28 active galactic nuclei (AGN) which show broad lines in their optical spectra (BLAGN), 13 narrow emission line galaxies (NELGs), five galaxies with no visible emission lines, eight clusters and eight Galactic stars.
The BLAGN, NELGs and galaxies have similar distributions of X-ray flux and spectra. Their ROSAT spectra are consistent with their being AGN obscured by columns of 20.5< log( N H/cm−2)<23 . The hard spectrum BLAGN have a distribution of X-ray to optical ratios which is similar to that found for AGN from soft X-ray surveys (1< α OX<2) . However, a relatively large proportion (15 per cent) of the BLAGN, NELGs and galaxies are radio loud. This could be because the radio jets in these objects produce intrinsically hard X-ray emission, or if their hardness is caused by absorption, it could be because radio-loud objects are more X-ray luminous than radio-quiet objects. The eight hard sources identified as clusters of galaxies are the brightest, and softest group of sources and hence clusters are unlikely to be an important component of the hard, faint population.
We propose that BLAGN are likely to constitute a significant fraction of the faint, hard, 0.5–2 keV population and could be important to reproducing the shape of the X-ray background, because they are the most numerous type of object in our sample (comprising almost half the identified sources), and because all our high redshift ( z >1) identified hard sources have broad lines.  相似文献   

13.
We present X-ray results on the ultraluminous infrared galaxy Arp 220 obtained with BeppoSAX . X-ray emission up to 10 keV is detected. No significant signal is detected with the PDS detector in the higher energy band. The 2–10 keV emission has a flat spectrum (Γ∼1.7) , similar to M82, and a luminosity of ∼ 1×1041 erg s−1 . A population of X-ray binaries may be a major source of this X-ray emission. The upper limit of an iron K line equivalent width at 6.4 keV is ≃600 eV. This observation imposes the tightest constraint so far on an active nucleus if present in Arp 220. We find that a column density of X-ray absorption must exceed 1025 cm−2 for an obscured active nucleus to be significant in the energetics, and the covering factor of the absorption should be almost unity. The underluminous soft X-ray starburst emission may need a good explanation, if the bolometric luminosity is primarily powered by a starburst.  相似文献   

14.
Extensive measurements of the X-ray background (XRB) yield a reasonably reliable characterization of its basic properties. Having resolved most of the cosmic XRB into discrete sources, the levels and spectral shapes of its main components can be used to probe both the source populations and also alternative cosmological and large-scale structure models. Recent observations of clusters seem to provide evidence that clusters formed earlier and are more abundant than predicted in the standard Λ cold dark matter (ΛCDM) model. This motivates interest in alternative models that predict enhanced power on cluster scales. We calculate predicted levels and spectra of the superposed emission from groups and clusters of galaxies in ΛCDM and in two viable alternative non-Gaussian  (χ2)  and early dark energy models. The predicted levels of the contribution of clusters to the XRB in the non-Gaussian models exceed the measured level at low energies and levels of the residual XRB in the 2–8 keV band; these particular models are essentially ruled out. Our work demonstrates the diagnostic value of the integrated X-ray emission from clusters, by considering also its dependences on different metallicities, gas and temperature profiles, Galactic absorption, merger scenarios and on a non-thermal pressure component. We also show that the XRB can be used for an upper limit for the concentration parameter value.  相似文献   

15.
We present a study of the X-ray spectral properties of the highly variable X-ray emitting black hole in a globular cluster in the elliptical galaxy NGC 4472. The X-ray Multiple Mirror–Newton ( XMM–Newton ) spectrum of the source in its bright epoch is well described by a multiple blackbody model with a characteristic temperature   kT in≈  0.2 keV. The spectrum of an archival Chandra observation of the source obtained 3.5 yr before the XMM data gives similar estimates for the blackbody parameters. We confirm that the fainter interval of the XMM–Newton observation has a spectrum that is consistent with the brighter epoch, except for an additional level of foreground absorption. We also consider other possible mechanisms for the variability. Based on the time-scale of the X-ray flux decline and the estimated size of the X-ray emission region, we argue that an eclipsing companion is highly unlikely. We find the most likely means of producing the absorption changes on the observed time-scale is through partial obscuration by a precessing warped accretion disc.  相似文献   

16.
BeppoSAX observations of the high-redshift ( z =4.72) blazar GB 1428+4217 confirm the presence of a complex soft X-ray spectrum first seen with the ROSAT PSPC. Flattening below a rest-frame energy of 5 keV can be accounted for by absorption from an equivalent column density of (cold) gas with N H∼8×1022 cm−2 . Below 2 keV a (variable) excess of a factor of ∼20 above the extrapolated absorbed spectrum is also detected. These findings are consistent with and extend to higher redshifts the correlation between increasing soft X-ray flattening and increasing z , previously pointed out for large samples of radio-loud quasars. We propose that such features, including X-ray absorption and soft excess emission as well as absorption in the optical spectra, can be satisfactorily accounted for by the presence of a highly ionized nuclear absorber with column N H∼1023 cm−2 , with properties possibly related to the conditions in the nuclear regions of the host galaxy. High-energy X-ray emission consistent with the extrapolation of the medium-energy spectrum is detected up to ∼300 keV (rest frame).  相似文献   

17.
We report on the BeppoSAX detection of a hard X-ray excess in the X-ray spectrum of the classical high-ionization Seyfert 2 galaxy Tol 0109–383. The X-ray emission of this source observed below 7 keV is dominated by reflection from both cold and ionized gas, as seen in the ASCA data. The excess hard X-ray emission is presumably caused by the central source absorbed by an optically thick obscuring torus with N H∼2×1024 cm−2 . The strong cold X-ray reflection, if it is produced at the inner surface of the torus, is consistent with the picture where much of the inner nucleus of Tol 0109–383 is exposed to direct view, as indicated by optical and infrared properties. However, the X-ray absorption must occur at small radii in order to hide the central X-ray source but leave the optical high-ionization emission-line region unobscured. This may also be the case for objects such as the Seyfert 1 galaxy Mrk231.  相似文献   

18.
The bright type 1 Seyfert galaxy H1419+480  ( z ∼ 0.072)  , whose X-ray colours from earlier HEAO-1 and ROSAT missions suggested a complex X-ray spectrum, has been observed with XMM–Newton . The EPIC spectrum above 2 keV is well fitted by a power law with photon index  Γ= 1.84 ± 0.01  and an Fe Kα line of equivalent width ∼250 eV. At softer energies, a decrement with respect to this model extending from 0.5 to 1 keV is clearly detected. After trying a number of models, we find that the best fit corresponds to O vii absorption at the emission redshift, plus a 2σ detection of O viii absorption. A photoionized gas model fit yields  log ξ∼ 1.15–1.30  (ξ in erg cm s−1) with   N H∼ 5 × 1021 cm−2  for solar abundances. We find that the ionized absorber was weaker or absent in an earlier ROSAT observation. An International Ultraviolet Explorer spectrum of this source obtained two decades before shows a variable (within a year) C iv absorber outflowing with a velocity ∼1800 km s−1. We show that both X-ray and ultraviolet absorptions are consistent with arising in the same gas, with varying ionization.  相似文献   

19.
In this paper we discuss the broad-band X-ray characteristics of a complete sample of 36 type 1 active galactic nuclei (AGN), detected by INTEGRAL in the 20–40 keV band above the 5.5σ level. We present, for all the objects in the sample, the broad-band (1–110 keV) spectral analysis obtained by using INTEGRAL / Swift /Burst Alert Telescope observations together with XMM–Newton , Chandra , ASCA and Swift /X-Ray Telescope data. We also present the general average properties of the sample, i.e. the distribution of photon indices, high-energy cut-offs, reflection fractions and absorption properties, together with an in-depth analysis of their parameter space. We find that the average Seyfert 1 power law has an index of 1.7 with a dispersion of 0.2. The mean cut-off energy is at around 100 keV, with most objects displaying E c in the range 50–150 keV; the average amount of Compton reflection is 1.5 with a typical dispersion of 0.7. We do not find any convincing correlation between the various parameters, an indication that our analysis is not strongly dependent by the interplay between them. Finally, we investigate how the results presented in this work fit into current frameworks for AGN spectral modelling and cosmic diffuse X-ray background synthesis models.  相似文献   

20.
We present XMM–Newton observations of three optically selected   z > 0.6  clusters from the European Southern Observatory (ESO) Distant Cluster Survey (EDisCS), comprising the first results of a planned X-ray survey of the full EDisCS high-redshift sample. The EDisCS clusters were identified in the Las Campanas Distant Cluster Survey as surface brightness fluctuations in the optical sky and their masses and galaxy populations are well described by extensive photometric and spectroscopic observations. We detect two of the three clusters in the X-ray and place a firm upper limit on diffuse emission in the third cluster field. We are able to constrain the X-ray luminosity and temperature of the detected clusters and estimate their masses. We find that the X-ray properties of the detected EDisCS clusters are similar to those of X-ray-selected clusters of comparable mass and – unlike other high-redshift, optically selected clusters – are consistent with the T –σ and   L X–σ  relations determined from X-ray-selected clusters at low redshift. The X-ray determined mass estimates are generally consistent with those derived from weak-lensing and spectroscopic analyses. These preliminary results suggest that the novel method of optical selection used to construct the EDisCS catalogue may, like selection by X-ray luminosity, be well suited for identification of relaxed, high-redshift clusters whose intracluster medium is in place and stable by   z ∼ 0.8  .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号