首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Growth and mortality rates of larval and early juvenile Pacific saury Cololabis saira were estimated for spring and autumn spawning seasons in the Kuroshio-Oyashio transitional waters and for winter spawning season in the Kuroshio waters in 9 years from 1990–1998, based on quantitative fish sampling and otolith daily ring readings. Growth and mortality rates were more variable in the Kuroshio-Oyashio transitional waters than in the Kuroshio waters. The estimated production of 40-mm preschooling juveniles was a positive function of larval production in the hatching length class (5.9–9.9 mm) in the Kuroshio waters. In the Kuroshio-Oyashio transitional waters, rather than larval production in the hatching length class, cumulative survival through the larval and early juvenile stages determined the juvenile production. Variable growth and survival rates of saury observed in the transitional waters seem to be associated with large environmental variability in the waters, including shifts of the Kuroshio and Oyashio fronts and development of streamers and eddies between the fronts. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
基于IPCC预测结果的北太平洋海表面温度变化分析   总被引:1,自引:1,他引:0  
刘娜  王辉  张蕴斐 《海洋学报》2014,36(7):9-16
利用IPCC-AR4气候模式诊断与比较计划(PCMDI)20C3M试验和A1B情景试验模拟数据,研究了在温室气体排放情景下,北太平洋海表面温度的变化及其对太平洋风应力旋度变化的响应。结果表明,温室气体中等排放A1B情景与20C3M情景相比,北太平洋年平均海表面温度表现为一致增温的趋势,且最大的增温中心位于黑潮及其延伸体区。与20C3M试验相比,CO2增加情景下北太平洋中部东风加强,增加向北的Ekman输送,使得北太平洋内区增温。风应力旋度零线也向北略有移动,导致黑潮延伸体向北移动并得到加强,从而引起延伸体区较强增温。风应力旋度零线的纬度附近产生的Rossby波,向西传播到黑潮延伸体区,进一步加强黑潮延伸体区的温度异常。海洋对北太平洋风应力场变化的局地响应及延迟响应,使黑潮延伸体海域海表面增温远大于周围海区。  相似文献   

3.
The distribution of deep near-inertial waves (NIWs) is investigated using data mainly from an array of 46 near-bottom acoustic current meter sensors spanning a 600 km × 600 km region as part of the Kuroshio Extension System Study during 2004–2006. The deep NIW distribution is interpreted in the context of both upper-layer and near-bottom mapped circulations. The wintertime-mean mixed-layer NIW energy input, modeled from observed wind stress, has the same range of values north and south of the Kuroshio Extension in this region. Yet, the wintertime-mean deep NIW energy distribution reveals a sharp factor-of-5 decrease from north to south of the Kuroshio jet. This direct observational evidence shows that the Kuroshio Extension blocks the equatorward propagation of NIWs. The NIW energy that does reach the sea floor within the subset of wintertime observations in the subtropical gyre arrives with patchy spatial and temporal distribution. Elevated NIW energy in deep water is associated with anticyclones in the deep barotropic flow and unassociated with upper layer eddies.  相似文献   

4.
The volume transport of the Kuroshio, the western boundary current of the North Pacific subtropical gyre, varies vigorously due to merging of disturbances propagating from the entire North Pacific. Taking into account the recirculation in the Shikoku Basin by the zonal observation line at 30°N to the west of the Izu–Ogasawara Ridge, we estimated the volume transport in the top 1,000 m layer toward the Kuroshio Extension region. The volume transport of the local recirculation gyre in the Shikoku Basin increases associated with the westward extension of the gyre, particularly in the period of the large meandering path of the Kuroshio south of Japan. Meanwhile, most of the transport variations toward the Kuroshio Extension region correspond to those of the Kuroshio transport on the continental slope south of Japan, which vary independently of those of the recirculation gyre.  相似文献   

5.
This paper reports on the strength and structure of the Kuroshio Extension and its recirculation gyres. In the time average, quasi-permanent recirculation gyres are found to the north and south of the Kuroshio Extension jet. The characteristics of these recirculations gyres are determined from the combined observations from the Kuroshio Extension System Study (KESS) field program (June 2004–June 2006) and include current meters, pressure and current recording inverted echo sounders, and subsurface floats. The position and strength of the recirculation gyres simulated by a high-resolution numerical model are found to be consistent with the observations. The circulation pattern that is revealed is of a complex system of multiple recirculation gyres that are embedded in the crests and troughs of the quasi-permanent meanders of the Kuroshio Extension. At the location of the KESS array, the Kuroshio Extension jet and its recirculation gyres transport of about 114 Sv. This represents a 2.7-fold increase in the transport of the current compared to the Kuroshio's transport at Cape Ashizuri before it separates from the coast and flows eastward into the open ocean. This enhancement in the current's transport comes from the development of the flanking recirculation gyres. Estimates from an array of inverted echo sounders and a high-resolution ocean general circulation model are of similar magnitude.  相似文献   

6.
Six newly developed floats, which were set to drift on the 26.7 σθ isopycnal surface and to profile temperature, salinity and pressure above 1000 dbar once a week, were deployed in the Oyashio and Kuroshio Extension (KE) in order to examine the circulation, formation site and time scale of newly formed North Pacific Intermediate Water (NPIW). The floats were deployed in February or May 2001, and the data from their deployments to December 2002 are analyzed here. Four of the six floats were deployed near the KE axis at around the first meander crest, and they moved eastward to 157°E–176°W at latitudes of 30°N–45°N. The other two floats deployed in the Oyashio water with low-potential vorticity near the south coast of Hokkaido moved southward to reach the KE front and then moved eastward to the same region as the first four floats. The temperature and salinity at 26.7 σθ measured by the profiling floats indicate that the source waters of NPIW, Oyashio and Kuroshio waters are drastically mixed and modified in the mixed water region west of 160°E. The floats were separated into the three paths east of 160°E between the Kuroshio Extension front and the north of Water-Mass front (nearly subarctic front). New NPIW is judged to be formed along these three paths since the vertical profiles of temperature and salinity are quite smooth, having a salinity minimum at about 26.7σθ along each path. Kuroshio-Oyashio isopycnal mixing ratios of the new NPIW are 7:3, 6:4 and 5:5 at 26.7σθ along the southern, middle and northern paths, respectively. Potential vorticity converges to about 14–15 × 10−11 m−1s−1 along these paths. The time scale of new NPIW formation is estimated to be 1–1.5 years from the merger of Oyashio and Kuroshio waters to the formation of the new NPIW. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The Kuroshio Extension and its recirculation gyre form an interconnected dynamic system. The system is located at a crossroads where the meso-scale and large-scale oceanic variability are highest, and where the ocean-atmosphere interaction is most active in the Pacific Ocean outside of the tropics. Following a brief review of the mean flow and meso-scale eddy variability, this study describes in detail the large-scale structural change (an oscillation between an elongated and a contracted state) observed in the Kuroshio Extension system. Causes for this structural change are explored next, and it is argued that the basin-wide external wind forcing and the nonlinear dynamics associated with the inertial recirculation gyre are both important factors. Data analysis results are reviewed and presented, emphasizing that the surface Kuroshio Extension is not simply a well-mixed layer passively responding to heat flux anomalies imposed by the atmosphere. It is argued that large-scale changes in the Kuroshio Extension system influence the surface ocean heat balance and generate wintertime sea surface temperature (SST) anomalies through both horizontal geostrophic heat advection and re-emergence to the surface mixed layer of sequestered mode water temperature anomalies. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
The influences of mesoscale eddies on variations of the Kuroshio path south of Japan have been investigated using time series of the Kuroshio axis location and altimeter-derived sea surface height maps for a period of seven years from 1993 to 1999, when the Kuroshio followed its non-large meander path. It was found that both the cyclonic and anticyclonic eddies may interact with the Kuroshio and trigger short-term meanders of the Kuroshio path, although not all eddies that approached or collided with the Kuroshio formed meanders. An anticyclonic eddy that revolves clockwise in a region south of Shikoku and Cape Shionomisaki with a period of about 5–6 months was found to propagate westward along about 30°N and collide with the Kuroshio in the east of Kyushu or south of Shikoku. This collision sometimes triggers meanders which propagate over the whole region south of Japan. The eddy was advected downstream, generating a meander on the downstream side to the east of Cape Shionomisaki. After the eddy passed Cape Shionomisaki, it detached from the Kuroshio and started to move westward again. Sometimes the eddy merges with other anticyclonic eddies traveling from the east. Coalescence of cyclonic eddies, which are also generated in the Kuroshio Extension region and propagate westward in the Kuroshio recirculation region south of Japan, into the Kuroshio in the east of Kyushu, also triggers meanders which mainly propagate only in a region west of Cape Shionomisaki. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
In the previous paper (Toba and Murakami, 1998) we reported on an unusual path of the Kuroshio Current System, which occurred in April 1997 (April 1997 event), using the Ocean Color and Temperature Scanner (OCTS) data of the Advanced Earth Observing Satellite (ADEOS). The April 1997 event was characterized by the flow of the Kuroshio along the western slope (northward) and the eastern slope (southward) of the Izu-Ogasawara Ridge, a very southerly turning point at about 32°N, followed by a straight northward path up to 37°N of the Kuroshio Extension along the eastern flank of the Izu-Ogasawara and the Japan Trenches. Overlaying of depth contours on ADEOS-OCTS chlorophyll-a images at the April 1997 event demonstrates the bottom topography effects on the current paths. A new finding based on TOPEX/Poseidon altimeter data is that the sea-surface gradient across the Kuroshio/Kuroshio Extension diminished greatly in the sea area southeast of the central Japan, as a very temporary phenomenon prior to this event. This temporary diminishing of the upper-ocean current velocity might have caused a stronger bottom effect along the Izu-Ogasawara Ridge, and over the Izu-Ogasawara Trench disclosed a weak background, barotropic trench-flank current pattern, which existed otherwise independently of the Kuroshio Extension. The very southerly path of the Kuroshio Extension from winter 1996 to autumn 1998 corresponded, with a time lag of about 1.5 years, to the previous La Niña tendency with weaker North Equatorial Current. The April 1997 event occurred in accordance with its extreme condition.  相似文献   

10.
While the Advanced Earth Observing Satellite (ADEOS) was operating, the Kuroshio and the Kuroshio Extension, or the Kuroshio Current System, exhibited unusual behavior from the winter of 1996 to the summer of 1997. This behavior of the Kuroshio Current System has been closely studied using a time series of satellite observation images of SST and ocean color obtained by ADEOS-OCTS, reinforced by SST images obtained by NOAA-AVHRR. Our findings include (i) a long lasting, very southerly path of the Kuroshio Extension; (ii) a Kuroshio path very distant from Japan with the following alternating-jet-like north-south flow pattern of the Kuroshio Extension, which occurred twice, once in February and once in April 1997, as independent events and which was observed to be affected by the bottom topography of the Izu-Ogasawara Ridge and Trench, and of the Japan Trench; (iii) cutting off of a cold water mass after the February event; and (iv) the formation of a vortex pair after the April event. A new mechanism is suggested for the formation of the alternating-jet flow pattern: a topographically forced alternating-jet instability (AJI). An SST-Chlorophyll Diagram (T-Chl Diagram) generated using simultaneous data from a single satellite is useful for analyzing the water mass structure of this region, including biological processes.  相似文献   

11.
Monthly wavenumber spectra of sea surface temperatures (SST) have been estimated in two regions near the Kuroshio, in the recirculation and the Kuroshio Extension regions, using the merged SST product to determine the statistical parameter (spatial decorrelation scale) required for optimal interpolation of a high-resolution SST dataset. The two-dimensional wavelet transform was used for analysis. Estimates were made of daily mean and daily minimum SSTs. These do not significantly differ, which suggests that the same covariance matrix can be used for the daily mean and minimum in the merging procedure. The seasonality of wavenumber spectra is significant. There are also large differences between those in the recirculation region and in the Kuroshio Extension region. Therefore, it is recommended that the covariance matrix in the merging process for high-resolution SST dataset be defined as a function of time and space. Improvements of the merging methodology are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
The interannual variability of the temperature structure of the Kuroshio Extension is studied by establishing time series for the period 1950 to 1970 and then comparing it with the time series of sea level differences across the North Equatorial Current obtained by Wyrtki (1975). First, the present analysis shows a significant correlation between the interannual fluctuation of the Kuroshio Extension and the eddy activity south of the Kuroshio axis, suggesting the importance of the eddy-driven mechanism. Secondly, spectral analysis shows close connections between the Kuroshio Extension and the North Equatorial Current with a reasonable time lag of about 1.5 years. This time lag of the mid-latitude variability is also supported by other independent data. In particular, the present preliminary study strongly suggests that the bimodal behavior of the Kuroshio path south of Japan and the intensity of the Kuroshio Countercurrent are closely connected with the Southern Oscillation/El Niño.  相似文献   

13.
14.
The uptake mechanism of anthropogenic CO2 in the Kuroshio Extension is examined by a Lagrangian approach using a biogeochemical model embedded in an ocean general circulation model. It is found that the uptake of anthropogenic CO2 is caused mainly by the increase of pCO2 dependency of seawater on temperature, which is caused by greater dissolved inorganic carbon concentration in the modern state than in the pre-industrial state. In contrast with the view of previous studies, the effect of the vertical entrainment, which brings waters that last contacted the atmosphere with the past lower CO2 concentration, is comparatively small. Winter uptake of anthropogenic CO2 increases with the rise of the atmospheric CO2 level, while summer uptake is relatively stable, resulting in a larger seasonal cycle of the uptake. This increase is significant, especially in the Kuroshio Extension region. It is newly suggested that this increase in the Kuroshio Extension region is largely caused by the combined effects of the increased pCO2 dependency of the sea water on the temperature and the seasonal difference in cooling.  相似文献   

15.
The Meteorological Research Institute's ocean general circulation model (MRI-OGCM) has been used to investigate the temperature variability of the North Pacific Subtropical Mode Water (NPSTMW) over a time series longer than 5 years via the spin-up of the subtropical gyre. Besides an interannual variation, the wintertime sea surface temperature in the area where the NPSTMW is formed, and the temperature of the NPSTMW itself, both change remarkably in a >5-year time scale. An analysis of heat budgets showed that the long-term changes in NPSTMW temperature are due mainly to a leading advection of heat by the Kuroshio Extension and compensating surface heat flux. As a result of a dynamical adjustment to the wind stress fields, the transports of the Kuroshio and the Kuroshio Extension increased in the mid 1970s with a lag of 3 years after the wind stress curl in the central North Pacific. The increased heat advection by the Kuroshio Extension induces a warming in the mixed layer in the NPSTMW formation area, followed by a warming of the NPSTMW itself. Both these warming actions increase the heat release to the atmosphere. These results imply that the surface heat flux over the Kuroshio Extension area varies in response to the change in the ocean circulation through the spin-up of the subtropical gyre. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
西北太平洋柔鱼渔场分布与涡动能变化的相关关系   总被引:1,自引:0,他引:1  
本研究利用卫星高度计数据计算海洋涡动能(Eddy Kinetic Energy,EKE),根据2010–2016年中国远洋渔业协会鱿钓组提供的西北太平洋柔鱼(Ommastrephes bartramii)渔业生产数据,分析柔鱼渔场的EKE分布特征以及黑潮延伸体EKE的时空变化对柔鱼渔场分布的影响。结果显示,柔鱼渔场的EKE与单位捕捞努力量渔获量(Catch Per Unit Effort,CPUE)呈显著负相关(P <0.01),EKE对CPUE的有效影响范围为0~1 500 cm^2/s^2,最适宜EKE范围为25~150 cm^2/s^2。黑潮延伸体EKE强度由西向东递减,与CPUE年平均呈负相关,相关系数为0.81(P <0.05)。按黑潮延伸体经度范围分为4个子区域,CPUE月平均纬度重心响应该月EKE强度最高的子区域。盛渔期8–10月渔场距离黑潮延伸体在800~1 000 km范围内时,CPUE随距离增加而增大,其中最适宜的距离范围为850~950 km。研究表明,当黑潮延伸体路径弯曲多变时,EKE增大,而柔鱼CPUE变低,渔场位置越偏北。  相似文献   

17.
本文基于卫星遥感资料和高分辨率ROMS(Regional Ocean Modeling System)数值模拟结果, 对黑潮延伸体海域典型中尺度涡旋的次中尺度特征进行了探讨。卫星观测和模拟结果显示, 黑潮延伸体涡旋海域伴随着活跃的次中尺度现象。涡旋演变与多尺度能量分析结果表明, 涡旋海域次中尺度动能的强弱与涡旋海域地转流动能有着密切联系, 锋生可能是涡旋边缘次中尺度动能增强的重要机制。次中尺度现象在中尺度涡旋海域具有沿地转流方向的复杂涡丝状结构特征, 意味着涡旋边缘较强的水平浮力梯度和地转流侧向剪切为次中尺度过程形成与发展提供了有利条件。此外, 垂向结构分析表明, 次中尺度过程能引起较大的垂向速度, 最大可达100m·day-1, 该垂向速度可以影响至混合层下200m深度处, 对海洋内部的垂向物质能量交换、海—气相互作用等有着重要的影响。  相似文献   

18.
本文将TMI(Tropical Rainfall Measuring Mission (TRMM)Microwave Imager)和AMSR-E(Advanced Microwave Scanning Radiometer for the Earth Observing System)卫星观测的全球海表温度与Argo浮标观测的近海表温度进行了比较。并检验了影响海温变化的因素,包括风速、水汽含量、液态云和地理位置。结果显示,TMI、AMSR-E海表温度与Argo近海表温度均明显相关。在低风速时,TMI、AMSR-E海表温度整体比Argo近海表温度高。在低风速时,TMI比AMSR-E海表温度更接近Argo近海表温度,但TMI海表温度在高纬可能没有经过良好校正。温度差异显示,在低水汽含量时,TMI和AMSR-E海表温度显示出暖的差异,代表TMI和AMSR-E海表温度在高纬均没有经过良好校正。黑潮延伸区的海表温度变化要比海潮区明显。春季在黑潮延伸区,卫星观测的海表温度与Argo近海表温度差异较小。在低风速时,TMI和AMSR-E海表温度均经过了良好校正,而TMI比AMSR-E效果更好。  相似文献   

19.
A spread of warm water from the first crest of the Kuroshio Extension is periodically enhanced by northward warm water intrusions from the main current. The water type in the spread area was previously found to be the same as that in the Kuroshio front at depth. In looking for the possible mechanism responsible for the northward warm water intrusions, a dynamic analysis in the Kuroshio front was carried out by using CTD, ADCP, AVHRR and ARGOS buoy data, obtained in 1996 by the R.V. Hakuho Maru. Downstream, cross-stream and vertical velocities in the Kuroshio Extension were found by using a "stream coordinate system". The velocity field in the Kuroshio front at the first crest showed a double structure with two surface velocity maxima. In the inner part of the front, relatively high cross-stream (northward) and vertical (upward) velocities were found. Thus, this study suggests that while water particles flow downstream along the first stationary meander of the Kuroshio Extension, they also experience lateral and vertical movements which allow the deeper water from an upstream location to rise to the surface layer, and in certain locations to deflect northward. By assuming isopycnal movement and conservation of potential vorticity, it was found that in those locations where anticyclonic curvature of the meander increases, warm water is more likely to deflect northward. High ageostrophic components observed in the first 300 m of the water column are probably related to the relatively high cross-stream and vertical velocities in the inner part of the front.  相似文献   

20.
Trajectory of Mesoscale Eddies in the Kuroshio Recirculation Region   总被引:4,自引:1,他引:4  
Trajectories of mesoscale eddies in the Kuroshio recirculation region were investigated by using sea surface height (SSH) anomaly observed by the TOPEX/POSEIDON and ERS altimeters. Cyclonic and anticyclonic eddies have been traced on maps of the filtered SSH anomaly fields composed from the altimeter observations every ten days. Both the cyclonic and anticyclonic eddies propagate westward in the Kuroshio recirculation region from a region south of the Kuroshio Extension. The propagation speed of these eddies has been estimated as about 7 cm s−1, which is much faster than the phase speed theoretically estimated for the baroclinic first-mode Rossby wave in the study area. It was also found that in the Izu-Ogasawara Ridge region, most of eddies pass through the gap between the Hachijojima Island and Ogasawara (Bonin) Islands, and some of the eddies decay around the Izu-Ogasawara Ridge. It seems that the trajectory of the eddies is crucially affected by the bottom topography. In the region south of Shikoku and east of Kyushu, some of the eddies coalesce with the Kuroshio. It is also suggested that this coalescence may trigger the path variation of the Kuroshio in the sea south of Japan. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号