首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
地球物理   5篇
地质学   3篇
海洋学   25篇
  2021年   3篇
  2020年   1篇
  2016年   1篇
  2015年   2篇
  2013年   2篇
  2012年   4篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2007年   2篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  1983年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
The relationship between sea surface temperature (SST) and net heat flux (NHF) in the North Pacific over weekly to annual period bands was investigated using gridded datasets of SST obtained by the Advanced Microwave Scanning Radiometer for the Earth Observing System, and flux data produced by the Modern-era Retrospective-analysis for Research and Applications Reanalysis. This study focused on the phase difference between the SST and NHF, which can suggest the driving force between two co-varying parameters. The SST delay behind the NHF, with phase differences from π/4 to π/2, which suggests that the SST change would be controlled by the NHF, was commonly found over all periods. In the intra-annual (100- to 200-day periods) band, part of the coherent variations showed negative phase differences (around ?π to ?π/3), which were found in the western North Pacific and along ~30°N in the central North Pacific. The spatial scales of SST variability in the shorter band (weekly to intraseasonal: less than 100-day periods) are dominantly over 200?km. In contrast, the scales in the intra-annual band were in the range 50–150?km, where the negative phase differences were frequently found.  相似文献   
2.
This study developed a post-processing quality check (QC) process to eliminate cloud contamination in infrared sea surface temperature (SST) without manual handling. Cloudiness of a pixel was evaluated quantitatively, in which the graduated verifications and a comprehensive decision from a combination of several tests were conducted. Additionally, the quality of SST data at the pixel was measured by acceptable limits from reference SST, which were obtained from historical data. The QC processed data showed good accuracy below 0.8°C, even in the near-cloud area. Before the QC, their accuracies including near-cloud areas were as poor as 2–5°C.  相似文献   
3.
This study compares infrared and microwave measurements of sea surface temperature (SST) obtained by a single satellite. The simultaneous observation from the Global Imager (GLI: infrared) and the Advanced Microwave Scanning Radiometer (AMSR: microwave) aboard the Advanced Earth Observing Satellite-II (ADEOS-II) provided an opportunity for the intercomparison. The GLI-and AMSR-derived SSTs from April to October 2003 are analyzed with other ancillary data including surface wind speed and water vapor retrieved by AMSR and SeaWinds on ADEOS-II. We found no measurable bias (defined as GLI minus AMSR), while the standard deviation of difference is less than 1°C. In low water vapor conditions, the GLI SST has a positive bias less than 0.2°C, and in high water vapor conditions, it has a negative (positive) bias during the daytime (nighttime). The low spatial resolution of AMSR is another factor underlying the geographical distribution of the differences. The cloud detection problem in the GLI algorithm also affects the difference. The large differences in high-latitude region during the nighttime might be due to the GLI cloud-detection algorithm. AMSR SST has a negative bias during the daytime with low wind speed (less than 7 ms−1), which might be related to the correction for surface wind effects in the AMSR SST algorithm.  相似文献   
4.
5.
Before the Kobe earthquake, an anomalous increase in atmospheric Rn concentration was observed. By separating the measured concentration of atmospheric Rn into three components according to the distance from the monitoring station, the variation of Rn exhalation rate can be estimated for the respective area using the daily minimum and maximum concentrations. The mean rate of Rn exhalation gradually increased in an area of 20 km around the monitoring station, becoming five times higher than normal in the period between October 1994 and the date of the earthquake. This area had a large co-seismic displacement of up to 30 cm, which roughly corresponds to the crustal strain of 10−6-order, and it is considered the main source for the atmospheric Rn prior to the Kobe earthquake. Analyses revealed that the pre-seismic change in the atmospheric Rn concentration exhibited an anomalous pattern which would yield information on the spatial distribution of the mechanical response of the ground.  相似文献   
6.
This data note introduces a database of long-term daily total precipitation and stream discharge data for seven forested watersheds in Japan that have been continuously monitored by the Forestry and Forest Products Research Institute. Three of the watersheds started data collection in the 1930s. Forest cover across the sites ranges from cool to warm temperate regions with the latitude spanning from 31 to 44° N and annual precipitation ranging from 1200 to 3000 mm yr−1. The effects of vegetation change via clearcutting, thinning and forest fire (among other stressors) on stream discharge can be analysed from the long-term observation sites. Moreover, this multi-site dataset allows for inter- and intra-site comparisons of annual water loss (difference of annual precipitation and stream discharge). These long-term datasets can provide comprehensive insights into the effects of climate change and other stressors on forested ecosystems, not only in Japan but across a spectrum of forest types, if combined with other long-term records from other forested watersheds across the world.  相似文献   
7.
This study investigated the effects of clear-cutting and the meteorological and physiological factors on forest evapotranspiration (ET), by using the water-budget method in the Kamabuchi experimental watershed (KMB; 38° 56′ 21″ N, 140° 15′ 58″ E) in northern Japan. Meteorological and discharge data collected during no-snow periods (from June to October) from 1939 were used to compare ET in three sub-watersheds: No. 1, where the forest had been left undisturbed, and No. 2 and No. 3, where Cryptomeria japonica was planted after clear-cutting. Paired watershed experiments revealed that clear-cutting caused ET to decrease by approximately 100 mm yr−1, and this reduction continued for more than 20 years, even after C. japonica was planted. ET fluctuated similarly across all watersheds, regardless of clear-cutting or planting. This fluctuation is mainly caused by solar radiation and temperature. Intrinsic water-use efficiency (iWUE) calculated using δ13C of tree-ring cellulose in C. japonica increased due to elevated atmospheric CO2 concentration. We estimated annual carbon fixation in a single tree as the annual net photosynthesis (A). Subsequently, transpiration (E) was calculated from the relationship between iWUE and A. The results showed that A and E per tree increased as the tree grew older; however, the trees' responses to increasing ca suppress the increase in ET. Moreover, the fluctuation of ET from the watershed was small compared to the fluctuation of P during the observation periods because the increase and decrease in E and interception loss complemented each other.  相似文献   
8.
Ocean Dynamics - The short-lived events of high SST are called hot events (HEs) and can only be generated under the conditions of large daily heat gain due to strong solar radiation and weak wind....  相似文献   
9.
10.
Satellite-based microwave radiometers can measure sea surface temperature (SST) over wide areas, even under cloud cover, owing to the weak absorption of microwaves by cloud droplets. This advantage is not available in the case of infrared observations, hence SST data derived from microwave radiometers have been widely used for operational and research purposes in recent years. This paper reviews the significant algorithms, validations, and applications related to microwave observation of SST. The history and specifications of past and present microwave radiometers are also documented. Various physical properties, including sea surface salinity, sea surface wind, molecules in the atmosphere, and clouds, affect the accuracy of SST data estimated by satellite-based microwave radiometers. Estimation algorithms are designed to correct these effects by using microwave measurements in several frequency channels and by using data of ancillary geophysical parameters. Validation studies have shown that microwave radiometer SST data have high accuracy that is comparable to the accuracy of data obtained from infrared measurements. However, certain persistent problems, such as sea-surface wind correction, remain to be solved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号