首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study examined if riparian land use (forested vs agricultural) affects hydraulic transport in headwater streams located in an agriculturally fragmented watershed. We identified paired 50‐m reaches (one reach in agricultural land use and the other in forested land use) along three headwater streams in the Upper Sugar Creek Watershed in northeast Ohio, USA (40° 51′42″N, 81° 50′29″W). Using breakthrough curves obtained by Rhodamine WT slug injections and the one‐dimensional transport with inflow and storage model (OTIS), hydraulic transport parameters were obtained for each reach on six different occasions (n = 36). Relative transient storage (AS:A) was similar between both reach types (As: A = 0·3 ± 0·1 for both agricultural and forested reaches). Comparing values of Fmed200 to those in the literature indicates that the effect of transient storage was moderately high in the study streams in the Upper Sugar Creek Watershed. Examining travel times revealed that overall residence time (HRT) and residence time in transient storage (TSTO) were both longer in forested reaches (forested HRT = 19·1 ± 11·5 min and TSTO = 4·0 ± 3·8 min; agricultural HRT = 9·3 ± 5·3 min and TSTO = 1·7 ± 1·4 min). We concluded that the effect of transient storage on solute transport was similar between the forested and agricultural reaches but the forested reaches had a greater potential to retain solutes as a result of longer travel times. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
This study was undertaken to evaluate the effects of climatic variability on inter‐annual variations in each component of evapotranspiration (ET) and the total ET in a temperate coniferous forest in Japan. We conducted eddy covariance flux and meteorological measurements for 7 years and parameterized a one‐dimensional multi‐layer biosphere‐atmosphere model (Kosugi et al., 2006 ) that partitions ET to transpiration (Tr), wet‐canopy evaporation (Ewet), and soil evaporation (Esoil). The model was validated with the observed flux data. Using the model, the components of ET were estimated for the 7 years. Annual precipitation, ET, Tr, Ewet, and Esoil over the 7 years were 1536 ± 334 mm, 752 ± 29 mm, 425 ± 37 mm, 219 ± 34 mm, and 108 ± 10 mm, respectively. The maximum inter‐annual fluctuation of observed ET was 64 mm with a coefficient of variance (CV) of 2.7%, in contrast to relatively large year‐to‐year variations in annual rainfall (CV = 20.1%). Tr was related to the vapour pressure deficit, incoming radiation, and air temperature with relatively small inter‐annual variations (CV = 8.2%). Esoil (CV = 8.6%) was related mainly to the vapour pressure deficit. Ewet was related to precipitation with large inter‐annual variations (CV = 14.3%) because of the variability in precipitation. The variations in Ewet were counterbalanced by the variations in Tr and Esoil, producing the small inter‐annual variations in total ET. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Partitioning evapotranspiration (ET) into evaporation (E) and transpiration (T) in wetlands is important for understanding the hydrological processes in wetlands and the contribution of wetland ET to local and regional water cycling and for designing effective wetland management strategies. Stable water isotopes are useful in the application of ET partitioning through the evaluation of the isotopic compositions of E (δE), T (δT), and ET (δET) obtained from observation or modelling methods. However, this approach still suffers from potentially large uncertainties in terms of estimating the isotopic endmembers. In this study, we modified the traditional isotope‐based ET partitioning methods to include leaf‐level biological constraints to separately estimate the relative contributions of T from Scirpus triqueter and Phragmites australis and the relative contributions of E from the standing surface water in a semiarid marsh wetland in northeastern China. The results showed that although the δT values of Striqueter and Paustralis were rather similar, the mean δT values of the 2 species were different from the values of δE, making it possible to distinguish the relative contributions of E and T through the use of isotopes. The simulation of leaf water using a non‐steady‐state model indicated obvious deviations in leaf water enrichment (δLb) from isotopic steady states for both species, especially during early mornings and evenings when relative humidity was highest. The isotopic mass balance showed that E accounted for approximately 60% of ET, and T from Striqueter and Paustralis each contributed approximately 20% to ET; this implied that the transpiration of one reed was equivalent to that of 5.25 individuals of Striqueter. Using the estimated ratio of T to ET and the measured leaf transpiration, the total ET was estimated to be approximately 10 mm day?1. Using the NSS‐Tr method, the estimated ET was higher than the water loss calculated from the water level gauge. This indicated that the river water and surrounding groundwater were the sources of the marsh wetland, with a supply rate of 8.3 mm day?1.  相似文献   

4.
In this study, we proposed a new approach for linking event sediment sources to downstream sediment transport in a watershed in central New York. This approach is based on a new concept of spatial scale, sub‐watershed area (SWA), defined as a sub‐watershed within which all eroded soils are transported out without deposition during a hydrological event. Using (rainfall) event data collected between July and November, 2007 from several SWAs of the studied watershed, we developed an empirical equation that has one independent variable, mean SWA slope. This equation was then used to determine event‐averaged unit soil erosion rate, QS/A, (in kg/km2/hr) for all SWAs in the studied watershed and calculate event‐averaged gross erosion Eea (in kg/hr). The event gross erosion Et (in kilograms) was subsequently computed as the product of Eea and the mean event duration, T (in hours) determined using event hydrographs at the outlet of the studied watershed. Next, we developed two linear sediment rating curves (SRCs) for small and big events based on the event data obtained at the watershed outlet. These SRCs, together with T, allowed us to determine event sediment yield SYe (in kilograms) for all events during the study period. By comparing Et with SYe, developing empirical equations (i) between Et and SYe and (ii) for event sediment delivery ratio, respectively, we revealed the event dynamic processes connecting sediment sources and downstream sediment transport. During small events, sediment transport in streams was at capacity and dominated by the deposition process, whereas during big events, it was below capacity and controlled by the erosion process. The key of applying this approach to other watersheds is establishing their empirical equations for QS/A and appropriately determining their numbers of SWAs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Sustainable water management in semi-arid agriculture practices requires quantitative knowledge of water fluxes within the soil-vegetation-atmosphere system. Therefore, we used stable-isotope approaches to evaluate evaporation (Ea), transpiration (Ta), and groundwater recharge (R) at sites in Senegal's Groundnut basin and Ferlo Valley pasture region during the pre-monsoon, monsoon, and post-monsoon seasons of 2021. The approaches were based upon (i) the isothermal evaporation model (for quantifying Ea); (ii) water and isotope mass balances (to partition Ea and Ta for groundnut and pasture); and (iii) the piston displacement method (for estimating R). Ea losses derived from the isothermal evaporation model corresponded primarily to Stage II evaporation, and ranged from 0.02 to 0.09 mm d−1 in the Groundnut basin, versus 0.02–0.11 mm d−1 in Ferlo. At the groundnut site, Ea rates ranged from 0.01 to 0.69 mm d−1; Ta was in the range 0.55–2.29 mm d−1; and the Ta/ETa ratio was 74%–90%. At the pasture site, the ranges were 0.02–0.39 mm d−1 for Ea; 0.9–1.69 mm d−1 for Ta; and 62–90% for Ta/ETa. The ETa value derived for the groundnut site via the isotope approach was similar to those from eddy covariance measurements, and also to the results from the previous validated HYDRUS-1D model. However, the HYDRUS-1D model gave a lower Ta/ETa ratio (23.2%). The computed groundwater recharge for the groundnut site amounted to less than 2% of the local annual precipitation. Recommendations are made regarding protocols for preventing changes to isotopic compositions of water in samples that are collected in remote arid regions, but must be analysed days later. The article ends with suggestions for studies to follow up on evidence that local aquifers are being recharged via preferential pathways.  相似文献   

6.
The Western Boreal Plain of North Central Alberta comprises a mosaic of wetlands and aspen (Populus tremuloides) dominated uplands where precipitation (P) is normally exceeded by evapotranspiration (ET). As such these systems are highly susceptible to the climatic variability that may upset the balance between P and ET. Above canopy evapotranspiration (ETC) and understory evapotranspiration (ETB) were examined using the eddy covariance technique situated at 25.5 m (7.5 m above tree crown) and 4.0 m above the ground surface, respectively. During the peak period of the growing seasons (green periods), ETC averaged 3.08 mm d?1 and 3.45 mm d?1 in 2005 and 2006, respectively, while ETB averaged 1.56 mm d?1 and 1.95 mm d?1. Early in the growing season, ETB was equal to or greater than ETC once understory development had occurred. However, upon tree crown growth, ETB was lessened due to a reduction in available energy. ETB ranged from 42 to 56% of ETC over the remainder of the snow‐free seasons. Vapour pressure deficit (VPD) and soil moisture (θ) displayed strong controls on both ETC and ETB. ETC responded to precipitation events as the developed tree crown intercepted and held available water which contributed to peak ETC following precipitation events >10 mm. While both ETC and ETB were shown to respond to VPD, soil moisture in the rooting zone is shown to be the strongest control regardless of atmospheric demand. Further, soil moisture and tension data suggest that rooting zone soil moisture is controlled by the redistribution of soil water by the aspen root system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Abstract

The spatio-temporal variations of reference crop evapotranspiration (ETref) reflect the combined effects of meteorological variables, primarily wind speed, relative humidity, net radiation and air temperature. This study investigated the spatial distribution and temporal trends of ETref (calculated by the FAO-56 Penman-Monteith equation), pan evaporation (Epan) and pan coefficient (Kp) in a 140?×?103 km2 semi-humid to semi-arid area in China. The results show that: (i) although the spatial distributions of ETref and Epan are roughly similar and their spatial correlation is high over the growing season, Kp varied considerably in space due to high humidity in the east of the region and low humidity in the southwest; (ii) the monthly variations of ETref and Epan are similar to that of net radiation and opposite to that of relative humidity, while the monthly variation of Kp is similar to that of relative humidity and opposite to that of wind speed, and the long-term trend is slightly increasing for ETref and Epan, while significantly (10% significance level) increasing for Kp; and (iii) generally, the time series of ETref and Epan from 1951 to 2001 could be divided into three phases due to variations of meteorological variables.

Citation Liang, L.-Q., Li, L.-J. & Liu, Q. (2011) Spatio-temporal variations of reference crop evapotranspiration and pan evaporation in the West Songnen Plain of China. Hydrol. Sci. J. 56(7), 1300–1313.  相似文献   

8.
The accurate estimation of evapotranspiration (ET) is essential for assessing water availability and requirements of regional-scale terrestrial ecosystems, and for understanding the hydrological cycle in alpine ecosystems. In this study, two large-scale weighing lysimeters were employed to estimate the magnitude and dynamics of actual evapotranspiration in a humid alpine Kobresia meadow from January 2018 to December 2019 on the northeastern Qinghai-Tibetan Plateau (QTP). The results showed that daily ETa averaged 2.24 ± 0.10 mm day −1 throughout the study period, with values of 3.89 ± 0.14 and 0.81 ± 0.06 mm day−1 during the growing season and non-growing season, respectively. The cumulative ETa during the study period was 937.39 mm, exceeding precipitation (684.20 mm) received at the site during the same period by 37%, suggesting that almost all precipitation in the lysimeters was returned to the atmosphere by evapotranspiration. Furthermore, the cumulative ETa (805.04 mm) was almost equal to the maximum potential evapotranspiration estimated by the FAO-56 reference evapotranspiration (ET0) (801.94 mm) during the growing season, but the cumulative ETa (132.25 mm) was 113.72% less than the minimum equilibrium ETeq) (282.86 mm) during the non-growing season due to the limited surface moisture in frozen soil. The crop coefficient (Kc) also showed a distinct seasonal pattern, with a monthly average of 1.01 during the growing season. Structural equation model (SEM) and boosted regression tree (BRT) show that net radiation and air temperature were the most important factors affecting daily ETa during the whole study period and growing season, but that non-growing season ETa was dominated by soil water content and net radiation. The daily Kc was dominated by net radiation. Furthermore, both ETa and Kc were also affected by aboveground biomass.  相似文献   

9.
Wildfires are landscape scale disturbances that can significantly affect hydrologic processes such as runoff generation and sediment and nutrient transport to streams. In Fall 2016, multiple large drought-related wildfires burned forests across the southern Appalachian Mountains. Immediately after the fires, we identified and instrumented eight 28.4–344 ha watersheds (four burned and four unburned) to measure vegetation, soil, water quantity, and water quality responses over the following two years. Within burned watersheds, plots varied in burn severity with up to 100% tree mortality and soil O-horizon loss. Watershed scale high burn severity extent ranged from 5% to 65% of total watershed area. Water quantity and quality responses among burned watersheds were closely related to the high burn severity extent. Total water yield (Q) was up to 39% greater in burned watersheds than unburned reference watersheds. Total suspended solids (TSS) concentration during storm events were up to 168 times greater in samples collected from the most severely burned watershed than from a corresponding unburned reference watershed, suggesting that there was elevated risk of localized erosion and sedimentation of streams. NO3-N concentration, export, and concentration dependence on streamflow were greater in burned watersheds and increased with increasing high burn severity extent. Mean NO3-N concentration in the most severely burned watershed increased from 0.087 mg L−1 in the first year to 0.363 mg L−1 (+317%) in the second year. These results suggest that the 2016 wildfires degraded forest condition, increased Q, and had negative effects on water quality particularly during storm events.  相似文献   

10.
Seasonal changes in the water and energy exchanges over a pine forest in eastern Siberia were investigated and compared with published data from a nearby larch forest. Continuous observations (April to August 2000) were made of the eddy‐correlation sensible heat flux and latent heat flux above the canopy. The energy balance was almost closed, although the sum of the turbulent fluxes sometimes exceeded the available energy flux (Rn ? G) when the latent heat flux was large; this was related to the wind direction. We examined the seasonal variation in energy balance components at this site. The seasonal variation and magnitude of the sensible heat flux (H) was similar to that of the latent heat flux (λE), with maximum values occurring in mid‐June. Consequently, the Bowen ratio was around 1·0 on many days during the study period. On some clear days just after rainfall, λE was very large and the sum of H and λE exceeded Rn ? G. The evapotranspiration rate above the dry canopy from May to August was 2·2 mm day?1. The contributions of understory evapotranspiration (Eu) and overstory transpiration (Eo) to the evapotranspiration of the entire ecosystem (Et) were both from 25 to 50% throughout the period analysed. These results suggest that Eu plays a very important role in the water cycle at this site. From snowmelt through the tree growth season (23 April to 19 August 2000), the total incoming water, comprised of the sum of precipitation and the water equivalent of the snow at the beginning of the melt season, was 228 mm. Total evapotranspiration from the forest, including interception loss and evaporation from the soil when the canopy was wet, was 208–254 mm. The difference between the incoming and outgoing amounts in the water balance was from +20 to ?26 mm. The water and energy exchanges of the pine and larch forest differed in that λE and H increased slowly in the pine forest, whereas λE increased rapidly in the larch forest and H decreased sharply after the melting season. Consequently, the shape of the Bowen ratio curves at the two sites differed over the period analysed, as a result of the differences in the species in each forest and in soil thawing. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
Shallow groundwater plays a key role in agro‐hydrological processes of arid areas. Groundwater often supplies a necessary part of the water requirement of crops and surrounding native vegetation, such as groundwater‐dependent ecosystems. However, the impact of water‐saving irrigation on cropland water balance, such as the contribution of shallow groundwater to field evapotranspiration, requires further investigation. Increased understanding of quantitative evaluation of field‐scale water productivity under different irrigation methods aids policy and decision‐making. In this study, high‐resolution water table depth and soil water content in field maize were monitored under conditions of flood irrigation (FI) and drip irrigation (DI), respectively. Groundwater evapotranspiration (ETg) was estimated by the combination of the water table fluctuation method and an empirical groundwater–soil–atmosphere continuum model. The results indicate that daily ETg at different growth stages varies under the two irrigation methods. Between two consecutive irrigation events of the FI site, daily ETg rate increases from zero to greater than that of the DI site. Maize under DI steadily consumes more groundwater than FI, accounting for 16.4% and 14.5% of ETa, respectively. Overall, FI recharges groundwater, whereas DI extracts water from shallow groundwater. The yield under DI increases compared with that under FI, with less ETa (526 mm) compared with FI (578 mm), and irrigation water productivity improves from 3.51 kg m?3 (FI) to 4.58 kg m?3 (DI) through reducing deep drainage and soil evaporation by DI. These results highlight the critical role of irrigation method and groundwater on crop water consumption and productivity. This study provides important information to aid the development of agricultural irrigation schemes in arid areas with shallow groundwater.  相似文献   

12.
Xiaomang Liu  Dan Zhang 《水文研究》2013,27(26):3941-3948
Reference evapotranspiration (ET0) is an important element in the water cycle that integrates atmospheric demands and surface conditions, and analysis of changes in ET0 is of great significance for understanding climate change and its impacts on hydrology. As ET0 is an integrated effect of climate variables, increases in air temperature should lead to increases in ET0. However, this effect could be offset by decreases in vapor pressure deficit, wind speed, and solar radiation which lead to the decrease in ET0. In this study, trends in the Penman–Monteith ET0 at 80 meteorological stations during 1960–2010 in the driest region of China (Northwest China) were examined. The results show that there was a change point for ET0 series around the year 1993 based on the Pettitt's test. For the region average, ET0 decreased from 1960 to 1993 by ?2.34 mm yr?2, while ET0 began to increase since 1994 by 4.80 mm yr?2. A differential equation method based on the Food and Agriculture Organization Penman–Monteith formula was used to attribute the change in ET0. The attribution results show that the significant decrease in wind speed dominated the change in ET0, which offset the effect of increasing air temperature and led to the decrease in ET0 from 1960 to 1993. However, wind speed began to increase, and the amplitude of increase in air temperature also rose significantly since the mid‐1990s. Increases in air temperature and wind speed together reversed the trend in ET0 and led to the increase in ET0 since 1994. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.

Long-term measurement of carbon metabolism of old-growth forests is critical to predict their behaviors and to reduce the uncertainties of carbon accounting under changing climate. Eddy covariance technology was applied to investigate the long-term carbon exchange over a 200 year-old Chinese broad-leaved Korean pine mixed forest in the Changbai Mountains (128°28′E and 42°24′N, Jilin Province, P. R. China) since August 2002. On the data obtained with open-path eddy covariance system and CO2 profile measurement system from Jan. 2003 to Dec. 2004, this paper reports (i) annual and seasonal variation of F NEE, F GPP and R E; (ii) regulation of environmental factors on phase and amplitude of ecosystem CO2 uptake and release Corrections due to storage and friction velocity were applied to the eddy carbon flux.

LAI and soil temperature determined the seasonal and annual dynamics of FGPP and RE separately. VPD and air temperature regulated ecosystem photosynthesis at finer scales in growing seasons. Water condition at the root zone exerted a significant influence on ecosystem maintenance carbon metabolism of this forest in winter.

The forest was a net sink of atmospheric CO2 and sequestered −449 g C·m−2 during the study period; −278 and −171 gC·m−2 for 2003 and 2004 respectively. F GPP and F RE over 2003 and 2004 were −1332, −1294 g C·m−2. and 1054, 1124 g C·m−2 respectively. This study shows that old-growth forest can be a strong net carbon sink of atmospheric CO2.

There was significant seasonal and annual variation in carbon metabolism. In winter, there was weak photosynthesis while the ecosystem emitted CO2. Carbon exchanges were active in spring and fall but contributed little to carbon sequestration on an annual scale. The summer is the most significant season as far as ecosystem carbon balance is concerned. The 90 days of summer contributed 66.9, 68.9% of F GPP, and 60.4, 62.1% of R E of the entire year.

  相似文献   

14.
Afforestation has been suggested as a means of improving soil and water conservation in north‐western China, especially on the Loess Plateau. Understanding of the hydrological responses to afforestation will help us develop sustainable watershed management strategies. A study was conducted during the period of 1956 to 1980 to evaluate runoff responses to afforestation in a watershed on the Loess Plateau with an area of 1·15 km2, using a paired watershed approach. Deciduous trees, including locust (locusta L.), apricot (praecox L.) and elm (ulmus L.), were planted on about 80% of a treated watershed, while a natural grassland watershed remained unchanged. It was estimated that cumulative runoff yield in the treated watershed was reduced by 32% as a result of afforestation. A significant trend was also observed that shows annual runoff reduction increases with the age of the trees planted. Reduction in monthly runoff occurred mainly from June to September, which was ascribed to greater rainfall and utilization by trees during this period. Afforestation also resulted in reduction in the volume and peak flow of storm runoff events in the treated watershed with greater reduction in peak flow. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
The estimation of evapotranspiration (E) in forested areas is required for various practical purposes (e.g. evaluation of drought risks) in Japan. This study developed a model that estimates monthly forest E in Japan with the input of monthly temperature (T). The model is based on the assumptions that E equals the equilibrium evaporation rate (Eeq) and that Eeq is approximated by a function of T. The model formulates E as E (mm month−1) = 3·48 T ( °C) + 32·3. The accuracy of the model was examined using monthly E data derived using short‐term water balance (WB) and micrometeorological (M) methods for 15 forest sites in Japan. The model estimated monthly E more accurately than did the Thornthwaite and Hamon equations according to regression analysis of the estimated E and E derived using the WB and M methods. Although the model tended to overestimate monthly E, the overestimation could be reduced by considering the effect of precipitation on E. As T data are commonly available all over Japan, the model would be a useful tool to estimate forest E in Japan. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
ABSTRACT

The Hargreaves method provides reference evapotranspiration (ETo) estimates when only air temperature data are available, although it requires previous local calibration for an acceptable performance. This method was evaluated using the data from 71 meteorological stations in the Seolma-cheon basin (8.48 km2), South Korea, comparing daily estimates against those from the Penman‐Monteith (PM) method, which was used as the standard. To estimate reference ETo more exactly, considering the climatological characteristics in South Korea, parameter regionalization of the Hargreaves equation is carried out. First, the modified Hargreaves equation is presented after an analysis of the relationship between solar radiation and temperature. Second, parameter (KET) optimization of the regional calibration of the Hargreaves equation (RCH) is performed using the PM method and the modified equation at 71 meteorological stations. Next, an application was carried out to evaluate the evapotranspiration methods (PM, original Hargreaves and RCH) in the SWAT (Soil and Water Assessment Tool) model by comparing these with the measured actual evapotranspiration (AET) in the basin. The SWAT model was calibrated using 3 years (2007–2009) of daily streamflow at the watershed outlet and 3 years (2007–2009) of daily AET measured at a mixed forest. The model was validated with 3 years (2010‐2012) of streamflow and AET. RCH will contribute to a better understanding of evapotranspiration of an ungauged watershed in areas where meteorological information is scarce.
EDITOR D. Koutsoyiannis ASSOCIATE EDITOR Not assigned  相似文献   

17.
The effects of timber-cutting on sediment concentrations, soil loss and overland flow in an insigne pine (Pinus radiata) plantation were studied in a mountain watershed of the Cordillera de la Costa, central Chile. Soil formation rates for the lithological conditions of the watershed were estimated. Soil loss measurements on the plantation were taken in 100 m2 plots, equipped with Coshocton samplers, during the years 1991 and 1992. Treatments were: clear-cutting no residues/burned, clear-cutting with residues and undisturbed controls. First-year soil losses were greater from the no residues/burned (2128 kg ha?1) than from the residues (1219 kg ha?1) or undisturbed (48 kg ha?1) plots. During the second post-treatment year, soil loss was greater from the burned plots (1349 kg ha?1) than from the residues (243 kg ha?1) or the undisturbed (72 kg ha?1) plots. Sediment concentrations for the three treatments were 561, 340 and 59 mgl-1 during the first year, and 400, 150 and 83 mgl?1 in the second year. Runoff from the no residues/burned plots was greater than from residues or undisturbed plots during the two post-treatment years. Long-term soil losses were projected to average 240 kg ha?1 yr?1 from areas without residues/burned and 120 kg ha?1 yr?1 in areas with residues treatment, over a 25 year rotation period, whereas control areas were projected to average 60 kg ha?1 yr?1.  相似文献   

18.
Abstract

Acceleration of the global water cycle over recent decades remains uncertain because of the high inter-annual variability of its components. Observations of pan evaporation (Epan), a proxy of potential evapotranspiration (ETp), may help to identify trends in the water cycle over long periods. The complementary relationship (CR) states that ETp and actual evapotranspiration (ETa) depend on each other in a complementary manner, through land–atmosphere feedbacks in water-limited environments. Using a long-term series of Epan observations in Australia, we estimated monthly ETa by the CR and compared our estimates with ETa measured at eddy covariance Fluxnet stations. The results confirm that our approach, entirely data-driven, can reliably estimate ETa only in water-limited conditions. Furthermore, our analysis indicated that ETa did not show any significant trend in the last 30 years, while short-term analysis may indicate a rapid climate change that is not perceived in a long-term perspective.

Editor Z.W. Kundzewicz; Associate editor D. Gerten

Citation Lugato, E., Alberti, G., Gioli. B., Kaplan, J.O., Peressotti, A., and Miglietta, F., 2013. Long-term pan evaporation observations as a resource to understand the water cycle trend: case studies from Australia. Hydrological Sciences Journal, 58 (6), 1287–1296.  相似文献   

19.
Stand transpiration (E) estimated using the sap‐flux method includes uncertainty induced by variations in sap flux (F) within a tree (i.e. radial and azimuthal variations) and those between trees. Unlike radial variations, azimuthal variations are not particularly systematic (i.e. higher/lower F is not always recorded for a specific direction). Here, we present a theoretical framework to address the question on how to allocate a limited number of sensors to minimize uncertainty in E estimates. Specifically, we compare uncertainty in E estimates for two cases: (1) measuring F for two or more directions to cover azimuthal variations in F and (2) measuring F for one direction to cover between‐tree variations in F. The framework formulates the variation in the probability density function for E (σE) based on F recorded in m different azimuthal directions (e.g. north, east, south and west). This formula allows us to determine the m value that minimizes σE. This study applied the framework to F data recorded for a 55‐year‐old Cryptomeria japonica stand. σE for m = 1 was found to be less than the values for m = 2, 3 and 4. Our results suggest that measuring F for one azimuthal direction provides more reliable E estimates than measuring F for two or more azimuthal directions for this stand, given a limited number of sensors. Application of this framework to other datasets helps us decide how to allocate sensors most effectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Summary The darkening (S) of Illford Q2 photographic plates as ion detectors in mass spectrometer has been investigated. The dependence of the darkening (S) on the ion density (n=ions/mm2) i.e.S=S(n)E for constant energy (E)=z U ranging from 4U20 Kv of the impinging40A+1-,40A+2- and40A+3-ions whenS does not exceed the value 0.15 and the second relationn=n(z U) S for darkening 0.05S0.15 constructed from the above relationS=S(n) E has been determined. The darkening was found to increase with increasing ion-density which inturn decreases with the ionenergy. For40A+1-,40A+2-, and40A+3-ion of equal energy and ion-density the darkening effect was independent of the number of the charges carried by the argon ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号