首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Sustainable water management in semi-arid agriculture practices requires quantitative knowledge of water fluxes within the soil-vegetation-atmosphere system. Therefore, we used stable-isotope approaches to evaluate evaporation (Ea), transpiration (Ta), and groundwater recharge (R) at sites in Senegal's Groundnut basin and Ferlo Valley pasture region during the pre-monsoon, monsoon, and post-monsoon seasons of 2021. The approaches were based upon (i) the isothermal evaporation model (for quantifying Ea); (ii) water and isotope mass balances (to partition Ea and Ta for groundnut and pasture); and (iii) the piston displacement method (for estimating R). Ea losses derived from the isothermal evaporation model corresponded primarily to Stage II evaporation, and ranged from 0.02 to 0.09 mm d−1 in the Groundnut basin, versus 0.02–0.11 mm d−1 in Ferlo. At the groundnut site, Ea rates ranged from 0.01 to 0.69 mm d−1; Ta was in the range 0.55–2.29 mm d−1; and the Ta/ETa ratio was 74%–90%. At the pasture site, the ranges were 0.02–0.39 mm d−1 for Ea; 0.9–1.69 mm d−1 for Ta; and 62–90% for Ta/ETa. The ETa value derived for the groundnut site via the isotope approach was similar to those from eddy covariance measurements, and also to the results from the previous validated HYDRUS-1D model. However, the HYDRUS-1D model gave a lower Ta/ETa ratio (23.2%). The computed groundwater recharge for the groundnut site amounted to less than 2% of the local annual precipitation. Recommendations are made regarding protocols for preventing changes to isotopic compositions of water in samples that are collected in remote arid regions, but must be analysed days later. The article ends with suggestions for studies to follow up on evidence that local aquifers are being recharged via preferential pathways.  相似文献   

2.
Street and garden trees in urban areas are often exposed to advection of strong vapour pressure deficit (VPD) air that can raise the whole‐tree transpiration rate (ET), known as the oasis effect. However, urban trees tend to have small soil volume compared with natural conditions, and so they are believed to strongly regulate stomata. ET characteristics of such urban trees have not been well understood because of a lack of reliable measurement methods. Therefore, we propose a novel weighing lysimeter method and investigate the whole‐tree water balance of an isolated container‐grown Zelkova serrata to examine (a) which biotic and abiotic factors determine ET and (b) which spatial and temporal information is needed to predict ET under urban conditions. Whole‐tree water balance and environmental conditions were measured from 2010 to 2012. Although leaf area substantially increased in the study period, daily ET did not vary much. ET increased with VPD almost linearly in 2010 but showed saturation in 2011 and 2012. Root water uptake lagged ET by 40 min in 2012. These results suggest that the small planter box interfered with root growth and that hydraulic supply capacities did not increase sufficiently to support leaf area increase. From analysis of water balance, we believe that neglecting soil drought effects on street trees without irrigation in Japan will overestimate ET over 4–5 sunny days at the longest. This is unlike previous studies of forest.  相似文献   

3.
Total evaporation (ET) is one of the major components of the water budget of a wetland. Very little research has been conducted on the loss of water to the atmosphere from different wetland vegetation types occurring in southern Africa. This study on the ET of taro (locally known as madumbe) and sedge within the Mbongolwane wetland was conducted to assess the potential impact of madumbe cultivation on the hydrology of the wetland. Sugarcane planted on the contributing catchment outside the wetland was the other crop examined. Two field campaigns were conducted in November 2009 and January 2010 during the growing season of the madumbe crop to quantify ET rates in the Mbongolwane wetland and from sugar cane in the surrounding catchment. ET was measured over two vegetation types in the wetland, namely: madumbe (Colocasia esculenta); sedge (Cyperus latifolius) with some reeds (Phragmites australis); and sugarcane in adjacent terrestrial areas. ET from the madumbes ranged from 1.0 to 6.0 mm day?1. The daily average ET rates in November 2009 were 3.5 and 4.9 mm for the madumbe and sedge sites, respectively, and 4.0 mm for sugarcane grown in the catchment. The daily average ET rates in January 2010 were 3.3 and 3.7 mm for the madumbes and sedge sites, respectively, and 2.4 mm for the sugarcane site. The daily ET was therefore lower at the madumbe site in November 2009 and in January 2010 compared to the sedge site. An average crop factor of 0.6 was obtained from this study during the growth stage of the madumbes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
This study was undertaken to evaluate the effects of climatic variability on inter‐annual variations in each component of evapotranspiration (ET) and the total ET in a temperate coniferous forest in Japan. We conducted eddy covariance flux and meteorological measurements for 7 years and parameterized a one‐dimensional multi‐layer biosphere‐atmosphere model (Kosugi et al., 2006 ) that partitions ET to transpiration (Tr), wet‐canopy evaporation (Ewet), and soil evaporation (Esoil). The model was validated with the observed flux data. Using the model, the components of ET were estimated for the 7 years. Annual precipitation, ET, Tr, Ewet, and Esoil over the 7 years were 1536 ± 334 mm, 752 ± 29 mm, 425 ± 37 mm, 219 ± 34 mm, and 108 ± 10 mm, respectively. The maximum inter‐annual fluctuation of observed ET was 64 mm with a coefficient of variance (CV) of 2.7%, in contrast to relatively large year‐to‐year variations in annual rainfall (CV = 20.1%). Tr was related to the vapour pressure deficit, incoming radiation, and air temperature with relatively small inter‐annual variations (CV = 8.2%). Esoil (CV = 8.6%) was related mainly to the vapour pressure deficit. Ewet was related to precipitation with large inter‐annual variations (CV = 14.3%) because of the variability in precipitation. The variations in Ewet were counterbalanced by the variations in Tr and Esoil, producing the small inter‐annual variations in total ET. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Liwen Zhao  Wenzhi Zhao 《水文研究》2015,29(13):2983-2993
With a maize seed planting area of about 67 000 hm2, Zhangye city supplies the seeds for more than 40% of the maize planting area in China. Irrigation water is often overused to ensure the quality of the maize seeds, leading to serious water shortage problems in recent years. An accurate and convenient estimate of canopy transpiration is of particular importance to ease the problem. In this paper, leaf transpiration and sap flow in a maize field were measured in 2012 using a portable photosynthesis system and a heat balance sap flow system. Based on a large amount of meteorological data and relevant maize plant‐growing parameters, canopy transpiration was up‐scaled from both leaf transpiration (Tl) and sap flow (Tf), and also calculated by the FAO‐56 dual crop coefficient method (T). Comparing these three types of transpiration, Tf was proved to be more reliable than Tl. Taking Tf as a benchmark, the basal crop coefficient (Kcb, the key parameter of FAO‐56 dual crop coefficient method) was further adjusted and verified for the maize plants in this region. In addition, the errors when using up‐scaling methods and FAO‐56 dual crop coefficient method are summarized. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Quantifying and partitioning evapotranspiration (ET) into evaporation and transpiration is challenging but important for interpreting vegetation effects on the water balance. We applied a model based on the theory of maximum entropy production to estimate ET for shrubs for the first time in a low‐energy humid headwater catchment in the Scottish Highlands. In total, 53% of rainfall over the growing season was returned to the atmosphere through ET (59 ± 2% as transpiration), with 22% of rainfall ascribed to interception loss and understory ET. The remainder of rainfall percolated below the rooting zone. The maximum entropy production model showed good capability for total ET estimation, in addition to providing a first approximation for distinguishing evaporation and transpiration in such ecosystems. This study shows that this simple and low‐cost approach has potential for local to regional ET estimation with availability of high‐resolution hydroclimatic data. Limitations of the approach are also discussed.  相似文献   

7.
Hydrologic variability during 2005–2011 was observed and analyzed at an upland oak/pine forest in the New Jersey Pinelands. The forest experienced defoliation by Gypsy moth (Lymantria dispar L.) in 2007, drought conditions in 2006 and a more severe drought in 2010. By using sap flux and eddy covariance measurements, stream discharge data from USGS, soil water changes, precipitation (P) and precipitation throughfall, a local water balance was derived. Average annual canopy transpiration (EC) during 2005–2011 was 201 mm a?1 ± 47 mm a?1. A defoliation event reduced EC by 20% in 2007 compared with the 2005–2011 mean. During drought years in 2006 and 2010, stand transpiration was reduced by 8% in July 2006 and by 18% in 2010, respectively, compared with the overall July average. During July 2007, after the defoliation and subsequent reflushing of half of the leaves, EC was reduced by 25%. This stand may experience higher sensitivity to drought when recovering from a defoliation event as evidenced by the higher reduction of EC in 2010 (post‐defoliation) compared with 2006 (pre‐defoliation). Stream water discharge was normalized to the watershed area by dividing outflow with the watershed area. It showed the greatest correlation with transpiration for time lags of 24 days and 219 days, suggesting hydrological connectivity on the watershed scale; stream water discharge increases when transpiration decreases, coinciding with leaf‐on and leaf‐off conditions. Thus, any changes in transpiration or precipitation will also alter stream water discharge and therefore water availability. Under future climate change, frequency and intensity of precipitation and episodic defoliation events may alter local water balance components in this upland oak/pine forest. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
This study investigated the effects of clear-cutting and the meteorological and physiological factors on forest evapotranspiration (ET), by using the water-budget method in the Kamabuchi experimental watershed (KMB; 38° 56′ 21″ N, 140° 15′ 58″ E) in northern Japan. Meteorological and discharge data collected during no-snow periods (from June to October) from 1939 were used to compare ET in three sub-watersheds: No. 1, where the forest had been left undisturbed, and No. 2 and No. 3, where Cryptomeria japonica was planted after clear-cutting. Paired watershed experiments revealed that clear-cutting caused ET to decrease by approximately 100 mm yr−1, and this reduction continued for more than 20 years, even after C. japonica was planted. ET fluctuated similarly across all watersheds, regardless of clear-cutting or planting. This fluctuation is mainly caused by solar radiation and temperature. Intrinsic water-use efficiency (iWUE) calculated using δ13C of tree-ring cellulose in C. japonica increased due to elevated atmospheric CO2 concentration. We estimated annual carbon fixation in a single tree as the annual net photosynthesis (A). Subsequently, transpiration (E) was calculated from the relationship between iWUE and A. The results showed that A and E per tree increased as the tree grew older; however, the trees' responses to increasing ca suppress the increase in ET. Moreover, the fluctuation of ET from the watershed was small compared to the fluctuation of P during the observation periods because the increase and decrease in E and interception loss complemented each other.  相似文献   

9.
The eddy covariance (EC) method was used in a 30‐month study to quantify evapotranspiration (ET) and vegetation coefficient (KCW) for a wetland on a ranch in subtropical south Florida. To evaluate the errors in ET estimates, the EC‐based ET (ETC‐EC) and the Food and Agricultural Organization (FAO) Penman–Monteith (PM) based ET (ETC‐PM) estimates (with literature crop coefficient, KC) were compared with each other. The ETC‐EC and FAO‐PM reference ET were used to develop KCW. Regression models were developed to estimate KCW using climatic and hydrologic variables. Annual and daily ETC‐EC values were 1152 and 3.27 mm, respectively. The FAO‐PM model underestimated ET by 25% with ETC‐EC being statistically higher than ETC‐PM. The KCW varied from 0.79 (December) to 1.06 (November). The mean KCW for the dry (November–April) season (0.95) was much higher than values reported for wetlands in literature; whereas for the wet (May–October) season, KCW (0.97) was closer to literature values. Higher than expected KCW values during the dry season were due to higher temperature, lower humidity and perennial wetland vegetation. Regression analyses showed that factors affecting the KCW were different during the dry (soil moisture, temperature and relative humidity) and wet (net radiation, inundation and wind speed) seasons. Separate regression models for the dry and wet seasons were developed. Evapotranspiration and KCW from this study, one of the first for the agricultural wetlands in subtropical environment, will help improve the ET estimates for similar wetlands. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Conservation management for the water dependent desert‐oasis ecotone in arid northwest China requires information on the water use of the dominant species. However, no studies have quantified their combined water use or linked species composition to ecotone transpiration. Here, the water use of three dominant shelterbelt shrubs (Haloxylon ammodendron, Nitraria tangutorum, and Calligonum mongolicum) within an ecotone was measured throughout the full leaf‐out period for three shrub species from 30 May to 16 October 2014, with sap flow gauges using the stem heat balance approach. Species‐specific transpiration was estimated by scaling up sap flow velocities measured in individual stems, to stand area level, using the frequency distribution of stem diameter and assuming a constant proportionality between sap flow velocity and basal cross‐sectional area for all stems. The mean peak sap flux densities (Jsn) for H. ammodendron, N. tangutorum, and C. mongolicum, were 40.12 g cm?2 h?1, 71.33 g cm?2 h?1, and 60.34 g cm?2 h?1, respectively, and the mean estimated daily area‐averaged transpiration rates (Tdaily) for the same species were 0.56 mm day?1, 0.34 mm day?1, and 0.11 mm day?1. The accumulative stand transpiration was approximately 140.8 mm throughout the measurement period, exceeding precipitation by as much as 42.1 mm. Furthermore, Tdaily of these shrubs appeared to be much less sensitive to soil moisture as compared to atmospheric drivers, and the relationship between Jsn and atmospheric drivers was likely uninfluenced by soil moisture regimes in the whole profile (to 1‐m depth), especially for H. ammodendron and C. mongolicum. Results indicate that these shrubs may use deep soil water recharged by capillary rise, or may directly access shallow groundwater. This study provides quantitative data offering important implications for ecotone conservation and water and land resource management. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Shallow groundwater plays a key role in agro‐hydrological processes of arid areas. Groundwater often supplies a necessary part of the water requirement of crops and surrounding native vegetation, such as groundwater‐dependent ecosystems. However, the impact of water‐saving irrigation on cropland water balance, such as the contribution of shallow groundwater to field evapotranspiration, requires further investigation. Increased understanding of quantitative evaluation of field‐scale water productivity under different irrigation methods aids policy and decision‐making. In this study, high‐resolution water table depth and soil water content in field maize were monitored under conditions of flood irrigation (FI) and drip irrigation (DI), respectively. Groundwater evapotranspiration (ETg) was estimated by the combination of the water table fluctuation method and an empirical groundwater–soil–atmosphere continuum model. The results indicate that daily ETg at different growth stages varies under the two irrigation methods. Between two consecutive irrigation events of the FI site, daily ETg rate increases from zero to greater than that of the DI site. Maize under DI steadily consumes more groundwater than FI, accounting for 16.4% and 14.5% of ETa, respectively. Overall, FI recharges groundwater, whereas DI extracts water from shallow groundwater. The yield under DI increases compared with that under FI, with less ETa (526 mm) compared with FI (578 mm), and irrigation water productivity improves from 3.51 kg m?3 (FI) to 4.58 kg m?3 (DI) through reducing deep drainage and soil evaporation by DI. These results highlight the critical role of irrigation method and groundwater on crop water consumption and productivity. This study provides important information to aid the development of agricultural irrigation schemes in arid areas with shallow groundwater.  相似文献   

12.
In order to evaluate factors controlling transpiration of six common eastern deciduous species in North America, a model describing responses of canopy stomatal conductance (GS) to net radiation (RN), vapor pressure deficit (D) and relative extractable soil water (REW) was parameterized from sap flux data. Sap flux was measured in 24 mature trees consisting of the species Carya tomentosa, Quercus alba, Q. rubra, Fraxinus americana, Liriodendron tulipifera, and Liquidambar styraciflua in a bottomland oak-hickory forest in the Duke Forest, NC. Species differences in model coefficients were found during the 1997 growing season. All species showed a reduction in GS with increasing D. RN influenced GS in the overstory shade intolerant L. styraciflua to a larger extent than the other species measured. In addition, despite a severe drought during the study period, only L. tulipifera showed a decline in GS with decreasing REW. The primary effect of the drought for the other species appeared to be early autumn leaf senescence and abscission. As a result, despite the drought in this bottomland forest accustomed to ample water supply, maximum daily transpiration (1.6 mm) and growing season transpiration (264 mm) were similar to a nearby upland forest measured during a year of above average precipitation. These results may aid in assessing differences in water use and the ability of bottomland deciduous species to tolerate alterations in the frequency or amount of precipitation. Results also suggest little variation in water use among forests of similar composition and structure growing in different positions in the landscape and subjected to large interannual variation in water supply.  相似文献   

13.
许秀丽  李云良  谭志强  张奇 《湖泊科学》2018,30(5):1351-1367
地下水-土壤-植被-大气系统(GSPAC)界面水分传输是湿地生态水文过程研究的关键.本文选取鄱阳湖湿地高位滩地的2种典型植被群落:茵陈蒿(Artemisia capillaris)和芦苇(Phragmites australis)群落为研究对象,运用HYDRUS-1D垂向一维数值模拟,量化了湿地GSPAC系统界面水分通量,阐明了典型丰水年(2012年)和枯水年(2013年)鄱阳湖湿地植被群落的蒸腾用水规律和水源组成.结果表明:(1)茵陈蒿和芦苇群落土壤-大气界面的年降水入渗量为1570~1600 mm,主要集中在雨季4-6月,占年总量的60%;植物-大气界面的年蒸腾总量分别为346~470 mm和926~1057 mm,其中7-8月植被生长旺季最大,占年总量的40%~46%;地下水-根区土壤界面的向上补给水量受不同水文年水位变化的影响显著,地下水年补给量分别为15~513 mm和277~616 mm,主要发生在蒸散发作用强烈和地下水埋深较浅的时段.(2)植被蒸腾用水分为生长初期(4-6月)和生长旺季(7-10月)2个阶段,丰水年植被的整个生长期蒸腾用水充足,枯水年植被生长旺季的蒸腾用水受到严重水分胁迫,实际蒸腾量仅为潜在蒸腾量的一半左右.(3)不同水文年湿地植被生长旺季的水源贡献不同:丰水年茵陈蒿群落以地下水补给为主,芦苇群落以湖水和地下水补给为主;枯水年茵陈蒿群落以降水和前期土壤水储量为主,芦苇群落以地下水补给为主.本研究结果有助于揭示湿地植被的水分利用策略,为阐明湖泊水情变化与植被演替的作用机理提供参考依据.  相似文献   

14.
In this paper, we present an investigation of interspecies differences in transpiration of the 2 most common plantation forest tree species in Japan, both in the family Cupressaceae with different northern limits of native distribution, Japanese cypress (Hinoki; Chamaecyparis obtusa Sieb. et Zucc.) and Japanese cedar (Sugi; Cryptomeria japonica D. Don). The stem sap flow rate was measured in 2 nearby stands of similar leaf area index in a 42‐year‐old plantation. Single‐tree and stand‐scale transpiration rates (Etre and Esta, respectively) were observed during an ideal autumn environment. At the stand scale, mean sap flux density of Hinoki was greater than that of Sugi, whereas total sapwood area per ground area was smaller in Hinoki than Sugi. Because the 2 variables had counterbalancing effects on transpiration, Esta of Hinoki was similar to (94% of) that of Sugi. This offset was also found between the mean Etre of the 2 species. Esta was similar between the stands from May to October, whereas Esta of Sugi was notably greater than that of Hinoki from February to April. During these 3 months, the difference in cumulative Esta was 21.7 mm, which accounted for 79% of the difference in annual Esta between Hinoki and Sugi (192 and 219 mm/year, respectively). We found that canopy conductance (Gc) and its sensitivity to the mean vapour pressure deficit during daylight hours in Sugi were particularly high in early spring, whereas those in Hinoki shifted gradually throughout the growing season. This difference was related to the optimal temperature of Gc in Sugi, which was approximately 10 °C lower than that in Hinoki. Our results suggest that plantations of water‐conserving species such as Hinoki produce timber slowly but yield water resources generously. Moreover, for plantations of trees sensitive to high temperature, such as Sugi, managers should be concerned about possible future decline caused by anticipated global warming.  相似文献   

15.
The numerous lakes on the Tibetan Plateau play an important role in the regional hydrological cycle and water resources, but systematic observations of the lake water balance are scarce on the Tibetan Plateau. Here, we present a detailed study on the water cycle of Cona Lake, at the headwaters of the Nujiang‐Salween River, based on 3 years (2011–2013) of observations of δ18O and δ2H, including samples from precipitation, lake water, and outlet surface water. Short‐term atmospheric water vapor was also sampled for isotope analyses. The δ2H–δ18O relationship in lake water (δ2H = 6.67δ18O ? 20.37) differed from that of local precipitation (δ2H = 8.29δ18O + 12.50), and the deuterium excess (d‐excess) in the lake water (?7.5‰) was significantly lower than in local precipitation (10.7‰), indicating an evaporative isotope enrichment in lake water. The ratio of evaporation to inflow (E /I ) of the lake water was calculated using both d‐excess and δ18O. The E /I ratios of Cona lake ranged from 0.24 to 0.27 during the 3 years. Observations of atmospheric water vapor isotopic composition (δ A ) improved the accuracy in E /I ratio estimate over a simple precipitation equilibrium model, though a correction factor method provided nearly identical estimates of E /I ratio. The work demonstrates the feasibility of d‐excess in the study of the water cycle for lakes in other regions of the world and provides recommendations on sampling strategies for accurate calculations of E /I ratio.  相似文献   

16.
To understand the moisture regime at the southern slopes of Mt. Kilimanjaro, we analysed the isotopic variability of oxygen (δ18O) and hydrogen (δD) of rainfall, throughfall, and fog from a total of 2,140 samples collected weekly over 2 years at 9 study sites along an elevation transect ranging from 950 to 3,880 m above sea level. Precipitation in the Kilimanjaro tropical rainforests consists of a combination of rainfall, throughfall, and fog. We defined local meteoric water lines for all 3 precipitation types individually and the overall precipitation, δDprec = 7.45 (±0.05) × δ18Oprec + 13.61 (±0.20), n  = 2,140, R 2 = .91, p  < .001. We investigated the precipitation‐type‐specific stable isotope composition and analysed the effects of amount, altitude, and temperature. Aggregated annual mean values revealed isotope composition of rainfall as most depleted and fog water as most enriched in heavy isotopes at the highest elevation research site. We found an altitude effect of δ18Orain = ?0.11‰ × 100 m?1, which varied according to precipitation type and season. The relatively weak isotope or altitude gradient may reveal 2 different moisture sources in the research area: (a) local moisture recycling and (b) regional moisture sources. Generally, the seasonality of δ18Orain values follows the bimodal rainfall distribution under the influences of south‐ and north‐easterly trade winds. These seasonal patterns of isotopic composition were linked to different regional moisture sources by analysing Hybrid Single Particle Lagrangian Integrated Trajectory backward trajectories. Seasonality of d excess values revealed evidence of enhanced moisture recycling after the onset of the rainy seasons. This comprehensive dataset is essential for further research using stable isotopes as a hydrological tracer of sources of precipitation that contribute to water resources of the Kilimanjaro region.  相似文献   

17.
The Budyko framework is an efficient tool for investigating catchment water balance, focusing on the effects of seasonal changes in climate (S) and vegetation cover (M) on catchment evapotranspiration (ET). However, the effects of vegetation seasonality on ET remain largely unknown. The present study explored these effects by modelling interannual variations in ET considering vegetation and climate seasonality using the Budyko framework. Reconstructed 15-day GIMMS NDVI3g timeseries data from 1982 to 2015 were used to estimate M and extract the relative duration of the vegetation growing season (GL) in the Yellow River Basin (YRB). To characterize S, seasonal variations in precipitation and potential ET were extracted using a Gaussian algorithm. Analysis of the observed datasets for 19 catchments revealed that interannual variation in the catchment parameter ϖ (in Fuh's equation) was significantly and positively correlated with M and GL. Conversely, ϖ was significantly but negatively correlated with S. Furthermore, stepwise linear regression was used to calibrate the empirical formula of ϖ for these three dimensionless parameters. Following validation, based on observations in the remaining 11 catchments, ϖ was integrated into Fuh's equation to accurately estimate annual ET. Over 79% subcatchments showed an upward trend (0.9 mm yr−1), whereas fewer than 21% subcatchments showed a downward trend (−0.5 mm yr−1) across YRB. In the central region of the middle reach, ET increased with increased M, prolonged GL, and decreased S, whereas in the source region of YRB, ET decreased with decreased M and shortened GL. Our study provides an alternative method to estimate interannual ET in ungauged catchments and offers a novel perspective to investigate hydrological responses to vegetation and climate seasonality in the long-term.  相似文献   

18.
The flow of precipitation from the surface through to groundwater in karst systems is a complex process involving storage in the unsaturated zone and diffuse and preferential recharge pathways. The processes associated with this behaviour are not well understood, despite the prevalence of karst aquifers being used as freshwater supplies. As a result, uncertainty regarding the ecohydrological processes in this geological setting remains large. In response to the need to better understand the impact of woody vegetation on groundwater recharge, annual evapotranspiration (ET) rates and tree water sources were measured for two years above a shallow, fresh karst aquifer. Water use strategies of the co‐occurring Eucalyptus diversifolia subsp. diversifolia Bonpl. and Allocasuarina verticillata (Lam.) L. Johnson were investigated using a monthly water balance approach, in conjunction with measurement of the stable isotopes of water, leaf water potentials and soil matric potentials. The results suggest that it is unlikely groundwater resources are required to sustain tree transpiration, despite its shallow proximity to the soil surface, and that similarities exist between ET losses and the estimated long‐term average rainfall for this area. Irrespective of stand and morphological differences, E. diversifolia and A. verticillata ET rates showed remarkable convergence, demonstrating the ability of these co‐occurring species to maximise their use of the available precipitation, which avoids the requirement to differentiate between these species when estimating ET at a landscape scale. We conclude that the water holding capacity of porous geological substrates, such as those associated with karst systems, will play an important role in equilibrating annual rainfall variability and should be considered when assessing ecohydrological links associated with karst systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
《水文科学杂志》2013,58(3):503-518
Abstract

Two parameters of importance in hydrological droughts viz. the longest duration, LT and the largest severity, ST (in standardized form) over a desired return period, T years, have been analysed for monthly flow sequences of Canadian rivers. An important point in the analysis is that monthly sequences are non-stationary (periodic-stochastic) as against annual flows, which fulfil the conditions of stochastic stationarity. The parameters mean, μ, standard deviation, σ (or coefficient of variation), lag1 serial correlation, ρ, and skewness, γ (which is helpful in identifying the probability distribution function) of annual flow sequences, when used in the analytical relationships, are able to predict expected values of the longest duration, E(LT ) in years and the largest standardized severity, E(ST ). For monthly flow sequences, there are 12 sets of these parameters and thus the issue is how to involve these parameters to derive the estimates of E(LT ) and E(ST ). Moreover, the truncation level (i.e. the monthly mean value) varies from month to month. The analysis in this paper demonstrates that the drought analysis on an annual basis can be extended to monthly droughts simply by standardizing the flows for each month. Thus, the variable truncation levels corresponding to the mean monthly flows were transformed into one unified truncation level equal to zero. The runs of deficits in the standardized sequences are treated as drought episodes and thus the theory of runs forms an essential tool for analysis. Estimates of the above parameters (denoted as μav, σav, ρav, and γav) for use in the analytical relationships were obtained by averaging 12 monthly values for each parameter. The product- and L-moment ratio analyses indicated that the monthly flows in the Canadian rivers fit the gamma probability distribution reasonably well, which resulted in the satisfactory prediction of E(LT ). However, the prediction of E(ST ) tended to be more satisfactory with the assumption of a Markovian normal model and the relationship E(ST ) ≈ E(LT ) was observed to perform better.  相似文献   

20.
During the last decade, the widely distributed shrublands in northern China have shown significant signs of recovery from desertification, the result of widespread conservation practices. However, to support the current efforts in conservation, more knowledge is needed on surface energy partitioning and its biophysical controls. Using eddy‐covariance measurements made over a semi‐arid shrubland in northwest China in 2012, we examined how surface energy‐balance components vary on diurnal and seasonal scales, and how biophysical factors control bulk surface parameters and energy exchange. Sensible heat flux (H) exceeded latent heat flux (λE) during most of the year, resulting in an annual Bowen ratio (β, i.e. H/λE) of 2.0. λE exceeded H only in mid‐summer when frequent rainfall co‐occurred with the seasonal peak in leaf area index (LAI). Evapotranspiration reached a daily maximum of 3.3 mm day?1, and summed to 283 mm yr?1. The evaporative fraction (EF, i.e. λE/Rn), Priestley–Taylor coefficient (α), surface conductance (gs) and decoupling coefficient (Ω) were all positively correlated with soil water content (SWC) and LAI. The direct enhancement of λE by high vapour pressure deficit (VPD) was buffered by a concurrent suppression of gs. The gs played a direct role in controlling EF and α by mediating the effects of LAI, SWC and VPD. Our results highlight the importance of adaptive plant responses to water scarcity in regulating ecosystem energy partitioning, and suggest an important role for revegetation in the reversal of desertification in semi‐arid areas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号