首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Detecting and studying objects at the highest redshifts, out to the end of Cosmic Reionization at z>7, is clearly a key science goal of ALMA. ALMA will in principle be able to detect objects in this redshift range both from high-J (J>7) CO transitions and emission from ionized carbon, [CII], which is one of the main cooling lines of the ISM. ALMA will even be able to resolve this emission for individual targets, which will be one of the few ways to determine dynamical masses for systems in the Epoch of Reionization. We discuss some of the current problems regarding the detection and characterization of objects at high redshifts and how ALMA will eliminate most (but not all) of them.  相似文献   

2.
In this lecture, we review the properties of protoplanetary disks as derived from high angular resolution observations at millimeter wavelengths. We discuss how the combination of several different high angular resolution techniques allow us to probe different regions of the disk around young stellar objects and to derive the properties of the dust when combined with sophisticated disk models. The picture that emerges is that the dust in circumstellar disks surrounding pre-main sequence stars is in many cases significantly evolved compared to the dust in molecular clouds and the interstellar medium. It is however still difficult to derive a consistent picture and timeline for dust evolution in disks as the observations are still limited to small samples of objects.We also review the evidence for and properties of disks around high-mass young stellar objects and the implications on their formation mechanisms. The study of massive YSOs is complicated by their short lifetimes and larger average distances. In most cases high angular resolution data at millimeter wavelengths are the only method to probe the structure of disks in these objects.We provide a summary of the characteristics of available high angular resolution millimeter and submillimeter observatories. We also describe the characteristics of the ALMA observatory being constructed in the Chilean Andes. ALMA is going to be the world leading observatory at millimeter wavelengths in the coming decades, the project is now in its main construction phase with early science activities envisaged for 2010 and full science operations for 2012.  相似文献   

3.
In recent years there has been much debate, both observational and theoretical, about the nature of star formation at high redshift. In particular, there seems to be strong evidence of a greatly enhanced star formation rate early in the Universe’s evolution. Simulations investigating the nature of the first stars indicate that these were large, with masses in excess of 100 solar masses. By the use of a chemical model, we have simulated the molecular signature of massive star formation for a range of redshifts, using different input models of metallicity in the early Universe. We find that, as long as the number of massive stars exceeds that in the Milky Way by factor of at least 1000, then several ‘hot-core’ like molecules should have detectable emission. Although we predict that such signatures should already be partly detectable with current instruments (e.g. with the VLA), facilities such as ALMA will make this kind of observation possible at the highest redshifts.  相似文献   

4.
The study of the earliest stages of star formation in molecular clouds is one of the fields that should benefit most from ALMA. Improving our understanding of these deeply embedded stages is crucial to gain insight into the origin of stellar masses and binary systems. While the use of large single-dish (sub)millimeter radiotelescopes and existing interferometers has led to good progress on the overall density structure of isolated prestellar cores and young protostars, many questions remain open concerning, e.g., their fragmentation properties and detailed kinematics. Furthermore, the classical paradigm for the formation of single low-mass stars in well-separated, magnetized prestellar cores has been challenged on the grounds that most young stars actually belong to multiple systems and/or coherent clusters. A new paradigm based on supersonic turbulence has emerged which emphasizes the role of dynamical interactions between individual (proto)stars in cluster-forming clumps. The debate is far from settled and ALMA will greatly help to discriminate between these two paradigms.  相似文献   

5.
Measurement of variations in the radial velocities of stars due to the reflex orbital motion of the star around the planetary-system barycenter constitutes a powerful method of searching for substellar or planetary mass companions. After several years of patient data acquisition, radial-velocity searches for planetary systems around other stars are now beginning to bear fruit. In late 1995 and early 1996, three candidate systems were announced with Jovian-mass planets around solar-type stars. The current paradigm for low-mass star formation suggests that planetary systems should be able to form in the circumstellar disks surrounding young stellar objects. These newly discovered systems, and other discoveries which will soon follow them, will test critically our understanding of the processes of star- and planet-formation. We review the techniques used in these radial-velocity searches and their results to date. We then discuss planned improvements in the surveys, and the prospects for the next 20 years.  相似文献   

6.
Recent observations point to the presence of structured dust grains in the discs surrounding young brown dwarfs, thus implying that the first stages of planet formation take place also in the substellar regime. Here, we investigate the potential for planet formation around brown dwarfs and very low-mass stars according to the sequential core accretion model of planet formation. We find that, for a brown dwarf mass 0.05 M, our models predict a maximum planetary mass of  ∼5   M  , orbiting with semimajor axis ∼ 1 au. However, we note that the predictions for the mass–semimajor axis distribution are strongly dependent upon the models chosen for the disc surface density profiles and the assumed distribution of disc masses. In particular, if brown dwarf disc masses are of the order of a few Jupiter masses, Earth-mass planets might be relatively frequent, while if typical disc masses are only a fraction of Jupiter mass, we predict that planet formation would be extremely rare in the substellar regime. As the observational constraints on disc profiles, mass dependencies and their distributions are poor in the brown dwarf regime, we advise caution in validating theoretical models only on stars similar to the Sun and emphasize the need for observational data on planetary systems around a wide range of stellar masses. We also find that, unlike the situation around solar-like stars, Type II migration is totally absent from the planet formation process around brown dwarfs, suggesting that any future observations of planets around brown dwarfs would provide a direct measure of the role of other types of migration.  相似文献   

7.
The advent of ALMA is bound to improve our knowledge of OB star formation dramatically. Here, we present an overview of this topic outlining how high angular resolution and sensitivity may contribute to shed light on the structure of high-mass star forming regions and hence on the process itself of massive star formation. The impact of this new generation instrument will range from establishing the mass function of pre-stellar cores inside IR-dark clouds, to investigating the kinematics of the gas from which OB stars are built up, to assessing or ruling out the existence of circumstellar accretion disks in these objects.  相似文献   

8.
We present a review of a publication concerning the problem of the existence of disks around stars and substars within 10 pc from the Solar System; outline the present-day concepts of the astrophysical properties of circumstellar disks and problems connected with and results of their search and detection, on the basis of the IR-excesses in the spectrum of the nearest stellar/substellar systems; discuss some data on the nearest stellar and substellar population; give a list of circumstellar discs discovered within 10 pc from the Sun and their main astrophysical properties; and briefly discuss disk structure yielded by images taken in different spectral bands.  相似文献   

9.
The masses and temperatures of young low-mass stars and brown dwarfs in star-forming regions are not yet well established because of uncertainties in the age of individual objects and the spectral type–temperature scale appropriate for objects with ages of only a few Myr. Using multi-object optical spectroscopy, 45 low-mass stars and brown dwarfs in the Trapezium Cluster in Orion have been classified and 44 of these confirmed as bona fide cluster members. The spectral types obtained have been converted to effective temperatures using a temperature scale intermediate between those of dwarfs and giants, which is suitable for young pre-main-sequence objects. The objects have been placed on a Hertzsprung–Russell (HR) diagram overlaid with theoretical isochrones. The low-mass stars and the higher mass substellar objects are found to be clustered around the 1 Myr isochrone, while many of the lower mass substellar objects are located well above this isochrone. An average age of 1 Myr is found for the majority of the objects. Assuming coevality of the sources and an average age of 1 Myr, the masses of the objects have been estimated and range from  0.018 to 0.44 M  . The spectra also allow an investigation of the surface gravity of the objects by measurement of the sodium doublet equivalent width. With one possible exception, all objects have low gravities, in line with young ages, and the Na indices for the Trapezium objects lie systematically below those of young stars and brown dwarfs in Chamaeleon, suggesting that the 820 nm Na index may provide a sensitive means of estimating ages in young clusters.  相似文献   

10.
The aim of the Degenerate Objects around Degenerate Objects (DODO) survey is to search for very low-mass brown dwarfs and extrasolar planets in wide orbits around white dwarfs via direct imaging. The direct detection of such companions would allow the spectroscopic investigation of objects with temperatures much lower  (<500 K)  than the coolest brown dwarfs currently observed. These ultra-low-mass substellar objects would have spectral types >T8.5, and so could belong to the proposed Y dwarf spectral sequence. The detection of a planet around a white dwarf would prove that such objects can survive the final stages of stellar evolution and place constraints on the frequency of planetary systems around their progenitors (with masses between 1.5 and 8   M  , i.e. early B to mid-F). This paper presents the results of a multi epoch J band common proper motion survey of 23 nearby equatorial and Northern hemisphere white dwarfs. We rule out the presence of any common proper motion companions, with limiting masses determined from the completeness limit of each observation, to 18 white dwarfs. For the remaining five targets, the motion of the white dwarf is not sufficiently separated from the non-moving background objects in each field. These targets require additional observations to conclusively rule out the presence of any common proper motion companions. From our completeness limits, we tentatively suggest that  ≲5 per cent  of white dwarfs have substellar companions with   T eff≳ 500 K  between projected physical separations of 60–200 au.  相似文献   

11.
The dynamical, physical and chemical processes which lead to planet formation constitute an astrophysical domain which will strongly benefit from ALMA in terms of frequency coverage, sensitivity and angular resolution. Recent results from current mm/submm interferometers obtained on molecules and dust in proto-planetary disks are presented. The observational coupling between gas and dust is discussed and it is shown that dust disks must be analyzed with the knowledge provided by gas disks, and respectively, both from the chemical and physical points. For these purposes, the methods of analysis of mm/submm interferometric data specific to disks are summarized. Emphasis is given on recent, unexpected, findings obtained in the highest sensitivity and resolution observations obtained so far, as they provide a hint of what ALMA could discover. A comparison with the expected sensitivities for ALMA illustrates how ALMA can enhance our knowledge of the disk physics, either by providing statistics or by allowing much more detailed studies of representative objects.  相似文献   

12.
Eclipsing binaries with M-type components are still rare objects. Strong observational biases have made that today only a few eclipsing binaries with component masses below 0.6 M and well-determined fundamental properties are known. However, even in these small numbers the detailed comparison of the observed masses and radii with theoretical predictions has revealed large disagreements. Current models seem to predict radii of stars in the 0.4--0.8 M range to be some 5--15% smaller than observed. Given the high accuracy of the empirical measurements (a few percent in both mass and radius), these differences are highly significant. I review all the observational evidence on the properties of M-type stars and discuss a possible scenario based on stellar activity to explain the observed discrepancies.  相似文献   

13.
Summary Bipolar molecular outflows are a ubiquitous phenomenon in the process of star formation. We review the main observational properties of the outflows around young stellar objects, highlighting the recent wealth of information provided by the new generation of large radiotelescopes operating at millimeter wavelengths (in particular the IRAM 30-m, the NRO 45-m, and the JCMT 15-m dishes). The observations of outflows containing molecular, jet-like flows and bullets are discussed in detail, as they provide key information for understanding origin and evolution of the outflows. We also discuss a number of closely related issues: the evidence for dense shocked gas associated with the flows, the interaction of the outflows with the ambient dense cores, the evolutionary status of the sources driving the outflows, the properties of circumstellar disks, and theoretical models of the origin of the neutral winds. All these areas are important for developing a plausible scenario for the formation and evolution of the bipolar molecular outflows.This article was processed by the author using the Springer-Verlag TEX AAR macro package 1991.  相似文献   

14.
Self-gravitating protostellar discs are unstable to fragmentation if the gas can cool on a time-scale that is short compared with the orbital period. We use a combination of hydrodynamic simulations and N -body orbit integrations to study the long-term evolution of a fragmenting disc with an initial mass ratio to the star of   M disc/ M *= 0.1  . For a disc that is initially unstable across a range of radii, a combination of collapse and subsequent accretion yields substellar objects with a spectrum of masses extending (for a Solar-mass star) up to  ≈0.01 M  . Subsequent gravitational evolution ejects most of the lower mass objects within a few million years, leaving a small number of very massive planets or brown dwarfs in eccentric orbits at moderately small radii. Based on these results, systems such as HD 168443 – in which the companions are close to or beyond the deuterium burning limit – appear to be the best candidates to have formed via gravitational instability. If massive substellar companions originate from disc fragmentation, while lower-mass planetary companions originate from core accretion, the metallicity distribution of stars which host massive substellar companions at radii of ∼1 au should differ from that of stars with lower mass planetary companions.  相似文献   

15.
Protoplanetary disks are the most probable sites where planet formation takes place. According to theory, planet formation in protoplanetary disks should show remarkable signatures, such as a gap/hole or a spiral structure. In fact, recent high-angular and high-sensitivity observations in millimeter and submillimeter wavelengths, as well as optical/near-IR wavelengths, have shown such structures in protoplanetary disks. Two particular examples of such disks around AB Aurigae and HD 142527 are discussed here, with an emphasis on results obtained using the Submillimeter Array. These disks—and their probable planet formation—will be very important future targets for ALMA to study the physical process of planet formation in detail.  相似文献   

16.
To further enhance our understanding on the formation and evolution of bars in lenticular (S0) galaxies, we are undertaking a detailed photometric and spectroscopic study on a sample of 22 objects. Here we report the results of a 2D structural analysis on two barred face-on S0's, which indicate that presently these galaxies do not possess disks. We discuss two possibilities to explain these surprising results, namely strong secular evolution and bar formation without disks. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
The study of detached eclipsing binaries in open clusters can provide stringent tests of theoretical stellar evolutionary models, which must simultaneously fit the masses, radii, and luminosities of the eclipsing stars and the radiative properties of every other star in the cluster. We review recent progress in such studies and discuss two unusually interesting objects currently under analysis. GV Carinae is an A0 m + A8 m binary in the Southern open cluster NGC 3532; its eclipse depths have changed by 0.1 mag between 1990 and 2001, suggesting that its orbit is being perturbed by a relatively close third body. DW Carinae is a high-mass unevolved B1 V + B1 V binary in the very young open cluster Collinder 228, and displays double-peaked emission in the centre of the Hα line which is characteristic of Be stars. We conclude by pointing out that the great promise of eclipsing binaries in open clusters can only be satisfied when both the binaries and their parent clusters are well-observed, a situation which is less common than we would like.  相似文献   

18.
Planetary nebulae (PNe) are formed in a very fast process. In just about 1000 years, the nebula evolves from a spherical and slowly expanding AGB envelope to a PN, with usually axial symmetry and high axial velocities. Molecular lines are known to probe most of the nebular material in young PNe and protoplanetary nebulae (PPNe), and are therefore very useful to study such an impressive evolution. Many quantitative results on these objects have been so obtained, including general structure, total mass and density distribution, kinetic temperatures, velocity fields, etc. Existing observations probe both the gas accelerated by post-AGB shocks and the quiescent components. But the study of crucial regions to understand PN formation (recently shocked shells, regions heated by the stellar UV and inner rotating disks) requires observations at higher frequency and with better spatial resolution.   相似文献   

19.
We have carried out a search for co‐moving stellar and substellar companions around 18 exoplanet host stars with the infrared camera MAGIC at the 2.2 m Calar Alto telescope, by comparing our images with images from the all sky surveys 2MASS, POSS I and II. Four stars of the sample namely HD80606, 55 Cnc, HD46375 and BD–10°3166, are listed as binaries in the Washington Visual Double Star Catalogue (WDS). The binary nature of HD80606, 55 Cnc, and HD46375 is confirmed with both astrometry as well as photometry, thereby the proper motion of the companion of HD46375 was determined here for the first time.We derived the companion masses as well as the longterm stability regions for additional companions in these three binary systems. We can rule out further stellar companions around all stars in the sample with projected separations between 270AU and 2500AU, being sensitive to substellar companions with masses down to ∼60 MJup (S /N = 3). Furthermore we present evidence that the two components of the WDS binary BD–10°3166 are unrelated stars, i.e this system is a visual pair. The spectrophotometric distance of the primary (a K0 dwarf) is ∼67 pc, whereas the presumable secondary BD–10°3166B (a M4 to M5 dwarf) is located at a distance of 13 pc in the foreground. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
In this chapter, we will give a brief overview on our current theoretical understanding how planets form from the solid material in circumstellar disks in the core accretion-gas capture model. This chapter will not be as concise and complete as a review on this matter, yet will serve as an introductory text to generate interest in the subject. Students are referred to comprehensive text books and some important reviews.This chapter will discuss “dusty storms”, e.g. the dust transport in turbulent protoplanetary disks, followed by the latest model of planetesimal formation, e.g. gravoturbulent planetesimal formation, which deals with particle concentration in turbulence and N-body simulations thereof. We also briefly describe the core accretion-gas capture process and talk about nascent planets, e.g. the observability of planet–disk interaction concluding with the migration of young planets and the final arrangement of planetary systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号