首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   0篇
  国内免费   1篇
测绘学   1篇
大气科学   6篇
地球物理   13篇
地质学   29篇
海洋学   1篇
天文学   10篇
自然地理   2篇
  2023年   1篇
  2020年   1篇
  2019年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2012年   1篇
  2011年   2篇
  2010年   5篇
  2009年   8篇
  2008年   8篇
  2007年   6篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1995年   2篇
  1994年   2篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1980年   1篇
排序方式: 共有62条查询结果,搜索用时 187 毫秒
1.
We measured metal abundances of the intracluster medium in the central regions of 34 nearby clusters of galaxies, using ASCA data. Clusters that have a sharp X-ray emission centred on a cD galaxy are commonly found to exhibit a central increment in the Fe abundance, which is more pronounced in lower temperature clusters; +(0.1–0.2) solar at kT >5 keV, compared with +(0.2–0.3) solar at 1.5< kT <4 keV. These central excess metals are thought to be ejected from cD galaxies. Several low-temperature cD type clusters also show significant Si abundance increase by +(0.1–0.2) solar at the central region. Compared with the Si-rich abundances observed in the outer regions of rich clusters, the Si to Fe abundance ratio of central excess metals tends to be near the solar ratio, implying that type Ia products from cD galaxies are dominant for the central excess metals. On the other hand, some other clusters do not show the central Fe abundance increase. As these clusters tend to contain two or three central giant galaxies, it is suggested that galaxy interactions have removed the central abundance increase.  相似文献   
2.
3.
Phase relations in Mg0.5Fe0.5SiO3 and Mg0.25Fe0.75SiO3 were investigated in a pressure range from 72 to 123 GPa on the basis of synchrotron X-ray diffraction measurements in situ at high-pressure and -temperature in a laser-heated diamond-anvil cell (LHDAC). Results demonstrate that Mg0.5Fe0.5SiO3 perovskite is formed as a single phase at 85–108 GPa and 1800–2330 K, indicating a high solubility of FeO in (Mg,Fe)SiO3 perovskite at high pressures. Post-perovskite appears coexisting with perovskite in Mg0.5Fe0.5SiO3 above 106 GPa at 1410 K, the condition very close to the post-perovskite phase transition boundary in pure MgSiO3. The coexistence of perovskite and post-perovskite was observed to 123 GPa. In addition, post-perovskite was formed coexisting with perovskite also in Mg0.25Fe0.75SiO3 bulk composition at 106–123 GPa. In contrast to earlier experimental and theoretical studies, these results show that incorporation of FeO stabilizes perovskite at higher pressures. This could be due to a larger ionic radius of Fe2+ ion, which is incompatible with a small Mg2+ site in the post-perovskite phase.  相似文献   
4.
Crystal structures of clinoenstatite, orthoenstatite, wollastonite-1T and wollastonite-2M (parawollastonite) were refined to an R factor 3–4 percent level. Molar volumes at room temperature are 31.270(15), 31.315(8), 39.842(5) and 39.901(10) cm3/MSiO3, in the above-mentioned order, indicating that one-layer polytypes (clinoenstatite and wollastonite-1T) are stable at higher pressures than two-layer polytypes (orthoenstatite and wollastonite-2M). The polytypic relation of the enstatite polytypes can be described by four twinning operations — b glide ∥ to (110), a glide ∥ to (001), twofold screw axis ∥ to a (of orthoenstatite) and a twofold screw axis ∥ to c. For the wollastonite polytypes, twinning operations are twofold screw axis ∥ to b and a glide ∥ to (010). Structural adjustments after twinning are not necessarily the largest at the twin boundary (true in enstatite but not so in wollastonite). In both cases octahedral sites that involve bridging oxygens tend to show relatively large changes. Lattice strain ellipsoids associated with twinning are also different for enstatite and wollastonite, which implies that wollastonite may react differently from enstatite to non-hydrostatic pressure.  相似文献   
5.
The distribution of Fe3+ and Ga3+ between the two tetrahedral sites in three synthetic melilites has been studied by using 57Fe Mössbauer spectroscopy. In the melilite, (Ca2Ga2SiO7)50 (Ca2Fe3+GaSiO7)50 (mol %), the distribution of Fe3+ and Ga3+ in T1 and T2 sites is apparently random, which can be explained in terms of the electrostatic valence rule. However in the melilites, (Ca2MgSi2O7)52 (Ca2Fe3+GaSiO7)42 (Ca2Ga2SiO7)6 and (Ca2MgSi2O7)62 (Ca2Fe3+GaSiO7)36 (Ca2Ga2SiO7)2 (mol %), Fe3+ shows preference for the more ionic T1 site and Ga3+ for the more covalent T2 site. If the electronegativity of Ga3+ is assumed to be larger than that of Fe3+, the mode of distribution of Fe3+ and Ga3+ can be explained in terms of our previous hypothesis that a large electronegativity induces a stronger preference for the more covalent T2 site.  相似文献   
6.
A test tunnel for the study of airfoil performances under air/water two-phase flow condition has been designed and constructed. This facility will serve for a better understanding of the flow phenomena and characteristics of hydraulic machinery under gas/ liquid two-phase flow operating conditions. At the test section of the tunnel, a two-dimensional isolated airfoil or a cascade of airfoils is installed in a two-phase inlet flow with a uniform velocity (up to 10 m/s) and void fraction (up to 12%) distribution. The details of the tunnel structure and the measuring systems are described and the basic characteristics of the constructed tunnel are also given. As an example of the test results, void fraction distribution around a test airfoil is shown.Dedicated to the 60th Birthday of Professor Klaus Gersten  相似文献   
7.
Protoplanetary disks are the most probable sites where planet formation takes place. According to theory, planet formation in protoplanetary disks should show remarkable signatures, such as a gap/hole or a spiral structure. In fact, recent high-angular and high-sensitivity observations in millimeter and submillimeter wavelengths, as well as optical/near-IR wavelengths, have shown such structures in protoplanetary disks. Two particular examples of such disks around AB Aurigae and HD 142527 are discussed here, with an emphasis on results obtained using the Submillimeter Array. These disks—and their probable planet formation—will be very important future targets for ALMA to study the physical process of planet formation in detail.  相似文献   
8.
Synthesized mineral powders with particle size of <100 nm are vacuum sintered to obtain highly dense and fine-grained polycrystalline mantle composites: single phase aggregates of forsterite (iron-free), olivine (iron containing), enstatite and diopside; two-phase composites of forsterite + spinel and forsterite + periclase; and, three-phase composites of forsterite + enstatite + diopside. Nano-sized powders of colloidal SiO2 and highly dispersed Mg(OH)2 with particle size of ≤50 nm are used as chemical sources for MgO and SiO2, which are common components for all of the aggregates. These powders are mixed with powders of CaCO3, MgAl2O4, and Fe(CO2CH3)2 to introduce mineral phases of diopside, spinel, and olivine to the aggregates, respectively. To synthesize highly dense composites through pressureless sintering, we find that calcined powders should be composed of particles that have: (1) fully or partially reacted to the desired minerals, (2) a size of <100 nm and (3) less propensity to coalesce. Such calcined powders are cold isostatically pressed and then vacuum sintered. The temperature and duration of the sintering process are tuned to achieve a balance between high density and fine grain size. Highly dense (i.e., porosity ≤1 vol%) polycrystalline mantle mineral composites with grain size of 0.3–1.1 μm are successfully synthesized with this method.  相似文献   
9.
We estimated wet-bulb globe temperature (WBGT) using measured meteorological data to understand the bioclimates of human living spaces during the summer season. Our research focused on commercial and residential areas of Okayama City, Japan (population ~700,000). The commercial spaces (CO) mainly consisted of multi-story office buildings, whereas the residential spaces (RE) consisted of one- or two-story residential buildings. On a fine day with southeast winds, the spatially averaged WBGT measured in the CO was higher than that in the RE. The difference was statistically significant and would have caused noticeable discomfort and a high risk of heat disorder for occupants of the CO over the long term. For instance, at 1900 Japan Standard Time (JST), the maximum difference in the WBGT between the CO and RE sites was 2.0°C (23.5°C for the CO and 21.5°C for the RE). From 1800 to 1900 JST, the wet-bulb temperature in the CO was still 1.5–2.0°C higher than that in the RE, even though both areas had the same dry-bulb temperature. This indicates that the CO retained greater amounts of water vapor for longer periods compared to the RE. The wet-bulb temperature in the CO increased rapidly at most observation points when the southeast sea breeze arrived. In contrast, in the RE, the wet-bulb temperature decreased until evening. This difference was caused by moist air transported from a river about 1 km upwind from the CO. The moist air forced an increase in the WBGT and elevated the risk of heat disorder in the CO. The spatially averaged globe temperature of the CO at 1500 JST was 6.2°C lower than that at the RE, causing the WBGT of the CO to decrease. The results suggest that the higher WBGT in the CO was caused by higher wet-bulb temperatures. On a day with southwest winds, the CO and RE showed no difference in WBGT because the river was not included in the upwind source area.  相似文献   
10.
We have investigated the phase relations of iron and iron–nickel alloys with 18 to 50 wt.% Ni up to over 300 GPa using a laser-heated diamond-anvil cell. The synchrotron X-ray diffraction measurements show the wide stability of hcp-iron up to 301 GPa and 2000 K and 319 GPa and 300 K without phase transition to dhcp, orthorhombic, or bcc phases. On the other hand, the incorporation of nickel has a remarkable effect on expanding the stability field of fcc phase. The geometry of the temperature–composition phase diagram of iron–nickel alloys suggests that the hcp–fcc–liquid triple point is located at 10 to 20 wt.% Ni at the pressure of the inner core boundary. The fcc phase could crystallize depending on the nickel and silicon contents in the Earth's core, both of which are fcc stabilizer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号