首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Spectroheliograms obtained in extreme ultraviolet (EUV) lines and the Lyman continuum are used to determine the rotation rate of the solar chromosphere, transition region, and corona. A cross-correlation analysis of the observations indicates the presence of differential rotation through the chromosphere and transition region. The rotation rate does not vary with height. The average sidereal rotation rate is given by (deg day–1) = 13.46 - 2.99 sin2 B where B is the solar latitude. This rate agrees with spectroscopic determinations of the photospheric rotation rate, but is slower by 1 deg day–1) = 13.46 - 2.99 sin2 than rates determined from the apparent motion of photospheric magnetic fields and from the brightest points of active regions observed in the EUV. The corona does not clearly show differential rotation as do the chromosphere and transition region.  相似文献   

2.
BRAJŠA  R.  RUŽDJAK  V.  VRŠNAK  B.  POHJOLAINEN  S.  URPO  S.  SCHROLL  A.  WÖHL  H. 《Solar physics》1997,171(1):1-34
The solar rotation rate obtained using the microwave Low-brightness-Temperature Regions (LTRs) as tracers in the heliographic range ± 55° from the years 1979–1980, 1981–1982, 1987–1988, and 1989–1991 varied from 3% to 4% in medium latitudes, and below 1% at the equator. Using H filaments as tracers at higher latitudes from the years 1979, 1980, 1982, 1984, and 1987, the solar rotation rate variation was between 2% and 8%. This represents an upper limit on the rotation rate variation during the solar activity cycle. Such changes could be caused by short-lived, large-scale velocity patterns on the solar surface. The Sun revealed a higher rotation rate on the average during the maxima of the solar activity cycles 21 and 22, i.e., in the periods 1979–1980 and 1989–1991, respectively, which differs from the rotation rates (lower on the average) in some years, 1981–1982 and 1987–1988, between the activity maximum and minimum (LTR data). Simultaneous comparison of rotation rates from LTRs and H filament tracings was possible in very limited time intervals and latitude bands only, and no systematic relationship was found, although the rotation rates determined by LTRs were mostly smaller than the rotation rates determined by H filaments. The errors obtained by applying different fitting procedures of the LTR data were analyzed, as well as the influence of the height correction. Finally, the north–south asymmetry in the rotation rate investigated by LTRs indicates that the southern solar hemisphere rotated slower in the periods under consideration, the difference being about 1%. The reliability of all obtained results is discussed and a comparison with other related studies was performed.  相似文献   

3.
The differential rotation of the corona as indicated by coronal holes   总被引:1,自引:0,他引:1  
The rotation of the corona can be determined either directly by using Doppler methods or indirectly by using tracers, i.e., structures within the corona. In this study the rotational characteristics of the corona are determined using coronal holes as tracers, for the period 1978–1991. The coronal data used here are from an atlas of coronal holes mapped in Hei 10830 data. A comparison is made between our results and previous determinations of the coronal rotation rate, e.g., by Sime (1986), using white-light K-coronameter observations, by Timothy, Krieger, and Vaiana (1975), using soft X-ray observations, and by Shelke and Pande (1985) and Navarro-Peralta and Sanchez-Ibarra (1994), using Hei 10830 data. For the atlas of coronal holes used in this study the nature of the coronal hole distributions in number and latitude, in yearly averages, has been determined. These distributions show that at solar minimum the polar coronal holes dominate and the few non-polar holes are confined to a narrow band near the equator. At solar maximum, however, mid-latitude coronal holes dominate, with a large spread in latitudes. Given these distributions we consider the differential rotation data only as an average over a solar cycle. This removes spurious effects caused by having only a small number of coronal holes contributing to the results, or by having a narrow latitude band for the observations, thus limiting the results to that narrow latitude band. By considering these coronal holes as tracers of the differential rotation we show that the mid-latitude corona rotates more rigidly than the photosphere, but still exhibits significant differential rotation, with an equatorial rate of 13.30 ± 0.04° day–1, and at 45° latitude a rate of 12.57 ± 0.13° day–1. These results are comparable, within errors, to the Sime (1986) results which have an equatorial rate of approximately 13.2 ± 0.2° day–1 and a rate of approximately 12.9 ± 0.3° day–1 at 45° latitude.  相似文献   

4.
A study of the green corona rotation rate, during the period 1970–1974, confirms that the differential rotation degree varies systematically through a solar cycle and that the corona rotates in an almost rigid manner before sunspot minimum. During the first two years, 1970–1971, the differential rotation degree, characteristic of high solar activity periods is detected. While during the years of declining activity, 1972–1974, a drastic decrease of the differential rotation degree occurs and the green corona rotates almost rigidly, as the coronal holes observed in the same period. These conclusions are valid only for the rotation of coronal features with lifetime of at least one solar rotation.  相似文献   

5.
J. Rybák 《Solar physics》1994,152(1):161-166
Fe XIV 5303 coronal emission line observations have been used for the estimation of the rotation behaviour of the green solar corona. A homogeneous data set, created from measurements carried out within the framework of the world-wide coronagraphic network, has been examined with a correlation analysis to reveal the averaged synodic rotation period as a function of latitude and time over the epoch from 1964 to 1989.The values of the synodic rotation period obtained for the epoch 1964–1989 for the whole range of latitudes and for a latitude band ±30° are 28.18±0.12 days and 27.65±0.13 days, respectively. The differential rotation of the green solar corona was confirmed, together with local maxima of the rotation period at latitudes 45° and -60° and a minimum at the equator, but no clear cyclic variation of the rotation has been found for the epoch examined.  相似文献   

6.
Prominences, in contrast to other solar activity features, may appear at all heliographic latitudes. The position of zones where prominences are mainly concentrated depends on the cycle phase of solar activity. It is shown, for prominence observations made at Lomnický tít over the period 1967–1996, how the position of prominence zones changes over a solar cycle, and how these zones could be connected with other solar activity features. Our results obtained could be an additional source to do a better prediction of solar activity. Time-latitudinal distribution is also shown for the green corona (Fexiv, 530.3 nm). Distribution of the green coronal maxima shows that there are equator-migrating zones in the solar corona that migrate from latitudes of 45° (starting approximately 2–3 years after the cycle start) to higher latitudes 70°, and then turn (around the cycle maximum) towards the equator, reaching the equator in the next minimum (this duration lasts 18–19 years). Polar branches separate from these zones at the cycle minimum (2–3 years before above-mentioned zones) at latitudes of 50°, reaching the poles at the maximum of the present cycle. The picture becomes dim when more polar prominence zones are observed. Prominences show both the poleward and equatorward migration. Comparison between both solar activity features is also discussed.  相似文献   

7.
The sidereal rotation rate of the high-latitude solar regions is examined using long-lived photospheric polar faculae. The observations were carried out with the photoheliograph of Kislovodsk Mountain Station of the Pulkovo Observatory from 1982 to 1986. The following facts have been established: (a) There is a differential rotation of the polar faculae close to the maximum of solar activity, while the amount of latitude gradient of solar rotation decreases towards the sunspot minimum; (b) small differences of rotation in the northern and southern hemispheres of the Sun are observed; (c) some deviations of differential rotation curves constructed for each Carrington rotation from the mean curve of differential rotation are revealed. The total amplitude of the maximum positive and negative excesses is about 40–50 m s–1. The positive surplus velocities of solar rotation (the amplitude of which is about 20–25 m s–1) move in the form of a wave from heliographic latitudes 40° with a velocity of 1.6 m s–1. The latitude width of this flow is B 15°. This wave of abnormally high velocity starts in the year of minimum solar activity and reaches the pole 11 years later. The picture is symmetrical relative to the equator.  相似文献   

8.
Gary D. Parker 《Solar physics》1986,104(2):333-345
The rotation of the solar electron corona is determined for intervals when nearly periodic variations dominated the polarization brightness record during 1964–1976. Coronal rotation rates derived for 765 intervals vary with height, latitude, and interval length. These rotation rates show a decrease of differential rotation with height and support earlier rotation studies which included much less stationary data. Analyses of the selected intervals and autocorrelation of the complete K-coronameter data set give quantitative estimates of the rotational effects of magnetic tracer age and lifetime. The principal effects detected are a relatively fast rotation of very long-lived tracers at high latitude and a relatively fast rotation of very short-lived tracers at low latitudes. The observations indicate that high-to-low latitude magnetic connections extending through the corona speed up rotation at high latitudes and retard it at low latitudes.  相似文献   

9.
The rotation rates obtained by tracing 124 polar crown filaments are presented in comparison with previous results. Higher filament rotation rate in polar regions was detected and discussed in terms of the various phenomena such as: the projection effect due to the height of measured tracers, the connection of polar filaments with the magnetic field patterns which show an increase of the rotation rate at high latitudes, rigid rotation of polar filaments which form pivot points, and eventual change of the differential rotation law during the cycle. However, when the height correction for an average height of 1% of the solar radius is applied, the filament rotation rate in polar regions decreases. Then the rotation law becomes: () = 14.45 – 0.11 sin2 – 3.69 sin4 (° day–1, sidereal).  相似文献   

10.
Observations of the white light corona were made on over 900 days during the years 1964–67 at heights between 1.125 and 2.0 R with the K-coronameter at Mount Haleakala and Mauna Loa, Hawaii. The brightness distribution of the minimum corona was elliptical with average equatorial intensities three times the polar. Coronal features of the new cycle at 1.125 R occurred predominantly in the sunspot zones at 25–30° latitude and in a high latitude zone which migrated toward the North pole before solar maximum. The brightness of the inner corona doubled over this period and a close association is found between the average corona and 10.7-cm solar radio flux. Electron densities in the equatorial regions were nearly twice those of Van de Hulst's model corona, in agreement with the results of recent eclipse observations.At Hawaii Institute of Geophysics.  相似文献   

11.
Two solar cycle observational material (1947–1968) from several corona stations brought to one intensity scale have been used to study the longitudinal distribution of the green corona activity. The active longitudes rotating with a period of 28 days are visualized. There is only very small dependence of the rotational period on the heliographic latitude. This fact recalls the known theory of the underphotospheric rigid body rotation.  相似文献   

12.
During the total solar eclipse of 11 June, 1983, an imaging dual-channel Fabry-Pérot interferometer was used to obtain line profiles simultaneously in the green 5303 Å [Fe xiv] and the red 6374 Å [Fe x] coronal lines at various positions in the corona. Extensive microdensitometry followed by multi-Gaussian curve-fitting analysis has resulted in the determination of coronal temperatures and velocity separations between different pockets of coronal gas in the line of sight over a large extent of the corona. Fewer high temperature zones are to be found in the corona of 1983 compared with our similar green-line measurements of the solar maximum corona of 1980. The data are consistent with a temperature maximum occurring at 1.2 R , as found at the 1980 eclipse, but our new data are insufficient to observe farther out than this radius and so determine the position of a maximum. The velocity field in the corona at the 1983 eclipse is less structured compared with that at the 1980 eclipse and is mainly confined to the zone 20–30km s–1.  相似文献   

13.
During a balloon flight in France on September 13, 1971, at altitude 32 000 m, the solar corona was cinematographed from 2 to 5R during 5 hr, with an externally occulted coronagraph.Motions in coronal features, when they occur, exhibit deformations of structures with velocities not exceeding a few 10 km s–1; several streamers were often involved simultaneously; these variations are compatible with magnetic changes or sudden reorganizations of lines of forces.Intensity and polarization measurements give the electron density with height in the quiet corona above the equator. Electron density gradient for one of the streamers gives a temperature of 1.6 × 106 K and comparisons with the on-board Apollo 16 coronal observation of 31 July, 1971 are compatible with the extension of this temperature up to 25 R bd.Three-dimensional structures and localizations of the streamers are deduced from combined photometry, polarimetry and ground-based K coronametry. Three of the four coronal streamers analysed have their axis bent with height towards the direction of the solar rotation, as if the upper corona has a rotation slightly faster than the chromosphere.  相似文献   

14.
A unique combination of photographic and K-coronameter data were used to study the structure and evolution of two known coronal streamers. In addition, two other K-coronameter enhancements were studied as representing ideal second examples of the known streamers. As a general rule the observations indicate that these features were direct coronal manifestations of photospheric bipolar magnetic regions (BMR) and were of two basic types:active region, by which is meant a coronal streamer which develops radially over a low-latitude active region; andhelmet which denotes a streamer whose structure and development appear to be a consequence of a long-lived complex of activity, composed of both trailing magnetic fields and a parent center of disk activity.The similarity of growth rates during the first solar rotation of life led to derivation of a total streamer density of 4–5 × 108 cm–3 atr = 1.125R . This density may represent a characteristic maximum density at the base of streamers. The intensity gradient of the inner (r1.5R ) corona was used to establish a qualitative evolutionary model of streamers which synthesizes the observations. Briefly, streamers initially develop over active regions; the streamer growth rate may be as rapid as the disk activity, or at worst lags flare activity by solar rotation. The streamer can be the cause of interplanetary and geomagnetic effects at 1 AU within a solar rotation after birth. Thereafter the streamer follows an evolution dictated by the underlying solar magnetic fields. In any case the lowest level of the coronal enhancement has a lifetime not exceeding that of the solar disk activity.  相似文献   

15.
Daily observations of Doppler line shifts made with very low spatial resolution (3) with the Stanford magnetograph have been used to study the equatorial rotation rate, limb effect on the disk, and the mean meridonial circulation. The equatorial rotation rate was found to be approximately constant over the interval May 1976–January 1977 and to have the value 2.82 rad s–1 (1.96 km s–1). This average compares favorably with the results of Howard (1977) of 2.83 rad s–1 for the same time period. The RMS deviation of the daily measurements about the mean value was 1% of the rate (20 m s–1), much smaller than the fluctuations reported by Howard and Harvey (1970) of several per cent. These 1% fluctuations are uncorrelated from day-to-day and may be due to instrumental problems. The limb effect on the disk was studied in equatorial scans (after suppressing solar rotation). A redshift at the center of the disk relative to a position 0.60R from the center of 30 m s–1 was found for the line Fe i 5250 Å. Central meridian scans were used (after correcting for the limb effect defined in the equatorial scans) to search for the component of mean meridonial circulation symmetric across the equator. A signal is found consistent with a polewards flow of 20 m s–1 approximately constant over the latitude range 10–50°. Models of the solar differential rotation driven by an axisymmetric meridonial circulation and an anisotropic eddy viscosity (Kippenhahn, 1963; Cocke, 1967; Köhler, 1970) predict an equatorwards flow at the surface. However, giant cell convection models (Gilman, 1972, 1976, 1977) predict a mean polewards flow (at the surface). The poleward-directed meridonial flow is created as a by-product of the giant cell convection and tends to limit the differential rotation. The observation of a poleward-directed meridonial circulation lends strong support to the giant cell models over the anisotropic eddy viscosity models.Now at Kitt Peak National Observatory, Tucson, Ariz., U.S.A.  相似文献   

16.
In this paper we present the results of a sunspot rotation study using Abastumani Astrophysical Observatory photoheliogram data for 324 sunspots. The rotation amplitudes vary in theinebreak 2–64° range (with maximum at 12–14°), and the periods around 0–20 days (with maximum atinebreak 4–6 days). It could be concluded that sunspot rotations are rather inhomogeneous and asymmetric, but several types of sunspots are distinguished by their rotational parameters.During solar activity maximum, sunspot average rotation periods and amplitudes slightly increase. This can be affected by the increase of sunspot magnetic flux tube depth. So we can suppose that sunspot formation during solar activity is connected to a rise of magnetic tubes from deeper layers of the solar photosphere, strengthening the processes within the tube and causing variations in rotation.There is a linear relation between tilt-angle oscillation periods and amplitudes, showing higher amplitudes for large periods. The variations of those periods and especially amplitudes have a periodical shape for all types of sunspots and correlate well with the solar activity maxima with a phase delay of about 1–2 years.  相似文献   

17.
Mark Kearns 《Solar physics》1979,62(2):393-399
Results are presented for the solar rotation, 1978, as derived from sunspots by two different methods. Using recurrent spots only, the latitude dependence of the sidereal rotation rate was calculated to be =(14.41±0.05)–(3.13±0.26) sin2 . Using recognizable spots, both recurrent and non-recurrent, average rotation rates were obtained for 5-degree intervals of latitude. The results from these two approaches were found to be in agreement with observations made between 1878 and 1951, suggesting that the solar rotation has not changed in the past 100 years.Currently at Northwestern University, Evanston, Ill., U.S.A.  相似文献   

18.
The properties of the differential rotation of the Sun are investigated by using H filaments as tracers. Annual average angular velocities of 716 quiescent filaments are determined from H photoheliograms of the Abastumani Astrophysical Observatory film collection for the years 1957–1993. The existence of north-south (N–S) asymmetry in H filaments rotation is confirmed statistically. The connection of asymmetry with the solar activity cycles is established. It is found that the northern hemisphere rotates faster during the even cycles (20 and 22) while the rotation of southern hemisphere dominates in odd ones (cycles 19 and 21). The mechanism of the solar activity should be responsible for the N–S asymmetry of the solar differential rotation. A theoretical explanation for the N–S asymmetry in the Suns rotation is offered. It is suggested that the asymmetry in the rotation of the two hemispheres of the Sun is balanced by the dynamo mechanism, which acts in parallel to the mechanism offered here. It is concluded that the N–S asymmetry of the solar rotation should cause a difference in activity level between the northern and southern hemispheres.  相似文献   

19.
The rotation of the solar corona has been studied using recurrence properties of the green coronal line (5303 Å) for the interval 1947–1970. Short-lived coronal activity is found to show the same differential rotation as short-lived photospheric magnetic field features. Long-lived recurrences show rigid rotation in the latitude interval ±57°.5. It is proposed that at least part of the variability of rotational properties of the solar atmosphere may be understood as a consequence of coexistence of differential and rigid solar rotation.On leave from Torino University, Italy, as an ESRO-NASA Fellow.  相似文献   

20.
Singh  Jagdev  Cowsik  R.  Raveendran  A. V.  Bagare  S. P.  Saxena  A. K.  Sundararaman  K.  Krishan  Vinod  Naidu  Nagaraja  Samson  J. P. A.  Gabriel  F. 《Solar physics》1997,170(2):235-252
An experiment to search for short-period oscillations in the solar corona was conducted during the total solar eclipse of 1995 October 24 at Kalpi, India. The intensity in the continuum, centred around 5500 Å and with a passband having a half-width of 240 Å, was recorded at a counting rate of 20 Hz using a thermoelectric-liquid cooled photomultiplier. The power-spectrum analysis of the data reveals that most of the power is contained in 6 frequencies below 0.2 Hz. A least-square analysis gives the periods of the 6 frequency components to be 56.5, 19.5, 13.5, 8.0, 6.1, and 5.3 s. These oscillations are found to be sinusoidal, and their amplitudes are found to lie in the rangeinebreak 0.2–1.3% of the coronal brightness. Assuming these oscillations to be fast magnetosonic modes, the calculations indicate the availability of enough flux for the heating of the active regions in the solar corona.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号