首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of a powerful cosmological gamma-ray burst (GRB) with a dense molecular cloud is modeled. Two-dimensional gas-dynamical flows were computed for various configurations of the cloud. In the spherically symmetrical case, the gas velocity does not exceed $ \sim 2 \times 10^3 \sqrt {E/1.6 \times 10^{53} } km/s$ km/s. If the GRB precursor has an anisotropic wind, a conical cavity can form in the nearby region of the molecular cloud. The propagation of the gamma-ray pulse in this cavity leads to the formation of a rapidly moving hot clump of matter, with the gas velocity reaching 1.8 × 104 km/s for gamma-ray energy of E = 1.6 × 1053 erg. In all the computations, the velocity of the moving material is much lower than the velocity of light, the volume of gas affected by the motion is small, and the influence of the gas motions on the light curve of the optical afterglow is insignificant.  相似文献   

2.
Results of radio observations of the cosmic gamma-ray burst GRB 080319B at 8.45 GHz during the afterglow are reported. The observations were carried out on telescopes of the Zelenchukskaya and Svetloe Observatories of the Institute of Applied Astronomy, Russian Academy of Sciences. Two outbursts in the radio brightness were detected in the afterglow of GRB 080319B. A total of 148 radio observations were performed at 3.5, 6.2, and 13 cm. The observations were conducted in a mode with smooth scanning in elevation, which was also used to update the flux densities of the primary reference sources. The first powerful radio outburst was recorded on March 28, 2008, 6.86d after the gamma-ray burst, when the maximum flux density was F 8.45 GHz = 44 ± 12 mJy. Almost two months later, a second increase in the radio brightness was observed. The flux density monotonically increased from 19 mJy (59.55d) to 34mJy (59.79d) over 6.5 h; 1.17 d later, the flux density fell to 12mJy.At this last epoch, the radio flux demonstrated variability within 3σ on timescales of 9d−10d. The detected radio brightness increases are interpreted in terms of MHD interactions of a fast plasma outflow with a cloud of inhomogeneous surrounding medium. This interaction is accompanied by restructuring of the relativistic plasma outflow; the analysis of this process has been carried out.  相似文献   

3.
A supernova explosion in a close binary system in which one of the components is a compact magnetized object (neutron star or white dwarf) can form a narrow “tail” with length l t ~109 cm, width h t ~108 cm, and magnetic field B t ~106, due to the resulting shock wave flowing around the magnetosphere of the compact object. The energy released by the reconnection of magnetic field lines in this tail can accelerate electrons to relativistic speeds (γ≈104), creating the conditions required for powerful synchrotron radiation at energies from hundreds of keV to several MeV, i.e., for a gamma-ray burst (GRB). The duration of this radiation will depend on the power of the shock that forms during the supernova. If the shock is not sufficiently powerful to tear off the magnetosphere tail from the compact object, the duration of the GRB will not exceed l t /V A ≤1 s, and the conditions necessary for an “afterglow” at softer energies will not arise. If the shock is more powerful, the tail can be torn from the magnetosphere, forming a narrow ejection, which is perceived in its relativistic motion toward the observer(Γ~104) as an afterglow whose duration grows from tens of seconds at gamma-ray energies to tens of days in the optical. This may explain why afterglows are observed only in association with long GRBs (T 90>10 s). Very short GRBs (T 90<0.1 s) may be local, i.e., low-power, phenomena occurring in close pairs containing compact, magnetized objects, in which there is again an interaction between the magnetosphere of the compact object and a shock wave, but the shock is initiated by a flare on the companion, which is a red-dwarf cataclysmic variable, rather than by a supernova.  相似文献   

4.
5.
Long gamma-ray burst GRB 151027A was observed by all three detectors onboard the Swift spacecraft, and many more, including MAXI, Konus-Wind and Fermi GBM/LAT instruments. This revealed a complex structure of the prompt and afterglow emission, consisting of a double-peak gammaray prompt with a quiescent period and a HRF/SXF within the X-ray afterglow, together with multiple BB components seen within the time-resolved spectral analysis. These features, within the fireshell model, are interpreted as the manifestation of the same physical process viewed at different angles with respect to the HN ejecta. Here we present the time-resolved and time-integrated spectral analysis used to determine the energy of the e?e+ plasma Etot and the baryon load B. These quantities describe the dynamics of the fireshell up to the transparency point. We proceed with the light-curve simulation from which CBM density values and its inhomogeneities are deduced. We also investigate the properties of GRB 140206A, whose prompt emission exhibits a similar structure.  相似文献   

6.
The distribution of observed energies for gamma-ray bursts with known redshifts can be explained as a consequence of events releasing a standard energy of E 0=5×1051 erg. Two situations are possible: the degree of collimation could vary from burst to burst, or there could be a universal radiation pattern for all bursts, with the observed differences being due to differences in the orientation of this pattern relative to the line of sight to the Earth.  相似文献   

7.
Observations of the molecular cloud G1.6-0.025 in the 2K-1K and J0-J?1E series and 5?1-40E line of CH3OH, the (2-1) and (3-2) lines of SiO, and the 7?7-6?6 line of HNCO are described. Maps of the previously observed extended cloud with Vlsr~50 km/s and high-velocity clump with Vlsr~160 km/s, as well as a newly detected clump with Vlsr~0 km/s, have been obtained. The extended cloud and high-velocity clump have a nonuniform structure. The linewidths associated with all the objects are between 20 and 35 km/s, as is typical of clouds of the Galactic center. In some directions, emission at velocities from 40 to 160 km/s and from ?10 to +75 km/s is observed at the clump boundaries, testifying to a connection between the extended cloud and the high-velocity clump and clump at Vlsr~0 km/s. Compact maser sources are probaby contributing appreciably to the emission of the extended cloud in the 5?1-40E CH3OH line. Non-LTE modeling of the methanol emission shows that the extended cloud and high-velocity clump have a relatively low hydrogen density (<104 cm?3). The specific column density of methanol in the extended cloud exceeds 6×108 cm?3s, and is 4×108?6×109 cm?3s in the high-velocity clump. The kinetic temperatures of the extended cloud and high-velocity clump are estimated to be <80 K and 150–200 K, respectively. Possible mechanisms that can explain the link between the extended cloud with Vlsr~50 km/s and the clumps with Vlsr~0 km/s and ~160 km/s are briefly discussed.  相似文献   

8.
Three-dimensional numerical hydrodynamical modeling of a radiative wind and accretion disk in a close binary system with a compact object is carried out, using the massive X-ray binary LMC X-3 as an example. This system contains a precessing disk, and may have relativistic jets. These computations show that an accretion disk with a radius of about 0.20 (in units of the component separation) forms from the radiative wind from the donor when the action of the wind on the central source is taken into account, when the accretion rate is equal to the observed value (about 3.0 × 10?8 M /year, which corresponds to the case when the donor overflows its Roche lobe by nearly 1%). It is assumed that the speed of the donor wind at infinity is about 2200 km/s. The disk that forms is geometrically thick and nearly cylindrical in shape, with a low-density tunnel at its center extending from the accretor through the disk along the rotational axis. We have also modeled a flare in the disk due to short-term variations in the supply of material through the Lagrange point L1, whose brightnesses and durations are able to explain flares in cataclysmic variables and X-ray binaries. The accretion disk is not formed when the donor underfills its Roche lobe by 0.5%, which corresponds to an accretion rate onto the compact object of 2.0 × 10?9 M /year. In place of a disk, an accretion envelope with a radius of about 0.03 forms, within which gas moves along very steep spiral trajectories before falling onto the compact object. As in the accretion-disk case, a tunnel forms along the rotational axis of the accretion envelope; a shock forms behind the accretor, where flares occur in a compact region a small distance from the accretor at a rate of about six flares per orbital period, with amplitudes of about 10 m or more. The flare durations are two to four minutes, and the energies of individual particles at the flare maximum are about 100–150 keV. These flares appear to be analogous to the flares observed in gamma-ray and X-ray burst sources. We accordingly propose a model in which these phenomena are associated with massive, close X-ray binary systems with component-mass ratios exceeding unity, in which the donor does not fill its Roche lobe. Although no accretion disk forms around the compact object, an accretion region develops near the accretor, where the gamma-ray and X-ray flares occur.  相似文献   

9.
We describe the formation of carbon dust in binary systems with hot components as a result of the collisions of clouds in a two-phase stellar-wind model. Calculations are made for the well studied system WR 140. The collisions lead to the formation of composite clouds and shock waves, with the temperature at the shock front equal to about 3×108 K along both sides of the interface boundary. During isobaric deexcitation to (0.5–0.7)×104 K, the cloud density increases by a factor of several thousand; its thickness in the direction of the shock decreases by the same factor. After deexcitation, the hydrogen inside the composite cloud is in its atomic state, while the carbon remains ionized. The deexcitation is followed by expansion of the cloud, which moves away from both stars. During the first 106 s, its thickness remains relatively small, so that the expansion is one-dimensional. The radiation field inside the cloud decays, resulting in the recombination of the carbon. Further expansion of the cloud leads to adiabatic cooling, and the formation of dust particles becomes possible. After the dimensions of the cloud have become roughly the same in all directions, its expansion is isotropic, so that it becomes transparent within approximately 106 s, and the dust is heated to (1.0–1.4)×103 K, observed as an IR “lare.” The time required for the cloud to move from the exciting star and heat the dust is comparable to the observed delay in the increased IR emission relative to the time of periastron.  相似文献   

10.
The results of optical, radio, and gamma-ray observations of the blazar AO 0235+16 are presented, including photometric (BV RIJHK) and polarimetric (R)monitoring carried out at St. Petersburg State University and the Central (Pulkovo) Astronomical Observatory in 2007–2015, 43 GHz Very Long Baseline Interferometry radio observations processed at Boston University, and a gamma-ray light curve based on observationswith the Fermi space observatory are presented. Two strong outbursts were detected. The relative spectral energy distributions of the variable components responsible for the outbursts are determined; these follow power laws, but with different spectral indices. The degree of polarization was high in both outbursts; only an average relationship between the brightness and polarization can be found. There was no time lag between the variations in the optical and gamma-ray, suggesting that the sources of the radiation in the optical and gamma-ray are located in the same region of the jet.  相似文献   

11.
We present observations of the UX Ori star RR Tau in the optical (UBVRI)and near infrared (JHKLM)acquired between November 2000 and April 2001. We recorded a uniquely long (about half a year) Algol-like minimum with an amplitude of ΔV≈2.9. The dimming of RR Tau was accompanied by an increase of the linear polarization, typical of UX Ori stars and testifying to the eclipsing nature of the minimum. The J and H infrared fluxes varied synchronously with the optical variations. However, the K and L brightness changes were in the opposite sense: the flux in these two bands increased for the entire duration of the optical minimum. Our analysis suggests that the source of the K and L radiation is the dust cloud itself, moving at a distance of about 1 AU from the star. The flux increase in these bands was not due to an increase in the dust temperature, but instead to an increase in the number of emitting grains in the cloud. This could be associated either with an actual increase in the number of fine grains due to sublimation and the disruption of larger grains or with the distortion and disruption of the cloud due to tidal perturbation, permitting the star’s light to penetrate and heat the densest regions of the cloud. Based on the observed L fluxes, we estimate the mass of the emitting dust in the cloud to be ≈1023 g. Taking into account the presence of cool dust and a gaseous component in the cloud in addition to the dust heated by the star’s radiation, and adopting a ratio for the masses of the dust and gas components similar to that in the interstellar medium (1:100), we estimate the cloud’s total mass to be ≥1025 g. Judging from this value and the duration of the minimum, we observed an extremely rare episode associated with a giant gas and dust cloud with a total mass on the order of 0.1 lunar mass or higher, which passed very near the young star (and may be falling onto it).  相似文献   

12.
We consider the evolution of close binaries resulting in the most intensive explosive phenomena in the stellar Universe—Type Ia supernovae and gamma-ray bursts. For Type Ia supernovae, which represent thermonuclear explosions of carbon-oxygen dwarfs whose masses reach the Chandrasekhar limit during the accretion of matter from the donor star, we derive the conditions for the accumulation of the limiting mass by the degenerate dwarf in the close binary. Accretion onto the degenerate dwarf can be accompanied by supersoft X-ray radiation with luminosity 1–104 L . Gamma-ray bursts are believe to accompany the formation and rapid evolution of compact accretion-decretion disks during the formation of relativistic objects—black holes and neutron stars. The rapid (~1 M /s) accretion of matter from these disks onto the central compact relativistic star results in an energy release of ~0.1 M c 2 ~ 1053 erg in the form of gamma-rays and neutrinos over a time of 0.1–1000 s. Such disks can form via the collapse of the rapidly rotating cores of Type Ib, Ic supernovae, which are components in extremely close binaries, or alternately due to the collapse of accreting oxygen-neon degenerate dwarfs with the Chandrasekhar mass into neutron stars, or the merging of neutron stars with neutron stars or black holes in close binaries. We present numerical models of the evolution of some close binaries that result in Type Ia supernovae, and also estimate the rates of these supernovae (~0.003/year) and of gamma-ray bursts (~10?4/year) in our Galaxy for various evolutionary scenarios. The collimation of the gamma-ray burst radiation within an opening angle of several degrees “matches” the latter estimate with the observed rate of these events, ~10?7–10?8/year calculated for a galaxy with the mass of our Galaxy.  相似文献   

13.
Observations of the very-high-energy gamma-ray flux of the blazar 3C 66A (z=0.444) carried out at the Crimean Astrophysical Observatory with the GT-48 atmospheric Cerenkov detector are reported. The gamma-ray fluxes in 1997 and 1998 were lower than in 1996. The optical luminosity of the object in 1997–1998 also decreased in comparison with its value in 1996. If the emission is isotropic, the very-high-energy gamma-ray power is 1046 erg/s.  相似文献   

14.
A new model is put forward to explain the observed features of anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs). It is shown that drift waves can be excited in the magnetosphere of a neutron star with a rotational period of P~0.1 s, surface magnetic field Bs~1012 G, and angle between the rotational axis and magnetic moment β<10°. These waves lead to the formation of radiation pulses with a period of Pdr~10 s. The rate of loss of rotational energy by such a star (~1037 erg/s) is sufficient to produce the observed increase in the period \((\dot P \sim 10^{ - 10} )\), the X-ray luminosities of AXPs and SGRs (~1034–1036 erg/s), and an injection of relativistic particles into the surrounding supernova remnant. A modulation of the constant component of the radiation with a period of P~0.1 s is predicted. In order for SGRs to produce gamma-ray bursts, an additional source of energy must be invoked. Radio pulsars with periods of Pobs>5 s can be described by the proposed model; in this case, their rotational periods are considerably less than Pobs and the observed pulses are due to the drift waves.  相似文献   

15.
In this paper, an attempt was tried to study the relation between radiogenic heat production rate (RHPR) that derived from gamma-ray spectrometric data and the kinetic surface temperature KST, which was calculated from the thermal emission and reflection radiometer-thermal infrared (ASTER-TIR) imagery applied on Elmissikat-Eleridiya district. This area is considered one of the most important uranium localities in the Central Eastern Desert of Egypt. The gamma-ray spectrometric data including both airborne data and in situ measurements concurrent with the collection of 20 rock samples were used to determine the rock density. The ground gamma-ray spectrometry has been conducted using GS-256 spectrometer at the same locations of rock samples. The gamma-ray spectrometric data (airborne and ground) beside rock density data were used for calculating RHPR. Alongside, pairs of daytime and nighttime ASTER-TIR images were collected and surface kinetic temperature for both day (daytime kinetic surface temperature (DKST)) and night (nighttime kinetic surface temperature (NKST)) were derived by using reference channel emissivity technique. The study showed a relative higher RHPR within syenogranite (4.2 up to 6 μW/m3) than other rock units. Besides, the KST of syenogranite ranged from 33 to 48 °C in daytime and between 7 and 17 °C at night. Comparing all results, no clear relation between RHPR and KST is evident. This is due to the very weak RHPR that is not sufficient to affect the surface heat temperature, which can be remotely sensed by ASTER satellite TIR data. This factor in addition to other factors such as: structural elements, topography, geographic locations, shading and scattering, rock moisture and density, can strongly affect the surface temperature. In conclusion, these results could be improved in areas of very high radioelement concentrations, especially 235U and through the use of the enhanced spatial resolution of future satellite TIR imaging instruments.  相似文献   

16.
伽马能谱测量在陆地伽马空气吸收剂量率评价中的应用   总被引:2,自引:2,他引:2  
2002~200年,国内首次采用就地伽马能谱测量方法在广东珠海市进行了面积性测量,并用该方法定量解释求得的钾、铀、钍含量用Beck公式估算了地表1 m高处的吸收剂量率,同时用塑料闪烁体X-γ吸收剂量率仪在相同测点做了比对测量.2种方法对比结果(514个测点)显示很好的一致性,珠海市区实测吸收剂量率和伽马能谱估算吸收剂量率平均值分别为(145.07±26.5) nGy/h和(162.10±1.51) nGy/h,计算结果与实测结果的相对误差为11.74%.  相似文献   

17.
The scenario of the triggered origin of the solar system suggests that the formation of our planetary system was initiated by the impact of an interstellar shock wave on a molecular cloud core. The strength of this scenario lies in its ability to explain the presence of short-lived radionuclides in the early solar system. According to the proposal, the radioactivities were produced in a stellar source, transported into the molecular cloud core by a shock wave and mixed into the collapsing system during the interaction between the shock wave and the core. We examine the viability of the scenario by presenting results from recent numerical simulations. The calculations show that molecular cloud cores can be triggered into collapse by the impact of a shock wave propagating at the velocity of 10–45 km s−1. Some of the shock wave material incident on the core, typically 10–20%, can be injected into the collapsing system. The time scale of the process is ∼104–105 years, sufficiently short for the survival of the short-lived radioactivities. The simulations therefore confirm the viability of the scenario of the triggered origin of the solar system.  相似文献   

18.
We have identified iridium in an ~ 5 m-thick section of pelagic sediment cored in the deep sea floor at Site 886C, in addition to a distinct spike in iridium at the K–Pg boundary related to the Chicxulub asteroid impact. We distinguish the contribution of the extraterrestrial matter in the sediments from those of the terrestrial matter through a Co–Ir diagram, calling it the “extraterrestrial index” fEX. This new index reveals a broad iridium anomaly around the Chicxulub spike. Any mixtures of materials on the surface of the Earth cannot explain the broad iridium component. On the other hand, we find that an encounter of the solar system with a giant molecular cloud can aptly explain the component, especially if the molecular cloud has a size of ~ 100 pc and the central density of over 2000 protons/cm3. Kataoka et al. (2013, 2014) pointed that an encounter with a dark cloud would drive an environmental catastrophe leading to mass extinction. Solid particles from the hypothesized dark cloud would combine with the global environment of Earth, remaining in the stratosphere for at least several months or years. With a sunshield effect estimated to be as large as − 9.3 W m 2, the dark cloud would have caused global climate cooling in the last 8 Myr of the Cretaceous period, consistent with the variations of stable isotope ratios in oxygen (Barrera and Huber, 1990; Li and Keller, 1998; Barrera and Savin, 1999; Li and Keller, 1999) and strontium (Barrera and Huber, 1990; Ingram, 1995; Sugarman et al., 1995). The resulting growth of the continental ice sheet also resulted in a regression of the sea level. The global cooling, which appears to be associated with a decrease in the diversity of fossils, eventually led to the mass extinction at the K–Pg boundary.  相似文献   

19.
In respect to the weathering of cave art exposed to the sun, cognizance has yet to be taken of the modified thermal conditions and the potential for endolithic biotic activity where the art is located on a light‐transmissive lithology. Where light penetrates rock, the light‐to‐heat transfer is not solely at the surface, and this leads to a thermal gradient that is different from where the paintings are located (and all transfer is at the surface). Light values of up to 200 W/m2 were recorded at 0.5 mm depth and up to 100 W/m2 at 1mm depth in the dry sandstone; rock moisture data showed that at this site the rock remained dry irrespective of atmospheric conditions. The light penetration means that there can be rapid and large subsurface thermal fluctuations contemporaneous with those at the rock surface, and that the thermal gradient is not as steep (approximately 1°C/mm in the surficial part of the rock) as where light‐to‐heat transfer is solely at the surface. Further, the presence of subsurface photosynthetically active radiation can (potentially) facilitate colonization by endolithic organisms. Here, as part of a study of the weathering of San rock art on sandstone in southern Africa, a first attempt is made to monitor the extent of light penetration and the resulting thermal conditions in the outer few millimeters of the sandstone. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
We present the results of observations obtained using the MASTER robotic telescope in 2005–2006, including the earliest observations of the optical emission of the gamma-ray bursts GRB 050824 and GRB 060926. Together with later observations, these data yield the brightness-variation law t ?0.55±0.05 for GRB 050824. An optical flare was detected in GRB 060926—a brightness enhancement that repeated the behavior observed in the X-ray variations. The spectrum of GRB 060926 is found to be F E E ?β , where β = 1.0 ± 0.2. Limits on the optical brightnesses of 26 gamma-ray bursts have been derived, 9 of these for the first time. Data for more than 90% of the accessible sky down to 19 m were taken and reduced in real time during the survey. A database has been composed based on these data. Limits have been placed on the rate of optical flares that are not associated with detected gamma-ray bursts, and on the opening angle for the beams of gamma-ray bursts. Three new supernovae have been discovered: SN 2005bv (type Ia)—the first to be discovered on Russian territory, SN 2005ee—one of the most powerful type II supernovae known, and SN 2006ak (type Ia). We have obtained an image of SN 2006X during the growth stage and a light curve that fully describes the brightness maximum and exponential decay. A new method for searching for optical transients of gamma-ray bursts detected using triangulation from various spacecraft is proposed and tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号